MOORINGS #### **Catenary mooring** The restoring force is provided by the suspended weight. This requires a long length of heavy line (steel), suitable for great depths. #### **Tension-leg mooring** It comes closest to a fixed platform by using very stiff (no creep) and extremely taut materials (steel cable/tube or synthetic line without creep). It is suitable for intermediate depths (100 m - 500 m), expensive installation, risk of complete loss of the system in case of a line break. ### **Semi-taut mooring** This is the composite solution that is increasingly used in shallow waters, allowing the system to operate in both a taut and a soft phase (system damping) by using a section of synthetic line tensioned by the suspended weight of another heavier section (chain), which can temporarily reduce/cancel the tensioning in swell movements. Its dimensioning is delicate and requires numerous adjustments and a detailed knowledge of the meteorological and oceanic data as well as the dynamic response of the whole system. # **Technologies comparison** | Technology | Advantages | Limits | |------------------|---|--| | Semi-submersible | Simple installation and maintenance
by towing Any anchor technology possible Standard means of installation Majority of the float submerged Standard construction technique | Large swell movements Footprint of the mooring | | Barge | Simple installation and maintenance
by towing Any anchor technology possible Standard means of installation Lower wave frequency movements Standard construction technique | High maximum offset Higher float mass than semi-submersible technology High visual impact of the emerged part Footprint of the anchor | | SPAR | Little movement | Dedicated to very deep sites | |------|--------------------------------------|--| | | Standard mooring components | Size of the float requiring the | | | Small footprint of the semi-taut | development of port infrastructures | | | mooring | Turbine/float assembly at sea | | | Standard construction technique | requiring ad hoc means and a | | | | favourable weather window | | | | Delicate towing | | TLP | Very little movement in the swell | All lines necessary for the stability of | | | Little effort in the swell | the float | | | Lightweight and less expensive float | Specific installation means | | | structure | Complex mooring replacement | | | Small footprint and line length | Risk of high frequency fatigue | | M | | ONLY gravity and suction anchors | | | | - Site gravity and saction unchors | | | | |