

MOORINGS

Catenary mooring

The restoring force is provided by the suspended weight. This requires a long length of heavy line (steel), suitable for great depths.

Tension-leg mooring

It comes closest to a fixed platform by using very stiff (no creep) and extremely taut materials (steel cable/tube or synthetic line without creep). It is suitable for intermediate depths (100 m - 500 m), expensive installation, risk of complete loss of the system in case of a line break.

Semi-taut mooring

This is the composite solution that is increasingly used in shallow waters, allowing the system to operate in both a taut and a soft phase (system damping) by using a section of synthetic line tensioned by the suspended weight of another heavier section (chain), which can temporarily reduce/cancel the tensioning in swell movements. Its dimensioning is delicate and requires numerous adjustments and a detailed knowledge of the meteorological and oceanic data as well as the dynamic response of the whole system.

Technologies comparison

Technology	Advantages	Limits
Semi-submersible	 Simple installation and maintenance by towing Any anchor technology possible Standard means of installation Majority of the float submerged Standard construction technique 	 Large swell movements Footprint of the mooring
Barge	 Simple installation and maintenance by towing Any anchor technology possible Standard means of installation Lower wave frequency movements Standard construction technique 	 High maximum offset Higher float mass than semi-submersible technology High visual impact of the emerged part Footprint of the anchor

SPAR	Little movement	 Dedicated to very deep sites
	Standard mooring components	Size of the float requiring the
	Small footprint of the semi-taut	development of port infrastructures
	mooring	Turbine/float assembly at sea
	Standard construction technique	requiring ad hoc means and a
		favourable weather window
		Delicate towing
TLP	Very little movement in the swell	All lines necessary for the stability of
	Little effort in the swell	the float
	Lightweight and less expensive float	Specific installation means
	structure	Complex mooring replacement
	Small footprint and line length	Risk of high frequency fatigue
M		ONLY gravity and suction anchors
		- Site gravity and saction unchors