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HIGHLIGHTS

o Installations powered by ocean thermal energy still need to be optimised.

e Biomass energy is not used separately to power desalination systems.

o Low-enthalpy geothermal sources can be wildly used as a direct heat for several thermal-based desalination.

o Salinity gradient energy can be considered as an interesting and valuable technique for RE production and storage.

ARTICLE INFO ABSTRACT
Keywords: The last decade has seen a worldwide increase in the use of alternative energy sources, especially renewable
Critical review energy (RE), including its application in desalination. In the past many experimental and pilot investigations
Renewable energy were presented which allowed the costs and effectiveness of such integrated solutions to be estimated. The
Desalination present review describes experience related to the use of solar thermal technologies (solar collector and
Energy storage . . . . .
Grid-off concentrated solar power technologies), solar electricity (photovoltaic and concentrator photovoltaics), wind,
hydroelectric (hydropower, tidal, wave and ocean thermal energy), biomass and geothermal energy (power and
thermal) as well as hybrid systems. The costs relating to energy and desalinated water production are investi-
gated in the case of various technological processes used in desalination. The main directions for development of
the RE systems investigated are discussed and their advantages and disadvantages are assessed. Such a
comprehensive review showed that the expansion of the effective use of RE sources is still hampered by several
techno-economic aspects. The paper focuses on the main concerns of the need to optimise energy processes,
especially by creating more energy-efficient and economically effective solutions, energy storage, energy re-
covery and the expansion of off-grid systems. As a result of the analysis it was concluded that, despite some
disadvantages, the combining of RE with desalination processes requires further intensive research and
demonstration units for longer term performance. Regulations to develop less energy-intensive desalination
technologies are also still needed.
1. Introduction areas where water supply was not a critical problem [1]. One solution to
this problem is water treatment or desalination, which can provide
As a result of the excessive use of freshwater resources compared to suitable water quality for crop irrigation and industry as well as
their renewability, the constant deterioration of groundwater and sur- household purposes. Today, several countries, mainly in the Middle East
face water quality and the climate change observed in recent years, and North Africa, are experiencing structural and periodic water
access to drinking water quality is becoming limited, including in new shortages [2]. Freshwater shortage is also felt in Central and Western
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European countries as well as in Latin America (Fig. 1), and this is
additionally exacerbated by the local occurrence of toxic pollutants of
geogenic and anthropogenic origin, such as arsenic, boron, fluoride,
chromium, uranium etc. in shallow-circulating waters [3-6]. This,
combined with a significant increase in population numbers, has caused
the amount of water per capita to fall well below 1500 m®/year, i.e. the
level determined by the United Nations as the minimum of existence.
Currently, water desalination and treatment processes cover a signifi-
cant part of demand for high-quality water, providing a solution that is
in a sense economically viable as well as technologically feasible [7-11].
Nowadays, an estimated number of 15,906 desalination plants are
currently operational, located in 177 countries with a total desalination
capacity of about 95.35 million ms/day (34.81 billion mg/year) [12],
and this figure is going to increase very fast due to the installation of
mega plants around the world [13]. What is more, the capacity of the
desalination plants which were contracted worldwide in the first of 2019
was about 4 million m3/d [14]. According to data presented by Jones
et al. [12], large numbers of desalination facilities are located in the
Middle East and North Africa (4826 plants, 47.5% of global desalination
capacity), East Asia and Pacific (3505 plants, 18.4% global capacity),
North America (2341 plants, 11.9% global capacity), Western Europe
(2337 plants, 9.2% global capacity), Latin America and the Caribbean
(1373 plants, 5.7% global capacity), Southern Asia (655 plants, 3.1%
global capacity), Eastern Europe and Central Asia (566 plants, 2.4%
global capacity) and Sub-Saharan Africa (303 plants, 1.9% global ca-
pacity). Moreover, it can be pointed out that countries such as Israel,
United Arab Emirates, Kingdom of Saudi Arabia cover more that 50% of
their demand with desalinated water, which is used both for industrial
and household purposes, but also for power, irrigation, military and
other uses.

Seawater provides an unlimited source of water for desalination
processes. The second potential source is brackish water, which is
sourced mainly from underground sources in many regions. The average
salt content of seawater is 35,000 mg/L (range: 24,000 to 42,000 mg/L
depending on the location). Brackish waters are less salty (ranging: 2000
to 10,000 mg/L) [12,16]. However, there are some areas, reservoirs
such as geothermal, where salt content is higher than seawater [16]. The
salinity of geothermal waters varies in a broader range: from 500 to even
120,000 mg/L [16]. World Health Organization [17] drinking water
recommendation call for salinity below 600 mg/L due to palatability,
however no health-based guideline value for TDS has been proposed.

In desalination processes, membrane technologies play a dominant
role nowadays — 69-73% of all installed systems globally [12,18], while
thermal techniques account for ca. 27% [18]. Among membrane tech-
niques, reverse osmosis (RO) dominates the global market. RO is

Low
Low to medium
Medium to high
W High
I Extremely high

Desalination 508 (2021) 115035

currently the most economical process for a wide range of salinity
(seawater and brackish water). For low salinity feeds, mature processes
such as electrodialysis (ED) and electrodialysis reversal desalination
(EDR) are considered. Other emerging processes, such as forward
osmosis (FO), adsorption desalination (AD), and membrane distillation
(MD) are under development and may have a great potential in the
future [19]. An interesting process is also Capacitive Deionization (CDI),
which can be considered as desalination technology for brackish water.
This technology uses the transport of ions from saline water to electrodes
with high ion retention capacity, however the electrodes which are the
main factor determines its applicability and lifetime. According to
Voutchkov [20], the studies conducted so far indicate the possibility of
using this method with the use of brackish waters. When using carbon
aerogel electrodes, the efficiency in recovering fresh water is estimated
at over 80%, with the (theoretical) physical size of the installation and
reducing its capital costs by over 30%. It may be added, that advantages
of electrochemical processes using membranes, such as ED, EDR, CDI,
electrodeionization (EDI) or Electrodialysis with bipolar membrane
(EDBM) are high efficiency of separation of substances and possibility to
optimisation desalination systems by creating hybrid solutions e.g. with
RO (like RO-CDI for ultrapure water production or maximizing water
recovery).

Hybrid systems, which combine different desalination techniques
and energy sources, appear to offer the most promising solutions [21]. In
regions with emerging water scarcity and high solar radiation, novel
hybrid solar (or wind) energy driven systems coupled with highly effi-
cient desalination processes show promise. In addition, research is being
conducted worldwide to improve the efficiency of already commonly
used desalination processes (e.g. RO) and to find new solutions: metal-
air desalination batteries [22], desalination via gas hydrate [23], and
also new materials: 3D printing for membrane separation [24], carbon
nanotubes [25], Janus composite hollow fibre membrane-based direct
contact distillation [26], single-layer graphene membranes [276] and
nanofibrous membranes [28]. As concerns the outlook for the future, it
appears that the development directions observed over the last three
years will be continued. A comprehensive action is needed to ensure the
sustainable operation of renewable energy sources and water resources,
mostly in regions with high water scarcity [29].

Despite the progress in desalination technologies which has been
observed over the last decades, they are still widely regarded as energy-
intensive, and as a result solutions are required to reduce unit cost and
thus improve the economic viability of such projects. One direction is
the use of renewable energy sources (RESs) [9,14,30-31], which, given
important trends in the fight against climate change, play a particularly
important role [32-40]. However, there is still a need to identify

Fig. 1. Predicted water stress in the world by 2040 (based on [15]).
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efficient and economical RES-based solutions that can support desali-
nation processes [40] for long term operation.

This review paper addresses every mature renewable energy sources
(RES) currently in use and feasible in the future, taking into account
their advantages, disadvantages, investment and operating costs, and
environmental impact. The review refers to the latest scientific publi-
cations on the use of renewable energy in desalination processes, at the
same time pointing to the need to develop such systems in the direction
of integration both between individual RES technologies, for off-grid
remote locations and with energy storage systems. The paper focuses
on limitations and challenges by highlighting the failures of most of the
demonstration plants run for long term.

2. Combination of renewable energy and desalination processes

Renewable energy and desalination are two different technologies
that can be combined in various fashions. Successful integrated designs
rely on joining efforts of experts of the two different fields — renewable
energy and desalination sectors. The desalination process can be assisted
by energy generated on site from locally available renewable energy
sources. This energy may be generated in various forms: as heat, elec-
tricity or mechanical energy. Theoretically, any RES technology can
work with a water desalination plant, especially in the context of those
desalination methods that use electricity. Even taking into account the
fact that electricity generation is not stable or continuous during a given
day or season, e.g. in the case of solar or wind power systems, the energy
used for desalination is offset by connecting these installations to the
power grid. Thus, there is a balance between the energy consumed and
the energy produced (compensation concept). Moreover, a lot of work is
currently devoted to desalination plants powered by solar or wind

RENEWABLE ENERGY SOURCES
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energy, in off-grid systems, in many cases equipped with batteries for
energy storage, to reduce the technical complexity of desalination sys-
tem [41-43]. Additionally there are desalination technologies that
require considerable amounts of heat, namely multi-stage flash (MSF),
multiple effect distillation (MED), and membrane distillation (MD), so
improved energy storage technologies are highly desirable in those
cases. On the other hand, there are RES technologies, e.g. based on
geothermal energy, which allow stable heat and electricity generation
regardless of the time of day or changing weather conditions.

In order to achieve the optimal economic effect, the selection of the
appropriate RES technology for desalination processes will depend on a
number of factors, including geographical location, the characteristics/
source of raw water for the desalination plant, water demand and
desalination plant size, the available power grid infrastructure, the
distance from customers (market), the potential and possibility of using
a specific type of RES (geological, topographical and weather condi-
tions) as well as predicted investment outlays and operating costs
[9,14,44]. Fig. 2 shows, in a schematic form, the potential for using
individual RES technologies in connection with desalination methods.

In general, desalination systems using RESs can be divided into two
categories: thermal and electromechanical processes. Depending on the
energy source, RES-driven desalination plants form non-consolidated
systems in places where electricity from the grid is not available. Non-
consolidated systems are often hybrid integrated systems that combine
more than one RES (e.g. wind and solar, solar and geothermal or solar
and biomass, possibly with the inclusion of a diesel generator). To
ensure their continuous or semi-continuous operation, non-consolidated
systems usually include energy storage devices [45].

Global experience shows that there are no significant technical ob-
stacles to combining RES technologies with desalination. However, it

Fig. 2. Possible renewable energy sources (RES)
combined with conventional and innovative desali-
nation processes (based on [9,18] updated). Abbre-
viations: PV/CPV -
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can be claimed that the world’s dominant RES technology which sup-
ports desalination processes is solar power [18,43,46-52]. The most
commonly used combinations are photovoltaic installations coupled
with the RO technology (PV-RO). The combination of MD and AD which
are considered to be low energy intensity technologies, with RESs also
shows promising results [53]. Several pilot MD installations powered by
solar and geothermal energy have been implemented, and model and
pre-implementation work related to their possible broader application is
in progress [6,38,54-58]. In their review of progress in the use of
renewable energy sources to power water desalination processes, Ali
et al. [38] noted that the most commonly used technologies are solar and
wind power. However, they pointed out that in the future, geothermal
energy should be used to a larger extent to drive desalination processes
because of the predictability and sustainability of energy generation
using this method regardless of the time of day or year. At the same time,
the authors pointed out that in the future, desalination processes will be
accompanied by the production of raw materials, what is a challenge
nowadays for performance enhancement by the combination of con-
ventional with novel materials technologies. In addition, the integration
of processes such as MD with pressure retarded osmosis (PRO) or reverse
electrodialysis (RED) will improve desalination efficiency and ensure
the sustainability of processes that are currently energy-intensive
[59,60]. Mentioned PRO, RED, Capacitive Reversed Electrodialysis
(CRED) and also Capacitive Mixing (CapMix) are considered as more
and more attractive methods of energy generation from salinity
gradient. Officially called as Salinity Gradient Energy (SGE), Salinity
Gradient Power (SGP), Salinity Difference Energy (SGE) or Blue energy
is a method of harvesting energy by mixture two salt solutions with
different, high and low concentration [61-64]. Such energy harvesting
was analysed by Brogioli et al. [65], Jia et al. [66], Bryjak et al. [67],
Jang et al. [68] and others. Jia et al. [66] pointed out, that salinity en-
ergy, stored as the salinity difference between saline and freshwater is a
renewable resource and can be converted to electricity. As was pointed
by Tuffa et al. [69] RED in connection with membrane based seawater
desalination technologies such as RO, MD, ED/EDR or CDI can be
considered for the simultaneous generation of renewable energy and
drinking water (Fig. 3). For controlled mixing of high saline water with
low mineralized water not only seawater may be considered as an
attractive feed source. Fig. 4 presents different options with theoretically
calculated available energy extraction. One should be noted that
nowadays PRO and RED systems are well-recognized, in contrast to
CapMix which is relatively new. However, as it was presented by Tufa
et al. [69] the major limitation for the wide RED application are 1) still
lack of low resistance ion-conductive membrane materials at a low cost
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Fig. 4. Theoretical amount of energy (kJ) obtained from different solutions, by
mixing 1 m® of high saline solution and 1 m® of low mineralized solution (based
on [69]).

(<4.8 USD/m2) and with high permselectivity (>95%) and 2) mem-
brane scaling and fouling as a results of the presence of organic com-
pounds and divalent ions in natural feed water. The review of various
membrane modules used in PRO process, technical challenges, feasi-
bility and future perspectives can also be found in work presented by
Gonzales et al. [62].

In recent years, water treatment, including seawater desalination,
wastewater and geothermal water treatment, has been the subject of
research all over the world. Despite the development of desalination
technology, commonly used techniques are still considered as energy-
intensive, which requires looking for solutions to increase the effi-
ciency of the desalination process or develop novel technologies. Water
desalination/treatment technologies have been investigated all over the
world in terms of increasing process efficiency [70,71], using new ma-
terials [24-28,72-73], combining different technologies [74-80],
designing new techniques [23,81-83] and reducing energy demand
[18,84-85] or procuring new energy sources [14,22,86-88].

3. Renewable energy sources compatible with desalination
processes

3.1. Solar
Solar energy is radiation from the sun that can be harnessed using

several technologies, such as: 1) solar thermal technologies which
extract thermal energy from the sun’s radiation using solar collector or

[

SEAWATER | RO BRINE | GEOTHERMAL BRINE

Fig. 3. Concept of simultaneous generation of renewable energy and drinking water production (based on [69] updated).
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concentrated solar power technologies (CSP); 2) solar electricity —
photovoltaic (PV)/concentrator photovoltaics (CPV) - solar modules
which are used to harness the solar energy carried by photons as
electricity.

3.1.1. Solar thermal — solar collector and CSP

Thermal desalination is one of the most popular, most common and
oldest RES applications globally. Technologies that use the heat gener-
ated by solar radiation include MSF, MED and vapour compression

SPAIN

Location: Almeria

Process: MED-TVC 14 effects
Capacity: 72 m*/day

USA

Location: El Paso, Texas
Process: MSF
(apacity: 19 m*/day

Location: Gran Canaria
Process: MSF
Capacity: 10 m*/day
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distillation (VCD). These are energy-intensive processes, especially in
areas with higher water salinity, such as Middle East countries (can
reach 45 g/L) [89]. On the other hand, however, these regions exhibit
favourable conditions in terms of solar irradiation, which ranges from
2200 to 2400 kWh/m? per year [90]. These factors, i.e. the scarcity of
water and the availability of high-level solar radiation, make solar en-
ergy the most suitable RES solution for water production in desalination
systems [18,57]. Fang et al. [91] proposed a new desalination method
consisting in obtaining freshwater from brackish water in Southern

GERMANY
Location: Berken
Process: MSF
Capacity: 10 m*/day

FRANCE

Location: La Desired Island
Process: ME-14 effects
(apacity: 40 m*/day

PALESTINE

Location: Al Azhar University
Process: MSF 4 stages
Capacity: 0.2 m*/day

JAPAN

Location: Takami Island
Process: ME-16 effects

MEXICO

Location: La Paz
Process: MSF 10-stages
(apacity: 10 m'/day

Capacity: 16 m*/day

DA

\

KUWAIT

Location: Safat
Process: MSF
Capacity: 10 m?/day

Location: Kuwait
Process: MSF
Capacity: 100 m*/day

CAPE VERDE

Location: Islands of Cape Verde
Process: Atlantis , Autoflash”
Capacity: 300 m’/day

ITALY

Location: Margarita de Savoya
Process: MSF
(apacity: 50-60 m'’/day

Location: University of Ancona
Process: MFR
Capacity: 30 m*/day

Location: Lampedusa Island
Process: MSF
(apacity: 0.3 m*/day

TUNISIA

Location: Hzag
Process: Distillation
Gapacity: 0.1-0.35 m*/day

Location: Tunisia
Process: MSF
Gapacity: 0.2 m*/day

JORDAN

Location: Dead Sea
Process: MEB
Capacity: 30 m*/day

Fig. 5. Selected solar thermal desalination installations worldwide (based on [9,95-108]).

Location: Abu Dhabi
Process: ME-16 effects
(apacity: 16 m*/day

Location: Dead Sea
Process: MF-18 effects
Capacity: 120 m*/day

ARABIAN GULF

Location: Arabian Gulf

Process: MEB
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Xinjiang (China) by the solar photothermal method (using a combina-
tion of membrane processing equipment and an evaporator). On the
other hand, the study carried out at the University of Almeria (Spain)
was focused on the use of solar energy together with a desalination
process based on the vacuum multi-effect membrane distillation tech-
nology [92].

Chen et al. [93] investigated the potential and possibility of coupling
desalination technologies with solar power to overcome future problems
with the scarcity of freshwater in China. Huang et al. [94] proposed a
novel solar-driven desalination distiller system with improved water
yield, which consists of a thermal concentration design combined with a
multistage latent heat recovery structure. The system has a great po-
tential for application in small- and industrial-scale desalination. Ahmed
et al. [18] analysed solar-powered desalination plants with focus on the
technologies used and energy consumption. They concluded that solar
energy is an attractive source of energy for powering desalination plants,
especially since emerging problems with freshwater scarcity and high
solar irradiation coincide in many regions. The most important desali-
nation installations using solar power in the world are presented on
Fig. 5.

Solar thermal desalination installations in the world are located in
Spain (2 installations), France (1), Germany (1), Italy (3), USA (1),
Mexico (1), Cape Verde (1), Tunisia (2), Palestine (1), Jordan (1),
Kuwait (2), UAE (2), Arabian Gulf (1) and in Japan (1). This gives a total
of 20 installations. Dominant technology of desalination processes is
MSF, which occurs in 10 locations. Next, there are ME technologies (4
installations), MEB (4), Autoflash (1) and Distillation (1). The highest
capacity was achieved in the Arabian Gulf with the use of MEB tech-
nology and amounts to 6000 m®/day. Installations with a capacity of
more than 100 m®/day are located in Islands of Cape Verde — 300 m3/
day (Autoflash), Dead Sea — 120 m3/day (ME) and Kuwait — 100 ms/day
(MSF). For 4 locations (Al Azhar University in Palestine, Hzag, Tunisia
and Lampedusa Island in Italy) the capacity does not exceed 0.35 m%/
day, leading to the conclusion that these are experimental units.

Classic thermal desalination with the use of solar energy requires a
very large land surface area, and thus a large surface area of devices that
concentrate solar radiation. This has a negative economic impact
compared to the use of conventional fuels. A technological and eco-
nomic model aimed at the optimisation of RO thermal water desalina-
tion processes using solar energy has been developed by, among others,
Zheng and Hatzell [51]. Based on theoretical data, they analysed the
conditions prevailing in seven U.S. coastal cities and concluded that the
optimal location is Miami (Florida). The results obtained in their tech-
nological and economic model indicated that the discounted cost of
freshwater production at the rate of 1000 m®/day given a solar collector
unit price of USD 100/m? and collectors operating at 40% efficiency
would be USD 0.97 per m® [51], which is indeed an impressive
achievement in comparison with the observed global trends in unit cost
of obtaining water fit for human consumption both in systems with and
without desalination techniques.

CSP is a power generation technology based on the use of solar en-
ergy concentrated in a small area, using mirrors to better focus sunlight
and convert it into heat. Four CSP technologies are known — parabolic
trough collector systems, linear Fresnel reflectors, solar/power towers
and parabolic dish collectors. However, two of them are most commonly
used: power towers and parabolic trough collectors [18]. A design based
on an absorber tube makes it possible to obtain very high temperatures
of 350-400 °C [109]. The vast majority of such installations are
currently located in Spain (mainly in Andalusia) and in the U.S. High
investment outlays are the disadvantage of using CSP systems in water
desalination/treatment processes. In addition, the use of such systems is
limited to areas with high insolation levels and they require a large land
surface area. On the other hand, the clear advantage of installations of
this type is undoubtedly their ability to store thermal energy, which
allows for balancing the operation of the entire installation and eco-
nomic optimisation, provided that the investment outlays incurred are
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offset by lower operating costs [110]. For instance, the first (2011) large-
scale commercial project which successfully uses energy storage in
molten salt tanks while being able to generate electricity around the
clock is the 19.9 MW, Gemasolar CSP-tower plant located in Spain
[111-112]. The plant is still working, producing about 80 GWh/year
and reduces more than 28,000 tons of CO5 emission per year [113].

According to Ahmed et al. [18], solar collectors currently have a
thermal efficiency between 60% and 75%, and the cost of generating
energy using these systems ranges from 0.05 to 0.09 USD per kWhy,.
Thermal solar installations are also considered in the context of power
generation: to drive turbines in binary, ORC or similar systems, which is
a promising solution for 200-2000 kW, commercial plants [114-115].
The heat obtained from the sun can be stored in a thermal energy storage
(TES) system [18]. A comparison of available CSP technologies is shown
in Table 1.

Among real-world CSP technologies, plants based on the parabolic
trough collector system are considered to be the solution which is the
most established on the market and the cheapest one from the large scale
technology — 0.012-0.020 USD/kWh (Table 1) [116-117]. However,
this technology requires by far the largest area of land compared to other
solutions, which may be an obstacle in the investment process. In
addition, it should be noted that CSP technologies require significant
amounts of water for the condensation and cooling process. For
example, in the case of the PTC system and LFR technologies, this
amounts to 3000 L/MWh [117-118], 2000-3000 L/MWh in case of SPT
and 50-100 L/MWh in case of PDC. This water demand may pose a
significant problem in the implementation of these technologies in water
scarcity areas. The exception, however, are locations close to the coast
where seawater can easily be used for cooling. Mohammadi et al. [119]
claim in their comprehensive review that this technology is optimal for
desalination processes because it makes it possible to generate both
electricity and heat. Hetal et al. [120] claim that MED and MSF are the

Table 1
Comparison of available CSP technologies (based on [116,117]).
Kay aspects Parabolic Linear Solar power Parabolic
trough collector ~ Fresnel tower dish
(PTC) reflector (SPT) collectors
(LFR) (PDC)
Land occupancy Large Medium Small Small
Relative cost Low Very low High Very high
Thermo- Low Low High High
dynamic
efficiency
Operating 20 — 400 50 - 390 3250 - 565 120 - 1500
temperature
range [°C]
Solar 15-80 10 - 100 150 - 1500 100 - 3000
concentration
ratio
Installed 1.1 - 1 1.5
capacity (City of (Dahan Power (Tooele
(MWe) Medicine Hat Plant, China) Army
ISCC Project -392 (Ivanpah  Depot,
(pilot project), Solar Electric us"
Canada) Generating
— 280 (Solana System, US)
Generating
Station and
Mojave Solar
Project, US)
Under 600 - 450 -
development (DEWA CSP (Tamarugal
(Max capacity Trough Project, Solar Energy
(MWe) UAE) Project, Chile)
Operational & 0.012 - 0.02 - 0.034 0.21

maintenance
cost [USD/
kWh]

# Non-operational.
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most suitable technologies for thermal desalination of water using solar
energy. In the case of PV installations and CSP systems, RO and ED are
indicated as the optimal solutions. Already a decade ago, Ghermandi
and Messalem [121] recognized that CSP and RO are the most promising
combination of RESs and large-scale desalination technologies. The
authors even ventured a claim that such installations may soon provide a
viable economic alternative to plants based on the use of conventional
energy sources. As it was mentioned by Kettani and Bandelier [122] for
Middle East and North Africa region, a potential 146 billion m®/year by
2050 can be expected and also about 400 million m>/year only for
Morocco. The authors evaluated, using mathematical models, that the
use CSP with storage and the grid (based on CSP Noor I experiences with
molten salt storage) for the large scale RO desalination plan (275,000 L/
d) the average cost of electricity reaches 0,13 USD/kWh with compare to
0,094 USD/kWh in case of PV and grid power supply and 0,135 USD/
kWh in case of PV with storage and grid power supply.

3.1.2. Solar electricity — PV and CPV

The undoubted advantage of PV installations is their universal nature
and ease of installation in almost any location provided that the values
of the local solar radiation are high enough. Additionally, it should be
noted that most areas with a freshwater shortage are characterized by
relatively high values of solar irradiation, which makes it possible to
generate the amount of energy required for desalination processes.

The studies carried out so far indicate primarily the possibility of
using PV technology for water treatment in RO processes (PV-RO).
Historically, work in this direction was carried out, inter alia, in Jordan
[123,124], Egypt [125], Australia [126], Italy (Agrigento and Ginostra
in Sicily) [127-128] as well as in Spain on Gran Canaria [129-130].

The first works related to the evaluation of desalination systems
using RO and PV were conducted by Tzen et al. [131], Kalogirou [132]
and Bouguech et al. [133], and cost analyses were carried out by Al
Suleimani and Nair [134] who described the operating experience
related to the Heelat ar Rakah plant (Oman), as well as by Hasnain and
Alajlan [135] who performed a cost analysis of the installation in Riyadh
(Saudi Arabia). The authors of the last of the works cited [135] esti-
mated the cost of desalinating 1 m® of water at 0.5 USD. The installed
capacity of the entire installation is at the level of 5.8 m®/day.

Interesting research results were published in a paper by Calise et al.
[136] referring to the use of a combined cooling, heat and power process
based on PV and the installation of solar collectors for seawater desali-
nation. A number of studies on the application of PVs in the RO process
for the desalination of seawater without the use of a battery system were
presented in Thomson et al. [137,138]. The possibility of using a DC
micro-grid including hybrid short-term energy storage was analysed by
Karavas et al. [139]. Interesting proposals for small-scale (<500 Wp)
installations located in rural areas were put forward by Joyce et al. [140]
and by Khaydarov and Khaydarov [141]. Similar conclusions were
drawn by Li et al. [142] who stated that low-power PV installations can
be a particularly interesting solution in places situated far away from the
power grid.

PV installations can be integrated with the RO technology, but it can
also be claimed that a more attractive direction is using PV to power
desalination processes based on ED [9]. The evidence for this is provided
by the pilot installations operating worldwide and by the conclusions
related to their operation presented, among others, by Kvajic [143] and
Al Madani [144]. Research was also conducted for installations located
in Japan [145-146] and India [147-148]. The evaluation of operating
parameters of such installations was presented by Al Madani [144] as
well as by Ortiz et al. [149] who put forward a mathematical model
making it possible to predict the operation of an ED system powered by a
PV installation. However, nowadays PV technology can be expected as
competitive with conventional resources as a result of its increasing
popularity and, consequently, the gradually decreasing investment
outlays and operating costs. Moreover, the lifetime of PV panels as well
as their efficiency are still increasing. For this to happen, it is necessary
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to solve certain problems, both of an energy nature and those resulting
from climatic conditions. It should be noted that there may still be an
increase in the efficiency of PV installations, resulting on the one hand
from the development of this technology, but on the other hand from
such prosaic reasons as fouling of PV panels, lowering their efficiency
and limiting the power with which they can work. Additionally, it
should be noted that PV installations are often used in areas where there
are high values of solar radiation. It causes directly into energy yields,
but it can also be a problem from the point of view of their cooling. What
is more, depends on the monthly and daily differences in weather con-
ditions, wind speed, direction and humidity, especially in hot regions,
soiling and dust can be a major problem which may influence on energy
losses. That is why, the PV panels cleaning need to be considered. Based
on the experimental studies, Chiteka et al. [150] have developed an
empirical soiling loss model, which showed, in case of Muzarabani in
Zimbabwe, that it is necessary to clean once in 15 days in order to
minimise electricity production losses. It has to be mentioned that in
locations where it is possible, PV should charge into the normal grid
cause in that kind of installation the desalination plant can use power as
needed (e.g. in Australia).

Researchers from Spain presented the preliminary results of oper-
ating an innovative hybrid solar (PV)-powered seawater RO desalination
system [151]. As concerns future outlook, although coupling solar sys-
tems to desalination systems can be favourable, the sustainability, eco-
nomic, and environmental issues related to such systems still need to be
evaluated. Also, these systems must be optimised for different plant
scales and locations [43,52; 79]. An interesting direction for the
development of desalination processes was proposed by Xu et al. [49],
who demonstrated interfacial desalination using a printed paper-based
solar absorber which controls the salt concentration gradient. On the
other hand, in his article reviewing the use of nanoparticles in desali-
nation processes powered by PV installations, Bait [152] indicated this
development direction (nanotechnology) as a promising one from the
point of view of reducing the costs associated with the removal of e.g.
bacteria in the water treatment process. Evolution of PV technology for
performance enhancement is also analysed. Suman et al. [153] pointed,
that to increase clean and green technology in solar cell, nanotech-
nology: 1) nanomaterials (silicon, indium gallium phosphide, gallium
arsenide, indium gallium arsenide, quantum dots) as a third generation
and 2) nanostructures (metallic nanoparticles, metal oxides, carbon
nanotubes, graphene, gallium arsenide) as a fourth generation will being
use for fabrication and production PV panels on a large scale. It is highly
likely that the carbon nanoparticles and also its allotrope forms such as
graphene, carbon nanotubes and fullerenes will be use as higher per-
formance compared to silicon based cells.

CPV systems are also considered an interesting alternative. Their
operating principle is analogous to that of traditional PV installations,
but they use additional mirrors which focus solar radiation on PV cells,
significantly reducing the number of cells required. These solutions
usually require a solar tracking system so that they can automatically
follow the sun all day long. Owing to their greater efficiency and thus
higher energy yields per megawatt of installed capacity, CPV systems
can provide an alternative to conventional PV installations [154],
especially in the Middle East, North Africa, South USA, South China,
Southern Africa and Australia [155]. However, the studies did not
discuss the consequences of the desalination performance in case of
unstable energy supply when batteries are not used. What is more, as
was analysed by Maka and O’Donovan [155] high optical concentration
increases the energy yield however, at the same time increases the
operating temperature. That is why heat dissipations by the process such
as passive or active heat dissipation are required to save the cells from or
thermal damage. MD water desalination concept, integrated with cooled
CPV (CPVC(C) as a cogeneration system has been presented by Elmin-
shawy et al. [156]. Electricity is produced with the simultaneous release
of excess heat generated during the cooling process to the desalination of
water. In case of climatic conditions of Port Said in Egypt, the authors
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concluded that up to about 83% of solar irradiance can improve CPVC
module generated power up to about 25% in comparison to conven-
tional CPV system. A list of PV power stations used in desalination
processes is presented in Table 2 and on Fig. 6.

Out of the selected 23 PV desalination installations presented in the
Fig. 4, the vast majority use brackish water (BW) — this is 17 in-
stallations. For the remaining 6, sea water is used. Due to the wide va-
riety of data on PV plant capacity and permeate quantity, it is difficult to
directly compare these plants. This is due to, among other things, the
various conditions of insolation, which translates into the amount of
electricity generated with the use of PV technology. In fact, for data to be
comparable, it is necessary to refer to the amount of energy, not to
power. Selected installations can be found in Spain (1 installations),
Greece (2), Uzbekistan (1), Jordan (2), KSA (2), UAE (3), India (5),
Malaysia (1), Australia (5) and Brazil (1). The values of the specific
energy consumption (SEC) coefficient for these installations range from
1.1 to 26, with the dominant values not exceeding 5. The installation
with the coefficient of 26 located in Jordan is an exception to the ana-
lysed cases.

During the preparation of this article, an attempt was made to verify
the current condition of the discussed installations. Unfortunately, ac-
cess to information is very limited when it comes to, for example, the
websites of the operators of these installations, and the information
relates to the design state or to the date when the installation started to
work. However, in the case of one installation, located in Spain (Gran
Canaria), it was possible to establish that it is fully operational [180].

3.2. Wind energy

Apart from solar energy, wind energy is the most popular renewable
energy source used and analysed in the context of being coupled with
water desalination installations. In this context, the RES is used to pro-
duce electricity to run an independent desalination unit [181]. The
latest reviews of wind power use have been compiled by e.g. Ma and Lu
[182], Abdelkareem et al. [157], Vargas et al. [183], Baxter et al. [184]
and by Diaz and Soares [185] in accordance to offshore wind farms. This
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aspect of the use of wind energy is particularly interesting for seawater
desalination. In recent years the offshore wind energy has been noting
an important increase in energy sector. As was pointed by Diaz and
Soares [185] 112 offshore wind farms are currently operated and 712
projects are developed. However, the vast majority of studies and pub-
lications do not concern desalination installations powered solely by
wind energy, but rather wind energy used in combination with other
RESs, mainly solar power, as analysed in the chapter on hybrid in-
stallations (presented in prat 4) more data about costs of water desali-
nation using wind energy and/or hybrid RES technology is presented in
Section 6. Wind energy installations supplying power for RO processes
worldwide are shown in Table 3 and on Fig. 7.

Nevertheless, in recent years there have been several studies con-
cerning exclusively using wind power in desalination processes. In
chronological order: Dehmas et al. [190] presented a model allowing for
an economic viability analysis of using wind energy in desalination
processes based on SWRO in Ténes in Algeria, taking into account the
reduction in carbon dioxide emissions. A small 2.2 kW wind energy
installation combined with an RO desalination unit was analysed by
Miranda and Infield [191], focusing on the impact of wind speed
changes on optimising the freshwater production rate. Gokcek and
Gokeek [192] also analysed small wind energy plants (with a capacity of
6-30 kW). They performed a technical and economic evaluation for the
Gokseada Island installation in Turkey, analysing a system designed to
produce 1 m3/h of freshwater. The results presented by the authors
showed that the cost of water desalination using a RO process varies
from 2.962 to 6.457 USD/m®. At the same time, it was demonstrated
that at a capacity of 30 kW, the reduction in carbon dioxide emissions
would be 80,000 kg/year. The potential for the industrial use of wind
turbines operating at low wind speeds has been analysed by Loutatidou
et al. [193] in the United Arab Emirates. Using the RO process, the au-
thors calculated the levelised cost of water (LCOW) depending on the
freshwater production rate, obtaining results of 1.57-1.63 USD/m® for
7000 m3/day, 1.83-1.96 USD/m® for 10,500 m>/day and 2.09-2.11
USD/m?® for 14,000 m®/day.

The use of wind energy in desalination processes is dominated by

Table 2
Overview of selected photovoltaic installations used in desalination processes.
Country Year Feed PV power [kW] Permeate production [m>/d] SEC [kWh/m?] Hybrid Energy recovery References
Australia 2007 BW 0.3 0.25 (-) 1.2 Battery No [158]
India 2007 SW 10.4 0.50 (10 h) - Biodiesel No [159]
Greece 2008 SW 0.85 0.083 (-) 3.8 - Clark pump [160]
Greece 2008 SW 1.6 0.35 (4 h) 4.6 - Clark pump [161]
UAE 2008 SW 11.25 20 (24 h) 7.73 Diesel Yes® [162]
UAE 2008 SW 22.49 20 (10.92 h) 7.33 - Yes® [162]
Australia 2008 BW - 1.106 (12 h) 2.3 - No [163]
Brazil 2009 BW 0.165 0.26 (8.24 h) 1.57 - No [164]
Australia 2009 BW 0.38 2.76 (10 h) 2.2 - No [164]
Australia 2009 BW 0.12 0.4 (—-) - Yes® [165]
KSA 2009 SW 44.83 100 (14 h) 6.3 Battery No [166]
KSA 2009 SW 40 100 (14 h) 5.7 Battery Yes® [166]
Spain 2010 BW 0.36 0.2 (12 h) 1.3 Battery No [167]
Uzbekistan 2010 BW 0.03 0.075 (9.5) - Battery No [168]
Tunisia 2011 BW 30.8 57-1151(-) - Wind No [169]
Australia 2011 BW - 4.8 (12h) 1.9 - No [170]
Egypt 2012 BW 5 5(24h) 9 Wind-Battery No [171]
Jordan 2012 BW 0.432 5.7 (24 h) 26 Battery No [172]
Jordan 2012 BW 0.432 5.7 (24 h) 19.4 Battery Yes® [172]
UAE 2015 SW 720 200 (3.57 h) 6.99 Grid No [173]
India 2015 BW 0.075-3 1.04 (4 h) - Battery No [174]
India 2015 BW 0.075-3 1.068 (4 h) - Battery Yes” [174]
India 2015 BW 0.075-3 1.68 (4 h) - Battery Yes® [174]
India 2015 SW 0.667 0.64 (5 h) - Storage of permeate - [175]
Qatar 2015 BW - 100 - - - [176]
Malaysia 2016 BW 2 5.1 (10 h) 1.1 Battery - [177]
Jordan 2016 BW 15-111 13-63 (—) 6.9-10.5 - Yes® [178]
Turkey 2017 SW 20 24 (24 h) 4.38 Wind-Diesel-Battery No [179]

BW — 2-10 g/L; SW — 24-42 g/L.
2 Lack of detailed data.
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JORDAN

Year: 2012

Feed: BW

PV power: 0.432 kW
Permeate: 5.7 m*/day
SEC: 19.4/26.0 kWh/m*

Year: 2015
Feed: BW
PV power: 15-111 kW

Permeate: 13-63 m’/day

SEC: 6.9-10.5 kWh/m?

SPAIN

Year: 2010

Feed: BW

PV power: 0.36 kW
Permeate: 0.2 m*/12 h
SEC: 1.3kWh/m'

GREECE

Year: 2)08

Feed: SW

PV power: 0.85 kW
Permeate: 0.083 m*/day
SEC: 3.3 kWh/m"*

Year: 2008

Feed: SW

PV power: 1.6 kKW
Permeate: 0.35m’/4 h
SEC: 4.6 kWh/m'

Year: 2009

Feed: SW

PV power: 44.83 kW
Permeate: 100 m*/14 h
SEC: 6.3 kWh/m?

Year: 2003

Feed: SW

PV power: 40 kW
Permeate: 100 m*/14 h
SEC: 5.7 kWh/m?

y

UAE

Year: 2008

Feed: SW

PV power: 11.25 kW
Permeate: 20 m*/day

BRAZIL

Year: 2009

Feed: BW

PV power: 0.165 kW
Permeate: 0.26 m*/8.24 h
SEC: 1.57kWh/m*

SEC: 7.73 kWhimy?

Year: 2008

Feed: BW

PV power: 22.49 kW
Permeate: 20 m*/10.92h
SEC: 7.33 kWh/m?

Year: 2015
Feed: BW
PV powver: 720 kW

QATAR

Year: 2015

Feed: BW

PV power: -
Permeate: 100 m?/day
SEC: -

Permeate: 200 m*/3.57 h
SEC: 6.99 kWh/m?

Fig. 6. Selected PV desalination installations worldwide (based on [157]).

T /S LS

Y

Year: 2007

Feed: SW

PV power: 10.4 kW
Permeate: 0.50 m*/10 h
SEC: -

Year: 2015

Feed: BW

PV power: 0.075-3 kW
Permeate: 1.04 m*/4 h
SEC: -

Year: 2015

Feed: BW

PV power: 0.075-3 kW
Permeate: 1.068 m*/4 h
SEG:—

Year: 2015

Feed: BW

PV power: 0.075-3 kW
Permeate: 1.68 m*/4 h
SEC: -

Year: 2015

Feed: BW

PV power: 0.667
Permeate: 0.64 m’/5 h
SEC: -
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UZBEKISTAN
Year: 2010

Feed: BW

PV power: 0.03 kW
Permeate: 0.075 m*/9.5h
SEC: -

w' ‘
)\

MALYSIA

Year: 2016

Feed: BW

PV power: 2kW
Permeate: 5.1 m*10 h
SEC: 1.1 kWh/m?

AUSTRALIA

Year: 2007

Feed: BW

PV power: 0.3 kW
Permeate: 0,25 m*/day
SEC: 1.2 kWh/m?

Year: 2008

Feed: BW

PV power: —

Permeate: 1.106m*/12h
SEC: 2.3 KWh/m?

Year: 2009

Feed: BW

PV power: 0.38 kW
Permeate: 2.76 m*/10 h
SEC: 2.2 kWh/m'

Year: 2009

Feed: BW

PV power: 0.38 kW
Permeate: 2.76 m*10 h
SEC: 2.2 kWh/m

Year: 2011

Feed: BW

PV power: —
Permeate: 4.8 m#/12 h
SEC: 1.9 kWh/m*
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Table 3
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List of wind energy installations supplying power for desalination processes (RO) (based on [157,182,186-189]).

Country Location Year Feed Capacity [L/h] SEC [kWh/m3]
France Ile de Planier 1983 SW/BW 500 4
Australia Debenham 1991 BW 5,400 30
Australia Perth (Kwinana) 2006 SW 143,700" 80
Australia Sydney 2010 SW 250,000" 140
Spain Fuerteventura 1995 SW 2333 225
Greece Thersasia Island 1997 SW 200 15
Greece Syros Island 1998 SW 2,500 - 37,500 -
Greece Keratea 2001/2002 SW 130 -
Greece Milos Island 2007/2008 SW 6 x 600,000 -
Greece Heraklia Island 2007 SW 3,300 30
Spain Gran Canaria-Pozo Izquierdo 1995 SW 8 x 1000 2 x 230
Spain Gran Canaria-Pozo Izquierdo 2003/2004 SW 800 15

UK Loughborough University 2001,/2002 SW 500 2.5
Germany Enercon 2006 SW 7300-58,000 200
Germany Enercon 2006 BW 14,600-104,000 200
Germany Island of Suderoog 1983 BW 250 - 370 6
Germany Island of Heligoland® 1988 BW 40,000 1.2

The Netherlands Delf University 2007/2008 BW 200 - 400 -

BW - 2-10 g/L; SW — 24-42 g/L.
2 Plus diesel.
> m3/d.

European countries (7 installations), and the exception in this group is
the installation located in Debenham, Australia. Of the installations
shown in Fig. 5, five of them use sea water, two use brackish water, and
one (Ile de Planier in France) uses both sea water and brackish water.
The amount of permeate varies greatly, ranging from 200 to 104,000 L/
h, with SEC rates of 2.5 to 225 kWh/m®>. The installation in Lough-
borough (Great Britain) with the SEC of 2.5 kWh/m? and the permeate
amount of 500 L/h is characterized by the lowest power expenditure in
relation to desalinated water unit [157].

Verification of the current operational state of the installation,
similarly to PV installations, allowed verbally that the unit located in
Spain (Gran Canaria) is fully operational, and the current power of wind
turbines is 460 kW (2 x 230 kW) [180].

What is more, the large- and medium-scale desalination plants that
have been implemented to date, such as Perth and Sidney (Table 3) have
commonly opted for the installation of wind farms and the connection of
both subsystems to conventional power distribution grids [194]. Such
projects basically use two strategies for wind and conventional energy
management when it comes to powering the desalination plants
[194-195]: 1) wind farms feeds all the energy that it generates into the
conventional grid and the desalination plant is treated like another load
in the system - the income generated through the sale of wind energy is
used to reduce the energy bill of the desalination plant; 2) the electrical
energy generated by the wind energy is used primarily to cover the
instantaneous energy needs of the desalination plant. In this case, the
mismatches in instantaneous energy between the electrical energy
generation of the wind and the consumption of the desalination plant are
corrected by taking from the conventional grid the amount of energy
that is required and by feeding into that grid any surplus wind energy
production. With both presented strategies, SWRO modules currently
tend to be operated in continuous mode and under constant pressure and
flow conditions [181]. However, these strategies, can also generate
problems of instability in the power system. In consequence, the inte-
gration of wind energy powered desalinations into the conventional grid
may be limited even in the case of high wind energy potential [196].

The wind energy powered desalination systems developed to date
that are not connected to a conventional grid are in effect stand-alone
microgrids. Such microgrids have been configured to handle above all
small-scale desalination, with comparatively few implemented for
medium-scale desalination projects [194,197]. Most of these microgrids
have required the incorporation of energy storage systems, mainly
batteries [194]. It should be noted, however, that this is an expensive
solution, therefore it should be more desirable to search for the
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possibility of using stable sources, such as geothermal energy.

3.3. Hydroelectric energy

For the time being, however, it should be noted that the use of so-
lutions based on hydroelectric energy directly in water desalination is at
the conceptual, or at best experimental, stage. One of them is pumped
storage hydropower (PSH) concept based on closed-loop PSH planned in
three location: 1) the Eagle Mountain Project in California, 2) the Gor-
don Butte Project in Montana, and 3) the Swan Lake North Project in
Oregon which can increase combined generating and storage capacity
from 101 GW to near 150 GW by 2050 in the U.S. [198]. In case of the
Eagle Mountain PSH installation it will be connected with RO water
treatment system, to protect groundwater quality near iron ore mine
reservoirs. To mitigation of environmental impact, this project initial
capital cost is estimated on 45,400,000 USD (2018) and calculated
annual O&M cost is 715,000 USD [199].

In the future, the use of hydroelectric energy in desalination pro-
cesses may offer an interesting alternative to the RES which are
currently used. This is mainly due to the fact that the desalination of
seawater requires the supply of electricity in coastal areas. Tidal, wave
or ocean thermal energy appears to be a natural solution. Among these
methods, those that convert tidal and wave energy to electricity have
been by far the most popular [200]. As Lehmann et al. [201] noted, the
advantage of this type of RES in comparison with unstable generation
using wind or solar power is its predictability and continuous
availability.

First attempts at using sea wave energy to power the RO process were
made by Hicks et al. [202] who designed a system consisting of a buoy, a
pump and an anchor fixing the installation to the ocean floor. The study
indicated that 6 m3/day of freshwater could be produced in this manner.
Studies on the use of wave energy were also conducted by Sharmila et al.
[203], who, however, analysed a more advanced system consisting of a
turbine, an alternator, an inverter and a battery, which was also used for
powering the RES process. Recent studies by Yldnen and Lampinen
[204], Corsini et al. [205], Song et al. [206] as well as Zhou et al. [207]
point to technical possibilities of integrating systems that use wave en-
ergy with desalination processes. The results presented by Song et al.
[206] and Zhou et al. [207], which indicate that it is possible to produce
freshwater in the SWRO process at a rate above 30 m>/h, give particular
grounds for optimism. In turn, the possibility of using tidal energy in the
RO process was analysed by Ling et al. [208] who indicated savings at a
level of 31-41.7% compared to conventionally powering processes of
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FRANCE

Location: lle de Planier
Year: 1983

Feed: SW/BW
Permeate: 500 I/h

SEC: 4 kWh/m?

UK

Location: Loughboruogh
Year: 2004

Feed: SW

Permeate: 500 I/h

SEC: 2.5 kKWh/m?

Location: Fuerteventure
Year: 1995

Feed: SW

Permeate: 2,333 I/h
SEC: 225 kWh/m?

Location: Gran Canaria
(Pozo Izquierdo)

Year: 1995

Feed: SW

Permeate: 8 x 1,000 I/h

Location: Gran Canaria
{Pozo Izquierdo)

Year: 2003/2004
Feed: SW

Permeate: 800 1/h
SEC: 15 kWh/m?

Fig. 7. Selected wind energy desalination installations worldwide (based on [157,182,186-189]).

THE NETHERLANDS

Location: Delf University

Year: 2007/2008

Feed: BW

Permeate: 200-400 I/h
SEC: -

GERMANY

Location: Island of Suderoog
Year: 1983

Feed: BW

Permeate: 250-370I/h

SEC: 6 kWh/m?

Location: Island of Helgoland
Year: 1988

Feed: BW

Permeate: 40,000 I/h

SEC: 80 kWh/m*

Location: Enercon

Year: 2006

Feed: SW

Permeate: 7,300-58,000 I/h
SEC: 200 kWh/m?

Location: Enercon

Year: 2006

Feed: BW

Permeate: 14,600—-104,000 I/h
SEC: 200 kWh/m’
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GREECE

Location: Heraklia Island
Year: 2007

Feed: SW

Permeate: 3,300 I/h
SEC: 30 kWh/m?

Location: Thersasia Island
Year: 2004

Feed: SW

Permeate: 200 I/h

SEC: 15 kWh/m?

Location: Syros Island

Year: 1998

Feed: SW

Permeate: 2,500-37,500 I/h
SEC: -

Location: Keratea
Year: 2001/2002
Feed: SW
Permeate: 130 I/h
SEC: -

Location: Milos Island
Year: 2007/2008

Feed: SW

Permeate: 6 x 600,000 I/h
SEC: -

&

U Z
AUSTRALIA

Location: Debnham
Year: 1991

Feed: BW
Permeate: 5,400 I/h
SEC: 30 kWh/m?

Location: Perth (Kwinana)
Year: 2006

Feed: SW

Permeate: 143,700 m*/day
SEC: 80 kWh/m?

Location: Sydney

Year: 2010

Feed: SW

Permeate: 250,000 m*/day
SEC: 140 kWh/m?
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this type, and not just in terms of economic savings, but also in terms of
water recovery (40%).

In the near future, some potential can certainly be demonstrated by
installations using ocean thermal energy resulting from the temperature
difference between shallower and deeper water layers, using the
Organic Rankine Cycle (ORC) or the Kalina Cycle. One of the first studies
on the feasibility of combining this technology with desalination pro-
cesses was conducted by Kim et al. [53]. The authors analysed a number
of parameters (primarily water flow rate and temperature) in order to
determine the predictability of system performance. Similarly, as with
the use of the ORC or the Kalina Cycle to generate electricity from
geothermal energy or waste heat, the temperature of the condensation
medium was demonstrated to be of crucial importance. That Is why, the
lower the temperature of the cooling medium, the better in terms of
optimising the operation of geothermal installations, hence the optimal
use of e.g. water from streams with a temperature of several Celsius
degrees. Additionally, the authors pointed out the impact of the amount
of cold water sourced on pumping costs and the production rate. Addi-
tionally, Kumar et al. [209] found that increasing temperature at the
evaporator and lowering the pressure increases freshwater production
efficiency.

In turn, Prieto et al. [210] considered the possibility of using sea
wave energy in desalination processes, but their research focused mainly
on the electricity generation potential. Analysing the northern part of
the island of Gran Canaria and the Arucas-Moya and Arucas-Moya 1
installations, the authors concluded that the amount of energy produced
by sea waves would be sufficient to power these installations.

3.4. Biomass energy

Biomass energy is the only energy source which has not been used in
water desalination processes so far. However, in recent years, results of
several studies were published which analysed the possibilities of using
biomass energy in hybrid systems in combination with other renewable
and non-renewable energy sources.

Sahoo et al. [211] considered a hybrid system combining solar en-
ergy and biomass, and analysed the possibility of using such a system for
both energy generation and cooling. The installation is designed in such
a manner that a PTC (parabolic trough collector) system provides an
energy source which pre-heats the working medium before it is directed
to the biomass system exchanger and evaporated. The temperature of
steam directed to the turbine is 500 °C at 60 bar and at a mass flow rate
of 5 kg/s. Thermodynamic analysis has demonstrated that this combi-
nation of different renewable energy sources allows energy efficiency of
49.35% to be achieved.

Behzadi et al. [212] focused on the use of biomass for gasification
and thus, adding a gas turbine to their system, powered a water desa-
lination plant based on RO. The authors additionally conducted
comparative studies for variable parameters of system operation to
determine its economic and environmental effects. The results showed
that exergy efficiency was 27.07% at an energy generation cost of 66.46
USD/GJ, and emission reduction amounted to 0.2837 t/MWh in the
optimal variant.

3.5. Geothermal energy

In the case of geothermal energy, both electricity and heat produc-
tion are considered in the context of water desalination, however high
enthalpy geothermal resources are very limited but low enthalpy re-
sources are much more available [59].

The feasibility of electricity generation from geothermal waters is
strictly dependent on the local hydrogeological conditions and rock
mass temperature prevailing in the area in question. The geothermal
energy sector is a well-developed one and could be adapted for water
desalination purposes. Depending on the type of energy carrier and its
temperature, there are several basic ways of converting the thermal
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energy accumulated in geothermal steam and water as well as in hot dry
rocks into electricity. These are: a system with the direct use of saturated
dry steam (180-300 °C), a system utilising single-stage, two-stage or
three-stage wet steam expansion (150-320 °C), or the ORC and Kalina
Cycle (90-150 °C) [213]. Most geothermal power plants in the world use
the energy accumulated in wet or, less frequently, dry geothermal steam
[214].

The least technologically complex system is the one used in the case
of saturated dry steam, which consists of directing the dry geothermal
steam brought to the surface, via particle and moisture filters, to a tur-
bine connected with a generator. However, the use of this solution is
currently limited to two places in the world, namely the Larderello
geothermal fields in Italy (where the first geothermal power plant in the
world was constructed) and the Geysers geothermal field in California
(U.S.). The vast majority of high-temperature geothermal reservoirs in
the world contain a mixture of geothermal steam and water (wet steam).
It is therefore necessary to separate these types of steam by including a
separator and an additional check valve in the thermodynamic system in
order to prevent geothermal water from entering the turbine. The basic
methods of producing electricity using low-enthalpy geothermal energy
are the ORC and the Kalina Cycle; these technologies provide an op-
portunity for the development of the geothermal sector in locations
where electricity is necessary for the desalination processes but at the
same time cannot be produced in a conventional manner [215-216].
What is more, this concept will replace all colocation plants using fossil
fuel. An innovative method of integrating the MED technology with the
ORC was proposed by Aguilar-Jiménez et al. [217]. The use of the ORC
was suggested, since it allows the integrated generation of electricity
and desalination using low-temperature resources in the first stage of
MED operation. In their calculations, the authors demonstrated that
compared to a conventional MED system, the system integrated with the
ORC is 22% more efficient in water desalination, requiring a heat ex-
change rate higher by just 6.9% [217]. As it has been mentioned above,
geothermal power generation technologies are already mature and their
integration into desalination processes would be desirable.

Owing to the stability of thermal energy generation from geothermal
resources, they provide a very attractive energy source. There are
several low-cost geothermal resources [59]:

e low-temperature, shallow geothermal aquifers;

geothermal springs;

hot water separated from hydrocarbon fields;

water discharged from underground mines;

rest heat from different processes, also from geothermal power
plants.

The supply of heat to desalination/treatment plants using
geothermal resources can generally be considered more economically
viable than in the case of solar energy [9]. Therefore, this solution can be
very advantageous in areas where adequate geothermal resources are
available, provided that this is confirmed by the economic analysis
conducted for each individual case [59].

Geothermal energy (in form of heat) can be used in such desalination
processes as MSF and MED as well as in combination with the emerging
MD and AD methods. Both in the case of MD (50-90 °C) and AD
(55-85 °C), the required geothermal water temperature is relatively low
[6,9,218-220]. It should be noted that not just geothermal heat can be
used in desalination processes; geothermal water itself can be treated
provided that it has an acceptable chemical composition [221-226].
Detailed research on the use of geothermal waters for human con-
sumption purposes was conducted by Tomaszewska and Bodzek
[227,228], Tomaszewska and Dendys [229], Tomaszewska et al.
[230,231] and Tomaszewska [232]. Cermikli et al. [233] demonstrated
that treated geothermal waters can be used e.g. for irrigating crops.
Geothermal waters are also considered in the context of their extraction.
Currently, a number of desalination/treatment plants based on
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geothermal heat operate worldwide (Table 4, Fig. 8), however these are
usually small installations [233-236].

Technical possibilities of desalinating geothermal waters with a
temperature of 80 °C using the MED and MSF technologies were pre-
sented by Rodriguez et al. [236] and Gutiérrez and Espindola [237]. In
the first of the aforementioned articles, the authors indicate that 14 m®
of geothermal water are required to desalinate 1 m® of sea water
(Mexico). In the second case, the authors designed and tested a proto-
type unit in their laboratory, obtaining 20 m3/day of desalinated water
with a geothermal water consumption of 118 m®. Another example of a
pilot installation is the plant using MED on the island of Kimolos
(Greece). It uses geothermal waters with a temperature of 60-61 °C
extracted from a depth of 188 m below ground level (b.g.l.) The
installation enables the desalination of 80 m® of water per day with a
geothermal water demand of 1440 mg/day [9,238]. Other studies from
Greece, which did not, however, translate into pilot installations were
also conducted on the islands of Milos and Nisyros. In the first case, the
study indicated water desalination potential at a level of 75-80 m®/day
using geothermal water extracted from a depth of 85-184 m b.g.1. witha
flow rate of 12,840 m3/day [238]. For the island of Nisyros, the fresh-
water production potential was estimated at 225 m%/day [239]. It is not
possible to arbitrary present how much geothermal water is required to
desalinate 1 m® of salt water. It is always dependent of energy needed,
geothermal water resources and its temperature, desalination process
used and others. That is why it needs a detailed feasibility study in each
case.

The list of geothermal installations used in the desalination of water
is presented in Table 4 and on Fig. 8. One should be noted, that generally
there is no scale limitation of the desalination plant when using
geothermal energy, in particular low-temperature heat, if the well has a
good capacity, which is a considered as strength.

A thorough review of the directions and possibilities of using
geothermal energy in water treatment processes was conducted by Gude
[30]. He presented the potential for future implementations of
geothermal sources to electricity and/or heat production, and examples
of specific solutions operated in Australia, the Caribbean Islands, Central
America (Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, and
Panama), India, Israel, the Kingdom of Saudi Arabia, UAE, USA and Sub-
Saharan Africa.

The use of geothermal energy in desalination processes is undoubt-
edly a very promising direction of development, mainly due to the
possibility of generating both electricity and heat. Of the installations
shown in Fig. 8, two are located in the USA (Salton Sea), one in Mexico
(Baja, California), one in Greece (Kimolos), and two in Tunisia (Tunisia).
All except installation in Greece use seawater. The dominant desalina-
tion technology is MED, but MSF and HDH are also used. Considering
these installations in terms of daily production, the highest values are
achieved in Tunisia — 1382 m®/day, and the lowest in Mexico — 1 m®/day
[157].

The locally occurring worldwide high salinity of geothermal waters

Table 4
Overview of geothermal installations used in the desalination of water (adapted
from [157]).

Country  Location Desalination Water Production References
technique source capacity
[m®/d]
Mexico Baja, MED, MSF SW 1 [66]
California
Greece Kimolos MED BW 80 [240]
Tunisia Tunisia HDH SW - [241]
Tunisia Tunisia MD, MED SW 1382 [242]
USA Salton sea MED/VTE(2) SW 18.9 [243]
USA Salton sea MED/VTE SW 79.5 [244]
(15)

BW - 2-10 g/L; SW — 24-42 g/I.
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also allowed to undertake research work aimed at generating energy
from the salinity gradient, what is more and more interesting nowadays
(see Section 2). Nowadays, energy extraction from high mineralized
geothermal water can be possible using PRO, RED or CAPMIX processes
[65]. It can be also innovative technological processes.

4. Hybrid and integrated systems of RES technology

Of course, apart from the possibility of using individual RES tech-
nologies, these can be combined in hybrid systems. Studies towards the
construction of hybrid or integrated systems have been carried out by
many researchers. Missimer et al. [245] used a hybrid combination of
solar and geothermal energy to balance the operation of the installation
and minimise the risk of geothermal reservoir depletion. Similar studies
to identify the potential present in south-eastern Spain were carried out
by Colmenar-Santos et al. [246]. They studied a theoretical desalination
plant with a capacity of 9000 m3/d in a specific area of Almeria (Spain)
through the hybridisation of solar energy and geothermal energy. They
considered the possibility of using a hybrid solar-geothermal system,
and theoretical results of their research indicated that the combination
of the two aforementioned sources would be possible for 76% of the
year. However, it should be noted that this result was, among other
things, the effect of geothermal water temperature of 41.8 °C achieved
for a well depth of 490 m. In order for this figure to reach 100%, the
working temperature of the desalination system would have to be 70 °C,
and therefore it would be necessary to drill a well at least 790 m deep
(this follows from the thermal gradient in the area analysed, which is
8.87 °C/100 m). The authors also estimated that the depreciation period
would be 6 years, and the installation would make it possible to reduce
CO, emissions to the atmosphere by 510 387,920 kg per year.

A novel hybrid system for water desalination using solar and
geothermal energy was proposed by researchers from Iran [68]. The
authors underlined that the proposed geothermal-solar energy driven
plant could produce freshwater even during night-time (when there is no
solar radiation) in regions with humid climate.

Rosales-Asensio et al. [130] analysed the hybrid use of solar and
wind energy, which takes into account the energy used to power water
desalination installations and the surplus energy generated which is
supplied to the power grid. The case study was carried out for the island
of Gran Canaria with an assumed water production level of 5600 m® per
day. Assuming that a RO process with a demand of 3 kWh/m? would be
used for this purpose, the authors have calculated the annual electricity
demand at 5.88 GWh/year. Results of the simulation conducted showed
that the output of the PV installation should be 866 kW and the output of
the wind power plant should be 4100 kW. The construction cost of the
desalination plant was estimated at about 1,178,000 USD (EUR
981,600), that of the PV plant at about 1,100,000 USD (EUR 909,300)
and of the wind farm at about 5000,000 USD (EUR 4,099,337). Addi-
tionally, the cost of an energy storage installation (at 1050. USD/EUR
871.70 per kWh) was factored in, which gives a total cost of 7,200,000
USD (EUR 5,991,109). A technical and economic model based on the
combination of solar (PV) and wind energy in the RO process, however
with an installation in Iran as a case study, was also developed by Maleki
and Pourfayza [247], and by Aminfard et al. [248]. In connection with
the economic assessment (determination of life cycle costs) conducted
and the probability of interruptions in electricity production, which they
estimated at 0-10%, the authors additionally considered the possibility
of using hydrogen tanks [247]. Aminfard et al. [248] provided a detailed
technical and economic assessment of the feasibility of using RES in
desalination processes in Texas. Their analysis was based on a multi-
layered spatial model taking into account such aspects as the avail-
ability of water resources, the depth at which they are present and their
salinity level, the potential of local RES as well as the price of water in
the area in question. The authors analysed 1445 locations, 193 of which
were considered promising. The results demonstrated that in 145 loca-
tions, geothermal energy was an appropriate source, while in 28
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USA

Location: Salton Sea
Method: MED/VTE(2)
Feed: SW

Rate: 18.9 m*/day

Location: Salton Sea
Method: MED/VTE(15)
Feed: SW

Rate: 79.5 m*/day
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GREECE
Location: Kimolos
Method: MED
Feed: BW

Rate: 80 m*/day

TUNISIA

Location: Tunisia
Method: HDH
Feed: SW

Rate; -

Location: Baja, California
Method: MED, MSF
Feed: SW

Rate: 1 m*/day

Location: Tunisia
Method: MD, MED
Feed: SW

Rate: 1382 m’/day

Fig. 8. Selected geothermal energy desalination installations worldwide (based on [157]).

locations, the use of solar energy was indicated as more cost-effective. At
the same time, it was found that decreasing prices (in terms of renewable
energy investment outlays) and their impact on lowering the cost of
energy production would cause the number of promising locations to
increase in the future.

Mollahosseini et al. [249] presented a review of renewable energy-
driven desalination opportunities in Iran, which is a country suffering
from severe droughts. They indicated that the most promising solution
for Iran would be wind- and solar-assisted energy generation for pow-
ering the desalination plant. The total capacity potential of the three RES
(wind, solar and geothermal) was estimated at 140,200 MWe. According
to the authors, the use of this amount of power for energy generation
would make it possible to desalinate about 28 billion m®/d. The required
investment outlays were estimated at about USD 260 billion. Interesting
results of model studies were presented by Padrén et al. [250] who
analysed the technical and economic feasibility of using RES to power
RO desalination plants with a water production capacity of up to 50 m%/
day. The research was conducted for two islands (Lanzarote and Fuer-
teventura) using the HOMER software. This is another analysis of the
potential for using wind and solar energy, taking into account the
electricity demand of the desalination plant and the relatively high local
potential of these renewable energy sources. The research was aimed at
developing an autonomous desalination system. The best results were
obtained for the installation located on the island of Lanzarote where the
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energy cost amounted to 0.404 USD/kWh. The proposed system consists
of a 30 kW wind turbine, a 5 kW photovoltaic system and a 10 kW
conventional generator. Additionally, the system included 160 batteries
with a capacity of 360 Ah. According to the authors, this optimised
system would make it possible to cover 96% of electricity demand. In the
case of the island of Fuerteventura, the system was designed very
similarly, but using a conventional generator with a capacity of 15 kW
and 200 batteries, which translated into 92% of energy demand covered
at a unit cost of 0.478 USD/kWh. Additionally, the economic aspects of
integrating the two discussed technologies were analysed, e.g. by Ismail
et al. [251], and the possibilities of using such a solution on a com-
mercial scale in the RO process were studied [79]. The state of the art
and challenges for the large-scale implementation of a hybrid wind-solar
(PV) energy driven RO membrane desalination installation were inves-
tigated by Mito et al. [79]. In their work, the authors focused on opti-
mising the management of energy generation processes based on wind
and solar (PV) energy by identifying technical challenges and potential
solutions in order to implement this type of installation on a commercial
scale. The authors pointed out, among other things, that one technical
challenge is to avoid the shortening of life of RO membranes, and as a
solution they proposed modulating the operation of the installation
depending on the availability of renewable energy from commercial
plants at any given time. However, in order for this solution to be
effective, it cannot be a random process, but rather a precisely managed
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one, which requires further research. Additionally, the authors pointed
out that the research conducted so far on membrane performance has
been limited to short periods in relation to membrane lifetime, and that
additional studies are required in this connection.

Hybrid use of RESs was also proposed by Azhar et al. [252] who
analysed the possibility of integrating the use of solar, geothermal and
ocean thermal energy. The total output is estimated at about 55 MW,
with OTEC (ocean thermal energy conversion) only accounting for
30.49 kW. The energy and exergy efficiency of the system has been
estimated as well. The former amounted to 13.94% and the latter to
17.97%. The system proposed by the authors is capable of producing
18.54 kg of fresh water per second. An analysis of technical capabilities
of a hybrid system using solar (PV) energy and wind energy in rural
areas of Australia was presented by Fornarelli et al. [253]. The proposed
solution consists of a 2.4 MW wind power plant and a 2.8 MW on-grid
solar power plant. In their research, the authors considered not only
the possibility of powering the desalination plant (1.2 GWh of elec-
tricity) but also of supplying the local community (14 GWh). The system
designed in this manner reduces the cost compared to current energy
prices from 0.146 USD/kWh to 0.077 USD/kWh, i.e. by 47%. At the
same time, this translates into 37% less dependence on the power grid.
As the authors point out, this approach makes it possible to present the
process of water desalination using RESs to the local community as
economically desirable. A more complex hybrid system was proposed by
Atallah et al. [254]. They analysed the technical possibilities of pow-
ering the RO process using a hybrid RES system based on the use of wind
turbines and PV panels in combination with a conventional diesel

TUNISIA

PV+WIND
Year: 2011

Feed: BW

PV power: 30.8 kW
Permeate: 57-1151 m*/day
SEC:—

s SaT e
CEND T
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generator. The research was conducted using the HOMER software for
the village of Nakhl in Egypt, with the assumption that freshwater
production would amount to 100 m3/day. Ultimately, the system
included a 160 kW PV installation and a 50 kW diesel generator. The
system was additionally supplemented by 39.3 kW converters and 190
lead-acid batteries (in 19 chains) with a capacity of 3.11 kWh. The en-
ergy generation cost estimated by the authors is 0.107 USD/kWh. The
share of RESs in the energy generation process is 93.1%, which trans-
lates into a 94% reduction in CO emissions. A system based on wind and
hydro power was also presented by Tsai et al. [29] as a solution to the
water scarcity problem in the city of Taichung in Taiwan. Among recent
research, attention should be paid to Delgado-Torres et al. [43], in which
paper the SWRO technology is analysed, with the installation powered
by a hybrid system which uses PV and tidal energy. The authors
demonstrated that the combination of these two technologies can extend
the operating time of the desalination plant by a factor of 1.8-2.6.
Selected desalination installations using hybrid RES in the world are
presented on Fig. 9.

Among the hybrid installations shown in Fig. 7, it can be seen that
the hybrid models primarily assume the cooperation of photovoltaic
installations with wind farms. It may be supplemented by a conventional
generator, as is the case with an installation located in Turkey, as well as
an energy storage system. Considering these installations from the point
of view of the power of photovoltaic panels as the most dynamically
developing technology among RES, the largest is in Tunisia (30.8 kW),
and the amount of permeate for it ranges from 57 to 1151 m®/day. For
installations in Turkey and Egypt, the values are 24 m®/day and 5 m®/

TURKEY

PV+WIND-+DIESEL+BATTERY
Year: 2017

Feed: SW

PV power: 20 kW

Permeate: 24 m*/day

SEC: 4.38 kWh/m*

PV-+WIND+BATTERY
Year: 2012

Feed: BW

PV power: 5 kW
Permeate: 5 m*/day
SEC:9 kWh/m*

Fig. 9. Selected hybrid energy desalination installations worldwide (based on [171,179,255]).
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day, respectively [79,254].
5. Energy storage

The storage of electricity and, even more, the thermal energy used to
drive desalination processes is one of the key issues arising from the
mismatch between energy supply and demand. As it has already been
mentioned, in the case of the most commonly used desalination tech-
nology, i.e. solar energy, the problem is the strong dependence of energy
generation on weather conditions. Whereas in the case of electricity, this
problem can be solved by connecting the installation to the power grid
(assuming that the requisite infrastructure exists) or by using the well-
known battery technology, more complex solutions must be sought
where thermal energy is required. To this end, e.g. process oils or molten
salt can be used. Especially the latter solution is interesting because of
the parameters that characterise molten salt, especially its high density
[256].

Energy storage is becoming a requirement for the uninterrupted and
reliable operation of desalination plants, and therefore, the following
section presents the available thermal energy storage technologies.
Fig. 10 shows the possibilities of storing electricity and thermal energy
depending on the technology. Gude [257], in a critical review of the
energy storage options available for diverse RE powered desalination
processes, focused on thermal and battery energy storage systems.

The first possibility of storing thermal energy is to use the specific
heat of substances by increasing the temperature of the storage medium.
Energy may be accumulated both in solids (e.g. granite, sandstone) and
in liquids (e.g. water, process oils, refrigerants). It is a well-known and
simple method. Other methods involve the use of phase change mate-
rials (PCMs) and chemical change materials (CCMs). In the first case,
phase-shifting substances are used to absorb, accumulate and subse-
quently release energy in their phase transition temperature range. The
materials most commonly used in this storage method include paraffins,
fatty acids, ionic liquids and molten salts. As concerns the use of
chemical change materials, research is currently underway in the field of
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energy storage using this method and the materials which could
potentially be used, but the high cost and complexity of the process (the
use of exo- and endothermal reactions) constitute an obstacle to its
broader adoption. Detailed review of existing CSP installations with TES
systems in the world and those in the construction has been presented by
Achkari and Fadar [117]. They concluded that 45.5% of the operational
CSP plants worldwide are connected with TES, however 95.6% of them
use liquid sensible heat storage (SHS) materials due to their reliability,
low cost and easy operation. Solid SHS systems are implemented in
demonstration projects [117]. What is why, that CSP with TES con-
nected to desalination plant is still an interesting option if no grid power
is available. As was pointed also by Tehrani et al. [112] based on
theoretical analysis of the performance of various TES alternatives in-
tegrated with mentioned in Section 3.1.1, Gemasolar installation a shell-
and-tube heat exchanger which include a sensible or phase change
material (PCM) as the storage can be considered as a future alternative
to the two-tank molten salt system. It can reduce the amount of storage
material used and ensure optimal storage utilization. However, such
designs need to be further evaluated [112].

The methods commonly used and feasible in the case of desalination
include mentioned previously TES. It is an optimal solution, especially
from the point of view of being combined with solar energy. The energy
can be stored in ground or water (UTES — Underground Thermal Energy
Storage) or in surface reservoirs (TTES — Tank Thermal Energy Storage).
The most popular technologies involve energy accumulation in the
ground (BTS) and in aquifers (ATES). In the first case, these are usually
vertical heat exchangers with a depth of up to 200 m b.g.l. whose heat
capacity can be estimated at around 15-30 kWh,/m?. However, the exact
value depends on local geological and hydrogeological conditions.
However, a clear disadvantage of such solutions is the high costs related
to the necessity of drilling a significant number of wells. In the case of
ATES systems, thermal capacity is estimated at around 30-40 kWh/m?,
which is due to the water present in the layers which provide heat
storage. However, the highest thermal capacities of around 60-80 kWh/
m® can be achieved for PTES and TTES systems where the accumulation

RENEWABLE
ENERGY SOURCES
| T | | |
SALINITY GRADIENT GEOTHERMAL SOLAR WIND WAVE
PV-THERMAL || THERMAL
r ELECTRICITY HEAT WASTE HEAT PRESSURE
BATTERY STORAGE THERMAL ENERGY STORAGE
] ‘ -
ELECTRICITY THERMAL PRESSURE
-BASED -BASED
DESALINATION DESALINATION DESALINATION
TECHNOLOGIES TECHNOLOGIES TECHNOLOGIES

Fig. 10. Storage of electricity and thermal energy in connection with water desalination technologies (based on [257], updated).
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medium is water placed in a reservoir below ground surface [258]. TES
reservoirs are schematically shown in Fig. 11.

A comprehensive study on the feasibility of using individual energy
storage technologies depending on the type of renewable energy source
as well as on the desalination process selected was presented in Gude
[257]. Koohi-Fayegh and Rosen [45] also reviewed storage technologies
in general, indicating the direction in which the sector is developing.
They concluded that the use of batteries for storing electricity probably
remains the cheapest form of energy storage. However, it is worth noting
that work on improving this technology is ongoing and is currently
focused on introducing new energy storage materials. This concerns
both small- and large-scale storage. In addition, the authors pointed out
that the pumped hydro energy storage (PHES) and compressed air en-
ergy storage (CAES) technologies are mature and cost-effective, but
more research is needed to improve their efficiency further. A detailed
review of recent research into MESSs (mechanical energy storage sys-
tems) was carried out by Mahmoud et al. [259], who, in addition to the
already mentioned PHES and CAES systems, also analysed FESSs
(flywheel energy storage systems) in the context of their possible com-
bination with wind and solar energy generation.

On the other hand, a new direction for energy storage was proposed
by Karavas et al. [139]. Analysing the possibilities for seawater desali-
nation in the RO process, the authors proposed to use the concept of a
direct current (DC) microgrid with short-term electric and hydraulic
energy storage. In the case of electricity, hybrid capacitors were
considered, while in the case of hydraulic energy, pressure vessels could
be used. This concept was proposed in order to replace conventional
electricity storage devices, i.e. batteries. The results obtained by Karavas
et al. [139] indicate that in the case of electricity storage, the energy
demand of desalination would be covered for 10 min, and in the case of
pressure vessels for 20 min, which indicates that it is possible to ensure
the smooth operation of the desalination installation combined with the
photovoltaic installation throughout the day.

The design of a RED or CapMIX unit can work as a concentration
gradient flow battery [61,69]. As it was presented in Section 2, the RED
mode is one of the solution to obtain renewable energy. Such system,

TTES | 60-80 kWh/m?
(tank thermal enerqy storage)
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during regeneration of the chemical potential at the ED mode (charging)
(Fig. 12), may play a storage device. The energy efficiency obtained was
about 62-77% with an average power density of 0.07-0.44 W/m?.
Further studies in this field are needed to obtain better results to
implement it.

The need for further research was also indicated in the case of
thermal energy storage with the use of adsorption processes, which the
authors considered to be currently not economically viable (among
others, the need to conduct studies on materials to avoid adsorbent
instability and to optimise temperatures during the charging and dis-
charging processes was indicated).

The possibilities of using self-charging fuel cells in cooperation with
a photovoltaic installation in the RO process were analysed by Rezk et al.
[260]. The authors analysed a 150 m®/d system to irrigate remote areas
using the HOMER software. The obtained results indicate that it is a
competitive solution in relation to the expansion of the grid, as well as
the construction of a conventional diesel-fueled installation. These re-
sults allow fuel cells to be an effective solution to the problems related to
the instability of energy generation from renewable energy sources and
energy storage systems.

In addition, the costs of energy storage systems must be taken into
account. Carnegie et al. [261] and Koohi-Fayegh and Rosen [45] claim
that such costs depend on the manner of their use. In addition, the costs
of energy storage systems are influenced by e.g. system location and size
as well as the costs of conventional energy sources used as an alternative
to storing the energy generated from renewable sources. The fact that
local conditions have an impact on the cost of storage systems is
confirmed by the conclusions formulated by Zakeri and Syri [262] who
claim that costs for CAES solutions range from 1 USD/kWh to 30 USD/
kWh depending on the geological structure.

Despite the development of the use of renewable energy technologies
on an increasing scale in desalination processes, their percentage share
in relation to conventional technologies is only 1% [263]. In many cases,
it is related to the necessity of using expensive solutions for storage
systems, which poses challenges for locations where there is no technical
possibility of connecting to the power grid [194-195].

PTES | 60-80 kWh/m?
(pit thermal energy storage)

BTES | 15-30 kWh/m?
(borehole thermal energy storage)

ATES | 30-40 kWh/m?
(aquifer thermal energy storage)

Fig. 11. TES methods (based on [258]).
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Fig. 12. Concept for concentration gradient flow battery in RED system (based on [69]).

6. Energy demand and desalination costs

The review presented indicates that process efficiency, improve-
ments in energy recovery systems and mostly the search for novel
renewable-energy driven desalination systems have been the directions
pursued in recent years.

An important parameter in the selection of the RES technology for
the desalination process is the consumption of electricity or heat per unit
of desalinated water expressed in cubic metres. This parameter varies
depending on the desalination technology used. According to Ghaffour
et al. [2], in the case of electricity for the SWRO technology, it is 3—4
kWh/m? for very large capacity (such as several hundred m>/h) desa-
lination plants and this cost goes very high at lower capacities (1-5 m®/
h). Interesting information in the context of energy consumption using
SWRO technology is provided by Voutchkov [20], distinguishing indi-
vidual component processes. Referring to these data, it can be concluded
that SWRO is responsible for the consumption of 2.54 kWh,/m?, which is
71% of the total energy consumption. The second of the most energy-
consuming processes is pretreatment with a 10.8% share (0.39 kWh/
m®). In the following places are intake — 5.3% (0.19 kWh/m®) and
product water delivery — 5.0% (0.18 kWh/m®). Complementing to
mentioned above are other accompanying processes, which constitute
7.6% (0.27 kWh/m?®).

For the MSF technology, it is about 2.5-4 kWh/m? of electricity and
about 7.5-12 kWh/m® of thermal energy, giving a total of about 10-16
kWh/m?, yet this is for large scale capacity with a cogeneration system
combining the desalination unit with a power plant from which low
pressure steam is used as waste thermal heat for desalination. For the
MED technology, it is about 1.2-2 kWh,/m? of electricity and 4-7 kWh/
m® of thermal energy, giving a total of about 7.5-12 kWh/m®, in a
cogeneration large scale system. Continuous progress in water treatment
processes has resulted in the development of technologies which can be
considered low-energy intensive. These are AD and MD, for which total
energy consumption is estimated at around 2 kWh,/m?3, but these reports
estimate thermal energy as non-payable considering the required low
operation temperatures (up to 60-70 °C) could be harvested from low-
grade waste heat, which is not a fair comparison [9]. Lee et al. have
shown that the energy required for MD is much higher than in con-
ventional processes [264]. One should notice that about 61% of desa-
lination installation is fed with seawater and about 21% from brackish
and the latter is more economically since its salinity is lower and require
less energy [9,265].

As regards to the economics of desalination plants using RES, the
costs are high, which is mainly due to the high energy intensity of
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desalination processes. However, in order to meet the global demand for
drinking water and water used for agricultural purposes, desalination
processes are becoming a necessity. A comparison of the costs of desa-
linating water using solar energy is presented on Fig. 13. It can be seen
that costs and energy consumption per cubic metre vary broadly. For
example, in the case of RO process in combination with PV installations,
energy consumption ranges from 5 to 19 kWh and the desalination price
is 15.6-27 USD/m°> [38,266]. However, as observed in recent years
rapid technological advances in PV (mentioned in part) may result in PV
costs decreasing down to about 0.05-0.06 USD/kWh [14] what will
definitely affect the desalination price. In addition, when the energy
recovery system is included with RO process, using e.g. Pelton-wheel
turbines, Francis turbines or turbocharger energy from rejected brine
can enable up to 90% energy recovery [14,43]. Similar differences can
be observed in the case of MD. The amount of energy required for water
desalination ranges from 100 to 2200 kWh/m® and the price from 10.4
t0 19.5 USD/m? [14,38; 56,267]. However, typical capacity of solar MD
is 0.15-10 m®/d [14,268].

Taking into account the size of the installation due to the amount of
desalinated water during the day, it should be noted that in the case of
using solar energy, dominate capacities not exceeding 100 m>/day. The
exception is the use of CSP systems, for which the capacity is estimated
at over 5000 m®/day. Additionally, these technologies are mostly
applicable (solar still, PV SWRO, solar multi-effect humidification) or in
the phase of advanced R&D (solar MD and PV EDR). Only solar SWRO is
classified in the phase of basic research, hence the capacity of over 0.1
m?>/day is very general information. Among the technologies that can be
commonly used, RO elevators with capacities of 50-2000 m3/day and
geothermal MED with capacities of 50-1000 m®/day should be
mentioned [269]. Among wind energy technologies, wind MVC are also
in the advanced research phase, and wind ED are in the preliminary
research phase. The use of wave energy (wave RO) with the value of
1000-3000 m®/day stands out for a high potential. It is also a technology
for which unit costs are the lowest among the analysed ones, ranging
from 0.7 to 1.2 USD [14,269].

The second largest costs are for solar still ranging from 1.4 to 6.5
USD/m?, and solar/CSP MED where it is 2 to 2.5 USD/m®. In the last
case, the upper limit of the production costs of 1 m® of desalinated water
is particularly important. The highest costs were determined for the MD
solar technology (10.4-19.5 USD/m®) and for PV SWRO (11.7-15.6
USD/m®). This is one of the reasons why hybrid RES systems are
becoming more and more popular, as it is about optimising the costs
incurred per unit of desalinated water, which is possible with the inte-
gration of various RES technologies.
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Fig. 13. Commercialisation status of various desalination technologies (based on [269]).
Table 5
Global comparison of investment outlays connected with selected RES technologies in 2015 and 2018 [273-274].
Region Solar PV Solar CSP Geothermal
2015 [USD/ 2018 [USD/ Change 2015 [USD/ 2018 [USD/ Change 2015 [USD/ 2018 [USD/ Change
kw] kw] [%] kw] kw] [%] kw] kw] [%]
Africa 2649 1621 38.81 14,153 6181 56.33 3818 4612 —20.80
Asia 1624 1921 —18.29 4423 4285 3.12 3148 3612 —-14.74
Central America and the 2076 1402 32.47 - - - 3413 3688 —8.06
Caribbean
Eurasia 2775 1287 53.62 - - - 3113 4793 —-53.97
Europe 1408 1098 22.02 8839 7718 12.68 5209 7192 —38.07
Middle East 2553 1342 47.43 3705 6645 —79.35 - - -
North America 2365 1557 34.16 6794 7301 —7.46 5017 3833 23.60
Oceania 2857 1554 45.61 9829 6958 29.21 3796 3794 0.05
South America 2249 1542 31.44 - - - 3587 3140 12.46
China 1439 879 38.92 3680 4228 —14.89 1943 - -
India 1403 793 43.48 4328 4408 -1.85 2169 - -
USA 2336 1549 33.69 6794 7301 —7.46 5961 5555 6.81
Region Biomass Wind on-shore Wind off-shore
2015 [USD/ 2018 [USD/ Change 2015 [USD/ 2018 [USD/ Change 2015 [USD/ 2018 [USD/ Change
kw] kw] [%] kw] kw] [%] kw] kwi] [%]
Africa 1654 1220 26.24 2080 1451 30.24 2155 - -
Asia 1486 2408 —62.05 1280 2237 —-74.77 - 4843 -
Central America and the 1021 1768 —73.16 2268 2277 - - -
Caribbean
Eurasia 1756 1401 20.22 1751 1998 - - - -
Europe 3249 2917 10.22 1917 1950 -1.72 2053 4992 —143.16
Middle East 2895 4022 —38.93 2497 2313 7.37 - - -
North America 3584 3877 —8.18 1874 1546 17.50 2251 10,080 —347.80
Oceania 3851 2450 36.38 2533 1638 35.33 - - -
South America 1662 1081 34.96 1871 1763 - - - -
China 1576 1383 12.25 1251 1173 6.24 2115 2747 —29.88
India 1112 1350 —21.40 1228 1201 2.20 - - -
USA 4076 2370 41.85 1770 1659 6.27 2250 10,080 —348.00
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Criticisms concerning the use of RESs in desalination processes were
presented by Lawal and Qasem [270] and by Kasaeian et al. [47].
However, the authors ultimately pointed out that RESs may be the right
choice in places where there is no power grid. In some cases, the use of
RESs can be considered a necessity, mainly on islands and remote rural
areas where there is no transmission grid infrastructure and there is a
natural problem with access to fresh water [270]. Such statement has
been the conclusion of past studies, but it is feasible for very small ca-
pacities. This is confirmed by research carried out by Wang et al. [271]
who studied this possibility not just in order to desalinate water, but also
to meet electricity needs using exclusively RESs. The research results
presented by Mentis et al. [272], who analysed the possibility of using
RESs on three Greek islands (Patmos, Lipsoi and Thirasia), are also in
line with this trend. The authors demonstrated that, depending on the
size of the island, the cost of desalination varies between 1.45 and 2.6
EUR/m® (1.74-3.12 USD/m°>) — the larger the island, the lower the cost,
i.e. it is far less than the current price of supplying water to the islands,
which ranges from 7 to 9 EUR/m® (8.4-10.8 USD/m?).

When indicating the investment outlays connected with the RES
analysed in this article, it is necessary to take into account changes in the
situation in the global markets in recent years. Differences in installation
costs per kilowatt of solar capacity (PV and CSP) as well as of geothermal
capacity are shown in Table 5. The comparative analysis conducted for
2015 and 2019 shows that for PVs, there was a significant reduction in
investment outlays, which decreased from 22.02 to 53.62% depending
on the region. The exception is Asia with an 18.29% increase in price per
kilowatt of installed capacity. For CSP installations, it can be considered
that outside the Middle East, the situation is stable in terms of invest-
ment outlays, and for Africa, Oceania and even Europe it is favourable.
Unfavourable price changes can unfortunately be observed in the case of
geothermal installations what can be as a result of sharing harder-to-
reach high-temperature deposits. However, it should be noted that for
this energy sector, hasty conclusions should not be drawn from the
analysis presented, since the issue of constructing geothermal in-
stallations is very complex and requires more in-depth studies. There are
several low cost geothermal options as it was outlined by Bundschuh
et al. [59] from low enthalpy geothermal sources (see Section 3.5).

In the case of biomass installation costs, it is difficult to draw clear
conclusions, as these vary greatly and percentage changes have ranged
from —73.16% to 41.82%. More clear-cut results emerge in the case of
the wind power industry, where there is a clear downward trend in price
per kilowatt of installed capacity for onshore power generation and
significant cost increases, even of 348%, can be observed for offshore
installations. Hydropower is not included in the list due to the fact that
the averaged data mainly refer to conventional flow-through and
pumped-storage hydro plants, whereas in the case of desalination pro-
cesses tidal, wave and ocean thermal energy are of rather greater
importance.

Water desalination/treatment can be considered an environmentally
friendly and desirable technology, e.g. in view of the reduction in the use
of conventional fuels for this purpose [275]. This issue becomes
particularly important when the data published by the Food and Agri-
culture Organization of the United Nations (FAO) are analysed, which
indicate that due to global population growth, food production will in-
crease by 70% by 2050 [276]. This problem was also noticed by Manju
and Sagar [277] who discussed the problem of water scarcity in India.
They pointed out that the rate of population growth in India results in
more freshwater being required to meet basic needs, and this in turn can
cause water shortages. India’s total population is expected to reach 1.60
billion by 2050, and by 2040 the country will be ranked 40th globally in
terms of water scarcity [277]. Similar problems can be expected in many
parts of the world where a shortage of drinking water is already felt
today.

Research conducted worldwide in recent years demonstrates that
apart from the very essence of integrating RESs into water desalination/
treatment processes, sustainability and environmental aspects of these
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desalination processes [32] as well as economic, environmental and
social issues [278] are discussed. These issues go hand in hand with the
aim of optimising these processes and thus improving their efficiency
and reducing energy consumption.

Analysing the research on life cycle assessment (LCA) in the field of
desalination, Aziz and Hanafiah [279] showed that 62 studies were
carried out over the years 2004-2019 in the field. However, taking into
account individual desalination technologies, most studies concerned
the membrane processes, and more precisely RO (55). The second most
frequently analysed method was MSF (12) and MED (8), while the
remaining technologies were analysed in single studies. It should be
noticed, that the LCA is a method very sensitive to variables such as the
impact on the ecosystem, local environmental and social conditions,
comparing the results with each other is difficult to be considered reli-
able. This does not mean, however, that conclusions should not be
drawn from the studies conducted so far. However, these indicate that
the main cause of the negative impact of desalination processes on the
environment is the use of conventional fuels to generate electricity or
heat that is necessary for desalination. This is confirmed, among others
studies, by Alhaj et al. [280] and Goga et al. [281]. In these situations it
is obvious that RES are desirable to cooperate with desalination pro-
cesses. Following this line of reasoning and looking for a desalination
technology that will have the lowest environmental impact, first of all,
attention should be paid to the energy consumption of individual tech-
nologies. On the other hand, when discussing the LCA topic, it has to be
remembered that the study should also take into account the impact of
RES installations in terms of its entire life cycle.

Appropriate algorithms for simulating hybrid desalination systems in
the context of their optimisation in order to obtain best results are
provided by Bitaw et al. [71]. The authors pointed out that the highest
carbon dioxide emission reduction rate (63%) was achieved with ED-
RO. On the other hand, an environmental life-cycle assessment was
conducted by Cherif et al. [282] who analysed a hybrid wind-solar
power system. A comparison of pollutant emissions from conventional
(coal-fired) and geothermal power plants was presented by Lund [283]
and Fridleifsson et al. [284]. The average sulphur dioxide and carbon
dioxide emissions from coal-fired power plants are 25 times higher than
in the case of geothermal plants.

7. Conclusion and future roadmap

This review article has presented global experience of the use of RES
in different configurations to run water desalination systems based on
different feed water sources: sea, brackish or geothermal water.
Considerable experience gained through experiments and analyses, as
well as deployment in practice, has demonstrated that renewable and
alternative technologies can successfully be combined with many
desalination methods. However, there is still a need to optimise some
techno-economic aspects in order to produce systems that are effective
in the long-term. Here is a summary of potential links between RES and
desalination:

e solar thermal: it is necessary to improve application in small- and
industrial-scale desalination, optimising the surface area of devices
that concentrate solar radiation by using new technologies,
improving materials for solar energy collectors and increasing heat
energy storage, e.g. by connection of CSP solutions with TES. In such
areas there is a need for optimisation of fluid solutions and materials
for energy storage;

solar electricity: a positive aspect is that nowadays PV technology
can be expected to be competitive with conventional resources as a
consequence of gradually decreasing investment outlays and oper-
ating costs and still increasing lifetime. That is why this sector of RES
has shown increasing popularity. However, it is necessary to solve
certain problems, both of an energy nature and those resulting from
climatic conditions, like the fouling of PV panels, soiling, dust and
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cleaning needs, and cooling problems in regions where there are high
values of solar radiation. There are also some technological chal-
lenges like increasing the use of clean and green technology in solar
cells, nanotechnology, nanomaterials such as silicon, indium gallium
phosphide, gallium arsenide, indium gallium arsenide, quantum dots
as a third generation and nanostructures (metallic nanoparticles,
metal oxides, carbon nanotubes, graphene, gallium arsenide) as a
fourth generation for the fabrication and production of PV panels on
a large scale. CPV systems can also be analysed as an alternative to
conventional PV installations, however this solution also needs an
effective cooling system;

wind: wind energy powered desalination systems which are not
connected to a conventional grid are in effect stand-alone micro-
grids and generally have been configured to handle small-scale
desalination projects. The challenges for the effective use of wind
energy also include the incorporation of energy storage systems;
hydroelectricity: this is mainly considered due to the fact that the
desalination of seawater requires the supply of electricity in coastal
areas where using tidal, wave or ocean thermal energy appears to be
a natural solution. Some positive potential can certainly be shown in
the near future by installations powered by ocean thermal energy.
These use the Organic Rankine Cycle (ORC) or the Kalina Cycle to
exploit the temperature difference between shallower and deeper
layers of water. Such systems still need to be optimised;

biomass: nowadays biomass energy is not used separately to power
desalination systems. Generally this works in combination with other
renewable and non-renewable energy sources in hybrid systems;
geothermal energy (power and thermal): power solution can be very
advantageous for desalination in areas where adequate geothermal
resources are available provided that this is confirmed by the eco-
nomic analysis conducted for each individual case. Furthermore,
there is generally no limitation to the scale of the desalination plant
when using geothermal energy if the well has a good capacity, which
is considered as a strength. It also should be highlight that low-cost,
low enthalpy geothermal heat sources can be wildly use as a direct
heat applications for several conventional thermal-based water
desalination technologies;

salinity gradient energy: can be considered as an very interesting and
valuable technique for renewable energy production and storage.
However further research is needed to effectively implemented it in
industrial scale as a source of energy to desalination.

Especially in case of solar and wind energy, it is noted that the key
issue to be addressed is still the lack of stability of energy production
which drives a search for energy storage solutions and the expansion of
off-grid systems. However, despite some disadvantages, it can be
concluded that the use of RESs is a reasonable and desirable choice. At
the same time, it should be noted that combining renewable energy with
desalination processes requires further intensive research and demon-
stration units for longer term performance. The need to develop less
energy-intensive desalination technologies should be supported by
regulations.
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