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Parameter Modeling of a Two Cross-flow
Turbine Array From Experimental Data

Isabel Scherl, Steven L. Brunton, and Brian L. Polagye

Abstract—Cross-flow turbines, also known as vertical-
axis turbines, use blades that rotate about an axis perpen-
dicular to the incoming flow to convert the kinetic energy
in moving fluid to mechanical energy. In this work, the
performance of a two-turbine array in a recirculating water
channel is modeled using Gaussian process regression. In
prior experiments, we optimized “coordinated control” set
points (equal tip-speed ratios with an azimuthal phase
offset between turbines) to maximize the power output 64
unique geometric configurations with the turbines counter-
rotating. While this approach identified promising config-
urations where turbine pair out-performed geometrically-
identical turbines in isolation, the experiments were time-
consuming to conduct. In this work, a Gaussian process
regression model is initialized with a subset of random
points from the geometric configuration space and returns
confidence intervals for the full parameter space. Subse-
quently tested points are then chosen based on the regions
of the parameter space model with the highest uncertainty.
This is repeated until the model converges (i.e., the model
is unchanged with additional points tested). Results are
benchmarked against the experimental “truth”, but, in
future work, would actively guide experimental exploration
of high-dimensional spaces.

Index Terms—Cross-flow turbines, vertical-axis turbines,
design of experiments

I. INTRODUCTION

CROSS-flow turbines (i.e., vertical-axis turbines in
wind) can harness energy from wind and marine

currents [1], [2] that have seen a resurgence of inter-
est [3]–[6]. A principal advantage of cross-flow turbines
is that dense arrays can outperform equivalent turbines
in isolation [7], [8]. This complements other benefits
of dense arrays, including increased power output per
area [9].

Exploring dynamics in the arrays presents a unique
challenge because the dimensionality of the parameter
space increases exponentially with the number of tur-
bines. Given this, traditional uniform sampling across
parameters quickly becomes intractable and it becomes
necessary to explore alternative methods. Optimization
schemes have been used to explore similarly large
parameter spaces [10] and, while an excellent solution
to find optimality, they cannot provide full informa-
tion about how various parameters affect performance.
Knowledge about the impact of differenet variables on
underlying dynamics can be as valuable as the optimal
solution for array design. For example, this information
could use this to identify designs where performance
will not significantly vary if control or environmental
parameters are perturbed. Here we show that it is pos-
sible to efficiently characterize an array performance
parameter space using Gaussian process regression, a
method that has recently gained popularity to solve

similar problems. Gaussian process regression has been
used to explore system dynamics in a variety of fields.
These include, vortex-induced vibrations [11], phyto-
plankton sampling in the ocean [12], spectroscopy [13],
learning partial differential equations [14].

In this work, we show how Gaussian process regres-
sion can be used to predict the relative performance of
an array using the performance of arrays with similar
but different configurations.

II. METHODS

A. Experiments

The experimental data used in this work is described
in detail in [15]. Experiments were conducted in a
recirculating flume at the Bamfield Marine Science
Centre. The experimental set-up consisted of two cross-
flow turbines: a stationary turbine instrumented with
force sensors to measure thrust and torque and a
mobile turbine instrumented with a torque sensor.
Both turbines has their rotational motion regulated
by servomotors to ensure constant rotational velocity.
A photo of the two turbines operating is shown in
Figure 1(b). The mobile turbine was mounted to a
robotic gantry system to move it into a variety of
geometric positions. The geometric positions tested are
shown in Figure 1(a).

B. Performance Metrics

The coefficient of performance for an individual
turbine is the ratio of the power produced to the kinetic
power in the free-stream passing through the turbine’s
projected area and expressed as

Cp =
P
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where P is turbine’s mechanical power, ρ is the fluid
density, U∞ is the freestream flow velocity, H is the
turbine height, D is the turbine diameter, ω is the
turbine rotation rate, and τ is the turbine torque. We
evaluated array performance relative to the sum of
the maximum performances of the two turbines under
similar environmental conditions but in isolation as

κ =
CP,1 + CP,2

C∗

P,1 + C∗

P,2

(2)

where κ is the interaction factor (κ < 1 for detrimental
interactions and κ > 1 for beneficial interactions) and
a star(*) denotes performance in isolation. We note
that due to minor differences in support structures,
measurement, and control hardware, C∗

P,1 6= C∗

P,2.
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Fig. 1. (a) Each array configuration tested, where one turbine was
fixed at X/D = Y/D = 0 and the other turbine was tested at each
prescribed polar grid location (b) photo of both turbines operating
in the Bamfield Marine Science Centre flume

The turbine arrays were operated under “coordi-
nated control” where the angular velocities, or tip-
speed ratios given by

λ =
ωR

U∞

, (3)

where R is the turbine radius, of the two turbines are
locked to the same value (λ = λ1 = λ2). For counter-
rotating turbines, the phase difference is defined as

φ = −θ1 − θ2, (4)

where θ1 and θ2 are the angular positions of mobile and
fixed turbines respectively and θ = 0 when one blade
is pointing directly upstream. This results in a two-
parameter space consisting of λ and φ. A closed-loop
controller is used to maintain a constant φ while testing
a specific pair of parameter values. The optimized
performance values used to train the Gaussian process
regression model were acquired using a hardware-in-
the-loop optimizer built around a Nelder-Mead sim-
plex [16].

C. Gaussian Process Regression

A Gaussian process is a stochastic process where
each dimension can be described as a Gaussian or
normal distribution. Gaussian process regression (GPR)
uses a collection of Gaussian processes to describe a
stochastic process [17]. This method is nonparametric
which means it does not require knowledge of the sys-
tem. Gaussian process regression generates a model the
parameter space and quantifies the uncertainty in its
predictions of the parameter space. This quantification
can be a useful tool to increase experimental efficiency
by choosing the region with the highest uncertainty to
sample next.

The model in this work was implemented using the
MATLAB Statistics and Machine Learning Toolbox. We
specified a squared exponential kernel function and
a linear basis function. The process we use to train
and evaluate the Gaussian process regression model
is as follows. We initialize our model with the known
interaction factor at n = 5 randomly selected training
locations. In other words, as if we had identified
optimal coordinated control strategies at 5 of the 64
possible array layouts. The model then produces an
estimate of the interaction factor at the remaining
locations and the location with the highest uncertainty
is then added to the training data (experimentally, this
would be the next point tested). The model is then re-
evaluated to determine the next point to add to the
training data. This process continues until all points
have been added to the training data.

To generalize the statistical efficacy of the model
as a function of the number of points in the training
data, the modeling procedure is repeated m times with
different initial training data. The mean relative error
for the GPR model is defined as

〈

||κ̄− κ̄predicted||2
||κ̄||2

〉

m

(5)

where we are comparing the true interaction fac-
tors (κ̄) to the predicted interaction factor (κ̄predicted)
averaged over m random initializations and the bar
denotes that we are looking at a vector of interac-
tion factors over the parameter space. To determine
statistical convergence, we evaluated Equation 5 for
m = 10, 30, 100, 300 initializations.

III. RESULTS AND DISCUSSION

The interaction factor predictions can be seen in
Figure 2 for one set of randomly generated initial
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Fig. 2. (a)-(h) Interaction factor prediction for GPR models from circled points with n = 5, 10, 15, 20, 25, 45, 64 test points, respectively, where
circled points are used to train the model and the grey points have been newly added since the previously shown case (i) training data for
each location

training data. The fidelity of the interaction factor pre-
diction improves as we increase the number of points
in the training data. The most important aspects of the
parameter space emerge when the model uses fewer
than one third of the total points at n ≈ 20 (Fig. 2(c)).
As the number of training points is further increased,
the model more closely matches the true performance,
with the models at n = 45 and n = 64 nearly indis-
tinguishable from the true parameter space. Since we
are able to accurately predict interaction factors using
neighboring points, it is likely that we over-sampled
when originally acquiring the experimental data, par-
ticularly when the turbines are in similar streamwise
positions and in close proximity. Consequently, due to
their low uncertainty, these are the final points added
to the training data in the example in Figure 2.

The statistical performance under m realizations are
shown in Figure 3. The results from the smaller values
of m = 10, 30 are not converged and “jagged”, whereas
there is little deviation between the mean relative error
at m = 100 initializations and m = 300 initializations.
It should be noted that even with small m values, the
results do not vary widely. The inter-quartile range
(IQR) for each value of n at m = 100 is shown in
Figure 3(b). In this plot, the IQR is larger with fewer
points due to increased variance in which points can be
selected (i.e., if 5 out 64 points are used as training data
then there are more combinations of points available
than when forty points are used as training data). The
IQRs for a random progression (i.e., n points chosen
entirely at random) and GPR progression overlap until
approximately n ≈ 30 where the GPR consistently
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Fig. 3. (a) Mean relative error of Gaussian process regression (GPR) progressed models (blue) and randomly progressed models (red) for
various iterations of random initializations tested (m = 10, 30, 200, 300) (b) Mean relative error and inter-quartile range (IQR) for m = 100

outperforms random progression. In summary, choos-
ing subsequent points based on the uncertainty in the
model is more efficient than random sampling with an
equal number of points and significantly more efficient
than uniform sampling.

IV. CONCLUSION & FUTURE WORK

In this work we show how Gaussian process re-
gression modeling can be used to efficiently predict
the performance of neighboring geometries in arrays
of cross-flow turbines. This is an exciting result that
shows the promise of using this design of experiments
approach to model the high dimensional space of
larger turbine arrays. Future work will be to implement
this approach in real-time as a model-based, hardware-
in-the-loop approach to data collection.
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