

Hydrodynamic and CFD modeling of a tidal barrage power plant in Buenaventura Colombia

Rueda-Bayona J.G*, Parrado D, García J

*Dr. Eng. Juan Gabriel Rueda-Bayona Associate Professor. Engineering Faculty HIDROMAR research group head Email: juan.gabriel.rueda@correounivalle.edu.co Universidad del Valle, Cali, Colombia

22-24 January, 2024

Tidal power technologies

Tidal range power (barrages, dams) Tidal stream power (hydrokinetic turbines)

Edite from: https://www.youtube.com/watch?v=VkTRcTyDSyk

What do we know about tidal energy in Colombia?

All related to tidal stream energy in the Colombian Pacific

2021

INGE CUC, Vol. 17, No. 2, Julio - Diciembre, 2021 (IN PRESS)

Tidal Energy Potential in the Center Zone of the **Colombian Pacific Coast**

DOI: http://doi.org/10.17981/ingecuc.17.2.2021.07 Artículo de Investigación Científica. Fecha de Recepción: 09/10/2020. Fecha de Aceptación: 07/11/2020

> Gabriel Esteban Quintero Aguilar ២ Universidad Militar Nueva Granada. Bogotá (Colombia) u1102603@unimilitar.edu.co

Juan Gabriel Rueda Bayona 匝 Universidad Militar Nueva Granada. Bogotá (Colombia) juan.rueda@unimilitar.edu.co

2008

Potencial de generación de energía a lo largo de la costa colombiana mediante el uso de corrientes inducidas por mareas Tidal Current Potential for Energy Generation along the Colombian Coastline

Recibido 29 de septiembre de 2008, aprobado 13 de enero de 2008, modificado 22 de enero de 2009

MDPI

2023

infrastructures

Article Effect of Sea Level Rise and Access Channel Deepening on Future Tidal Power Plants in Buenaventura Colombia

Juan Gabriel Rueda-Bayona^{1,2,*}, José Luis García Vélez^{1,2} and Daniel Mateo Parrado-Vallejo^{1,2}

2016

Renewable and Sustainable Energy Reviews

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/rser

Assessment of the marine power potential in Colombia A.F. Osorio^a, Santiago Ortega^b, Santiago Arango-Aramburo^{c,*}

Tidal range power in the Colombian Pacific?

Ceibito

La Trojita

Tambo

El Guineo

Guavaguil

start

- 1. Identify highest Sizigy, lowest Quadrature and Stoa.
- 2. Calibrate and validate of 3D hydrodynamic model (Delft3D).
- 3. Provide generated water levels, flows and velocity currents by Delft3D to CFD model (Autodesk).
- 4. Set-up CFD model.
- 5. Validate of CFD results of flow and velocities across the chambers against theoretical equation of hydraulic drowned gate discharges.
- 6. Calculate available power and annual energy production using current velocity of the flow at the chambers.
- 7. Compare the calculated power against now operating plants. end

Apr 19

Apr 22

Apr 25

time

Apr 28

We use the calibrated-validated Delft3d model in Rueda-Bayona et al, 2023 and Set monitoring points and cross sections.

> Modelled Measured

Nov Dec 202

May 01

2021

Deflt3D results at across the tidal barrages

Sicigy 🥠 Figure 1 \Box \times File Edit 🛱 🕞 🌭 🔍 🖑 🐌 📥 🛲 30-Apr-2021 02:00:00 0 -1 1.8 -2 1.6 1.4 (s/ш) 륃 vation (m)-ch t-.2. magnit /elocity -6 0.8 -7 1 0.6 -8 0.4 -9 L 0 50 100 150 200 250 300 350 400 450 distance along cross-section m=375 (m) \rightarrow [► | V 4 📣 Figure 2 _ >File Edit 🖄 🕞 🌭 🔍 🖑 🐌 📥 🛲 30-Apr-2021 02:00:00 0 -1 1.6 (s/ш 4 -↑ (ш) u 1.2 Ē Ĕ ocity, 0.8 曼 0.6 0.4 -50 0 50 100 150 200 250 300 350 400 450 ► V distance along cross-section m=375 (m) \rightarrow

Geometry of the CFD model

We took the flow and velocities measured at the cross sections of Delft3D to provide the initial conditions of the Autodesk CFD model.

Cas	ses	Flow at north cross section (m ³ /s)	Flow at south cross section (m ³ /s)	Velocity at north cross section (m/s)	Flow at south cross section (m/s)
Quadratura	Flood tide	530	650	0.14	0.48
Quadrature –	Ebb tide	565	720	0.15	0.16
Sugar	Flood tide	768	936	0.16	0.54
Syzygy –	Ebb tide	797	1015	0.44	0.18
Sto	Da	85	107	0.04	0.02

CFD modelling cases	Date and time
Highest Sizigy	29-Apr-2021 00:00h
Lowest Quadrature	22-Dec-2021 14:00h
Stoa	22-Dec-2021 17:00h

What did we do? CFD results at across the tidal barrages

Universida del Valle

CFD velocities

	Velocity (m/s)																								
Gate		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Lowest Quadrature	Flood tide	4.0	4.0	4.0	6.0	5.5	5.5	5.5	5.6	6.0	6.0	6.0	5.8	5.7	5.4	4.0	4.0	4.0	4.0	4.0	3.5	3.2	3.2	3.2	3.2
	Ebb tide	4.4	4.1	4.0	4.0	3.6	3.8	2.6	2.7	2.7	2.6	2.6	2.7	3.2	3.0	3.4	3.5	3.6	3.8	3.6	3.8	3.8	3.8	3.9	3.9
Stoa		1.3	1.3	1.4	1.6	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.5	1.5	1.4	1.3	1.3	1.3	1.3	1.3
II: -ht C	Flood tide	5.5	6.0	6.0	5.5	5.5	5.5	6.5	5.5	5.5	6.5	6.5	6.5	6.5	4.5	4.5	4.5	4.5	4.0	3.2	2.2	2.2	2.2	3.2	3.2
Hignest Syzygy	Ebb tide	7.5	6.5	4.2	5.5	4.5	6.5	6.5	4.3	4.3	4.3	6.8	6.8	7.2	4.3	4.3	6.5	8.2	11.0	7.0	7.5	6.8	6.8	7.5	4.5

 $Q \coloneqq Cd \cdot A \cdot \sqrt{2 \cdot g \cdot H} \equiv 129,06 \quad \frac{m^3}{s}$

theoretical flow at gate area close to CFD results

	Flow (m3/s)																										
													T, I		(IIIS):	<i>.</i> ,											
Gate		1	2	3	4	5	6	7	8	9)	10	11	12	13	3 1	.4 1	5	16	17	18	19	20	21	22	23	24
I awast Quadratura	Flood tide	80	80	80	120	110	110	110) 11	2 12	20 1	20	120	116	5 11	4 10	08 8	30	30	80	80	80	70	64	64	64	64
Lowest Quadrature	Ebb tide	88	82	80	80	72	76	52	54	4 5	4 :	52	52	54	64	6	50 e	58	70	72	76	72	76	76	76	78	78
Stoa		26	26	28	32	34	34	34	34	43	4 .	34	34	34	34	+ 3	34 3	34	34	30	30	28	26	26	26	26	26
Highest Syzygy	Flood tide	110	120	120	110	110	110	130) 11	0 1	10 1	30	130	130	13	09	0 9	0	90	90	80	64	44	44	44	64	64
	Ebb tide	150	130	84	110	90	130	130) 86	58	6	86	136	136	5 14	4 8	86 8	36 1	30	164	220	140	150	136	136	150	90
													Po	ower	(MV	V)											
Gate		1	2	3	4	5	6	7	8	9	10	11	1	12	13	14	15	16	1	17	18	19	20	21	22	23	24
Laurat Oraș lastare	Flood tide	4.3	4.3	4.3	6.4	5.9	5.9	5.9	6.0	6.4	6.4	6.4	6	5.2	6.1	5.8	4.3	4.3	4	.3	4.3	4.3	3.8	3.4	3.4	3.4	3.4
Lowest Quadrature	Ebb tide	4.7	4.4	4.3	4.3	3.9	4.1	2.8	2.9	2.9	2.8	2.8	3 2	2.9	3.4	3.2	3.6	3.8	3	.9	4.1	3.9	4.1	4.1	4.1	4.2	4.2
Stoa		0.7	0.7	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9) ()).9	0.9	0.9	0.9	0.9	0	.8	0.8	0.8	0.7	0.7	0.7	0.7	0.7
Highest <u>Sizygy</u>	Flood tide	8.8	9.6	9.6	8.8	8.8	8.8	10.4	8.8	8.8	10.5	10.	5 10	0.5	10.5	7.2	7.2	7.2	7	.2	6.4	5.1	3.5	3.5	3.5	5.1	5.1
	Ebb tide	12.1	10.5	6.8	8.8	7.2	10.5	10.5	6.9	6.9	6.9	10.	9 10	0.9	11.6	6.9	6.9	10.	5 13	3.2	17.7	11.3	12.1	10.9	10.9	12.1	7.2

	Gate	Mean power of 1 turbine (MW)	Mean power by 24 tubines (MW)
Lowest	Spring tide	5.0	119.2
Quadrature	Ebb tide	3.7	89.0
Stoa		0.8	19.7
Highost	Spring tide	7.7	185.9
Sizygy	Ebb tide	10.0	240.0
Mean		5.44	130.7

Conclusions

Parameter	Buenaventura	La Rance	Sihwa	Jiangxia	Annapolis	Kislaya Guba
Tidal range (m)	3.7	11	9.8	5.1	6.4	2.3
Turbines	24	24	10	6	1	1
Power by 1 turbine (MWh)	5.45	10	26	3.9	20	1.7
Total installed capacity (MWh)	130.8	240	260	23.4	20	1.7

- 1. Theoretically, at the estuary of Aguadulce in Buenaventura Bay, exist the potential to produce 130.8 MWh with 24 bulb turbines.
- 2. The found power potential might increase with hydraulic optimization of chambers, gates and the capacity factor of bulb turbines (e.g Andritz turbines).
- 3. There exist others estuary pending for evaluation which could increase the tidal range power potential in Buenaventura Bay.
- 4. The Buenaventura tidal range plant could be the 3rd worldwide in energy production.

Thank you

https://www.infobae.com/america/colombia/2022/09/01/cali-recibio-fue-destacada-como-destino-ciudad-cultural-lider-de-sudamerica/

https://bepacific.co/producto/tour-cali-es-salsa/

https://i.ytimg.com/vi/heQw9P3dW90/maxresdefault.jpg

