Wake measurement metrics and the dependence of
tidal turbine wakes on turbine operating condition

T. Ebdon*}, D.M. O’Doherty T O’Doherty *§ A. Mason-Jones *9
*School of Engineering, Cardiff University, Cardiff, United Kingdom
{EbdonT @cardiff.ac.uk
§odoherty@cardiff.ac.uk
TMason-JonesA @cardiff.ac.uk
fodoherty394 @ gmail.com

Abstract—Metrics are introduced for measuring the length and
width of a turbine wake. These metrics are closely examined,
and their relative advantages and disadvantages are discussed.
Following this, a CFD study is carried out for a model-scale
tidal turbine over a wide range of tip-speed ratios, and the
performance and wake of the turbine is analysed. The study
indicates that wake length is relatively unaffected by the turbine
operating condition beyond the near wake, but that wake widths
appear to be closely related to the turbine operating condition.

NOMENCLATURE
A = rotor swept area, m?
Cp = power coefficient
Cr = thrust coefficient
Cp = torque coefficient
D = rotor diameter, m
F; = thrust force on turbine, N
G4 = axial flux of angular momentum
G, = axial flux of linear momentum, m~!
r = turbine radius, m
S = swirl number
u = instantaneous velocity, m/s
u, = fluctuating velocity ¢ direction, m/s
U = average velocity, m/s
v = free-stream velocity, m/s
A = tip-speed ratio
p = fluid density, kg/m3
T = turbine torque, Nm
T;j = stress component acting in j direction on
surface normal to ¢ direction, N/m?
w = turbine angular velocity, rad—!

I. INTRODUCTION

Calculations have shown the potential for tidal stream
turbines to provide a reliable, constant base-load for the UK
energy supply. This could be achieved by siting arrays of tidal
turbines at strategic points around the British Isles, in order
to utilise the time-difference of the tidal phase[1]. The nature
of the tidal flow around the British Isles means that one or
more sites would always be at near peak flow, thus providing
a reliable source of low-carbon energy. However, the regions
of the sea bed which lend themselves to the installation and
operation of tidal turbines are limited in geographical extent
due to both hydrodynamic considerations (flow velocity, local

turbulence), as well as practical considerations (depth of water,
suitability of sea bed, proximity to coast, shipping lanes etc).
Given the need to extract as much energy as possible from
these limited geographical regions, it is probable that tidal
turbines will be deployed in arrays; groups of turbines in
close proximity to one another. With turbines being grouped
in this way, it is to be expected that their close proximity will
lead to hydrodynamic inter-turbine interactions. These may
have a positive effect on energy extraction due to blockage
effects and flow acceleration[2], but could also have a negative
effect on each other, due to less energy being available
for the downstream turbines, or increased turbulence in the
flow leading to unacceptable structural demands being placed
on downstream turbines[3]. Whilst work has been done in
the field of wind farm layout optimisation, there is greater
potential for optimisation benefits in the tidal industry, due to
the highly predictable and periodic nature of the flow.
Crucial to obtaining a necessary understanding of inter-
turbine interactions is the ability to accurately model tidal
turbine wakes under a variety of flow and operating conditions.
To date, the majority of numerical studies of both tidal and
wind turbines have used Reynolds-Averaged Navier-Stokes
(RANS) models, with some using Blade Element Momentum
Theory (BEMT). These models have been shown to be able to
accurately predict turbine performance characteristics (power
output, torque output, thrust), when compared to measure-
ments obtained in low-turbulence flume measurements, and
zero-turbulence tow tank experiments. However, these models
struggle to predict the length of the turbine wakes. Some
studies have attempted to overcome the limitations of RANS
turbulence modelling by directly resolving the large scale
turbulence using Large Eddy Simulation (LES). However, due
to the high computational requirements associated with LES
modelling, these studies have either used a limited spatial
domain[4], or have simplified the turbine geometry by using
actuator lines[5] or discs[6] to reduce computational require-
ments. These simplifications allow the effects of large-scale
turbulence to be accounted for, but at the cost of either not
providing a solution for the entire wake region of interest, or
by simplifying the turbine geometry which means that effects
of the flow on the turbine itself cannot be evaluated. It has been
shown that a hybrid turbulence model, known as Detached



Eddy Simulation (DES), can provide more accurate wake
results for a full turbine geometry than RANS, but at lower
computational cost than LES. This is achieved by applying
a RANS model in the near-wall areas around the turbine, but
resolving large-scale turbulence in other regions, in the manner
of LES[7].

This paper is designed in two parts: firstly, a discussion and
assessment of different metrics which can be used to define
and assess the size, shape, and impacts of wakes. This allows
wakes to be objectively compared between different cases, and
it is envisaged that this could be used to inform designers of
turbine arrays when making decisions about array layout. The
second part of this paper applies these metrics to a specific
CFD case, modelled using a full turbine geometry using a
DES turbulence model, which has been validated against wake
measurements from a flume[7]. This model is run for a range
of seven tip-speed ratios representing a wide range of operating
conditions including high-torque, -power and -thrust.

II. SIMULATION METHODOLOGY
A. Turbulence model

To date, the majority of numerical research on tidal turbines
and their wakes has been conducted using RANS turbulence
models. These models recognise that, for most engineering
flows, users are more interested in the time-averaged values of
flow variables such as velocity, than the instantaneous values.
RANS models are based on the idea that the instantaneous
value of a flow variable, e.g. velocity, can be represented by
its mean and a fluctuating component. This process is known
as Reynolds decomposition, and is represented mathematically
in equation 1.

w(t) =U +u'(t) (1)

The Reynolds-decomposed variables are then substituted into
the incompressible 3-dimensional Navier-Stokes equations.
This yields the time-averaged Navier-Stokes equations for U,
which are formally identical to the Navier-Stokes equations
for instantaneous flow variables, with an additional term,
Tij = —pu,’iu;, known as the Reynolds stresses. The Reynolds
stresses represent the exchange of momentum between the
mean and the fluctuating flow components, and must be
modelled in order to close the Navier-Stokes equations and
obtain a solution for U. Various schemes have been developed
for the modelling of the Reynolds stresses, each with differing
levels of complexity, from the mixing length model, through
two-equation models such as the k-¢ and k-w through to the
Reynolds Stress Model, which requires seven equations to be
solved for closure to be achieved[8].

The advantage of RANS equations is that they provide a
good compromise between computational cost and accuracy.
They are well characterised, and it is known which ones
perform best for different types of flow. Variations such as the
k-w SST model exist, which attempt to combine the best char-
acteristics of the k-¢ and k-w models. However, these models
struggle with flows which demonstrate a large turbulence
length scale or a high degree of turbulence anisotropy like that

shown to be present in the wake of a tidal turbine[9]. This is
thought to be due to the reliance of two-equation RANS mod-
els on the Boussinesq approximation, which assumes isotropy
of turbulence. This assumption is usually valid for small-
scale turbulence, but it becomes less appropriate for larger
turbulent length scales[8], such as those found at potential
tidal energy sites[10]. In addition to this, the focus on time-
averaged values means that some data regarding fluctuating
quantities is unavailable.

A different approach to accounting for turbulent fluctuations
is provided by LES. This approach applies a spatial filter to
the Navier-Stokes equations, with fluctuations larger than the
filter width (typically the local cell size) being resolved, and
fluctuations smaller than the filter width being treated with a
sub-grid scale model, in a way analogous to a RANS model.
LES allows for much more information to be gathered about
fluctuating quantities than RANS models. This is because the
fluctuations themselves (or at least, the large ones) are directly
resolved, allowing the user to carry out their own statistical
analysis on them, in a way similar to how measurements in
a flume would be analysed. In addition to this, treating large
and small eddies differently means that LES can accurately
model flows with large turbulence anisotropy and length
scales. However, LES is significantly more computationally
expensive than two-equation RANS models for two main
reasons; firstly, LES has higher mesh requirements in boundary
regions, and secondly, in order for converged statistical values
of fluctuating quantities to be obtained, the model must be run
for significantly more time steps.

The DES method used in this work is a hybrid turbulence
model which endeavours to combine the advantages of LES in
the wake region with RANS in near-wall areas in order to more
accurately model the wake, whilst reducing computational
expense to less than would be required for a pure LES model.
This is achieved by recognising that, once averaging has
been carried out (time averaging in the case of RANS, or
spatial averaging for LES), information about the averaging
method is lost, and both RANS and LES models become
turbulence viscosity models. The DES model compares the
local turbulence length scale to the local cell size, and uses this
to decide to what extent the turbulence viscosity of the model
should be modified from that obtained from a k-w SST model
(if at all). This results in a RANS model being applied in
near wall areas, and LES-like behaviour being recovered in the
wake region. Due to space requirements, the mathematics of
the model will not be described in detail here, as the necessary
information has been previously detailed in [7] and [11].

B. Model domain and boundary conditions

A domain was created in order to replicate the geometry
of the recirculating flume at the Institut francais de recherche
pour I’exploitation de la mer (IFREMER) in Boulogne-sur-
Mer. This flume has a working section approximately 4 m
wide, 2 m deep and approximately 18 m in length (hence-
forth designated the z-, y- and z-directions respectively). The
turbine itself has a 3-bladed, 0.5 m diameter rotor based on a
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Fig. 1. The turbine modelled in this work.
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Wortmann FX 63-137 section, with a twist of 30° from root to
tip[12]. Speed control is provided by a motor contained within
a stainless steel nacelle, 763 mm in length, with a maximum
diameter of 160 mm. The turbine assembly is suspended at
the mid-point of the cross-sectional area of the tank by a steel
stanchion 71 mm in diameter. The turbine used is shown in
Figure 1, and full details of its construction and control system
can be found in [13].

The computational domain was created with the same width
and depth as the tank, with a total domain length of 9 m. The
turbine plane was located 1.5 m downstream of the inlet plane.
The top face of the domain was given a free-slip condition, all
other surfaces were subject to a no-slip condition. The inlet
boundary was given a velocity normal to the inlet of 1.5 m/s,
with a turbulence intensity of 1.75%, and length scale of 0.5 m
(following the length scale definition in ANSYS Fluent®15.0).
This matches the flow conditions measured during validation at
the flume[7]. The velocity of 1.5 m/s was chosen as it has been
shown to be large enough that turbine performance becomes
independent of Reynolds number, allowing performance char-
acteristics to be scaled using non-dimensional coefficients of
power, thrust and torque[12]. A mesh independence study has
been carried out for the turbine, wake region and flume walls
to ensure that the mesh used is sufficiently fine that the results
are dependent only on the numerical model used, and not on
the grid.

The turbine rotor was enclosed in a cylindrical non-
conformal subdomain region, coaxial to the axis of rotation.
Rotation of the turbine was simulated by applying rotation
to this subdomain via a sliding mesh scheme. This allows

for fluctuating effects due to blade-stanchion interactions to
be modelled, and is critical if the wake is to be accurately
modelled.

Seven separate runs were made, differing only in the
rotational velocity of the turbine. Rotational velocities
were chosen in order to give tip-speed ratios of A =
1.5,2.5,3.0,3.65,4.0,4.5 and 5.5. A = 3.65 was selected as
it was previously found to be the point of maximum power
coefficient (as defined by equation 3) for this turbine, and is
therefore of particular interest. In addition to this, validation of
the model has been previously carried out at a tip-speed ratio
of A = 3.65[7]. The range of tip-speed ratios was chosen in
order to give comprehensive performance data for the turbine.

III. WAKE MEASUREMENT METRICS

All objects which find themselves in a moving fluid will
produce a wake. The wake of an object is a region of reduced
fluid velocity, induced by the presence of the object and its
effect of reducing the momentum of the fluid. Typically, the
wake region will be more turbulent than the free-stream, as
mixing takes place between the lower velocity wake region
and the higher velocity free-stream. This mixing often starts
as a thin, highly sheared layer between the wake region
and the free-stream, which thickens and reduces in intensity
as downstream distance increases. The whole wake tends to
increase in width as energy and momentum is transferred from
the free-stream to the wake. As distance downstream of the
object increases, so the velocity of the wake region recovers
until, in the far field, its average velocity become equal to the
free-stream velocity.

Whilst this qualitative description of a wake will be widely
recognised by flow-physicists, it is useful to develop quanti-
tative metrics in order to quantify the length and the width
of a wake. However, this is challenging due to the constantly
changing nature of the wake (width increases whilst intensity
decreases), and the highly turbulent nature of the wake region,
which makes clearly defining wake length and width difficult.

A. Wake length

Wake length has been a subject of interest since the early
days of wind turbine development. Fundamentally, it is im-
portant for the designer of an array of wind or tidal turbines
to know how far downstream another turbine must be placed
in order that there is enough kinetic energy available in the
fluid flow for the downstream turbine to be economically
viable. The most straightforward method of characterising
the wake recovery is to examine the time-averaged axial
velocity downstream of the turbine along its axis. This has
the advantage of being easily measured in a series of single-
point measurements in a wind tunnel, flume, or in the field.
Such measurements can then be used to inform the placement
of subsequent turbines, or compared to CFD simulations for
validation purposes.

Whilst the simplicity of centreline velocity recovery holds
appeal as a wake length metric, it only provides limited
information about the kinetic energy available to a downstream



turbine. It is reasonable to assume that momentum transfer
and therefore wake recovery will start from the outside of the
wake, with the centreline being the last place to experience
velocity recovery. Using the centreline velocity recovery would
therefore over estimate the required downstream inter-turbine
spacing, potentially reducing the number of turbines which
could be placed in an area of fixed geographical extent, and
therefore reducing the amount of energy yielded by such a site.
It is also possible (as will be shown later) that the distribution
of velocities in the wake might differ from one case to
another, and this information is lost if only time-averaged
centreline velocities are used. A more useful estimate of the
energy available to a downstream turbine can be obtained
by calculating the volumetrically averaged flow across the
swept area of the turbine. This is obtained from CFD results
by an area-weighted averaging of the mean axial velocity
across the swept area of a turbine. Experimentally, this is
more commonly obtained by measuring axial velocity in a
rake of measurements perpendicular to the flow direction. A
disc-integration procedure is then carried out to produce an
area-weighted average for these results[14][7].

Regardless of whether centreline or volumetric averaged
velocities are used, it is to be expected that the transfer of
energy and momentum will be such that the velocity in the far
wake will recover asymptotically to the free stream velocity.
If this is the case, then the wake will only be fully recovered
as the distance downstream of the turbine tends to infinity.
To avoid this problem, it is customary to select an arbitrary
threshold (for example, 90% wake recovery), after which, the
wake is said to be ‘recovered’.

B. Wake width

Defining and quantifying the cross-stream extent to which
the wake disturbs the surrounding flow is more problematic
than defining the wake length. Initially, the wake region of
high velocity deficit is separated from the free-stream by a
thin, highly sheared region. However, as the wake continues
to develop downstream, this shear layer thickens as mixing
and momentum transfer occurs between the free-stream and
the wake. This thickening of the shear region occurs both
inwards, toward the turbine centre axis, as well as outwards
into the free-stream flow. At the same time, the flow velocity
in the wake region is recovering, meaning that the wake is
becoming more similar to the free-stream, and therefore the
disturbance it is causing to the surrounding flow reduces.
Further downstream in the far-wake region, the wake spreads
to be significantly wider than the turbine, but the difference
between flow this region and undisturbed free-stream flow is
small. This combination of factors leads to difficulties when
attempting to precisely quantify the width of a wake, therefore,
in this work, three different possible metrics are examined and
evaluated.

1) Width based on the point of maximum shear: The
free-stream undisturbed flow, and the core wake region are
separated by a region of velocity shear whose shape is ap-
proximately that of the surface of a cylinder. As discussed

above, this region becomes thicker as a wake develops in the
downstream direction and the strength of this shear decreases.
One option is to define the width of the wake as the distance
between the two points of maximum shear on either side of
the wake. In this case, shear is defined as the rate of change
of axial velocity in the cross stream direction.

2) Width based on a fixed threshold value: As mentioned in
III-A, it is customary to set an arbitrary threshold for velocity
recovery (e.g. 90%) in order to give a definition of a wake
length. It is possible to use a similar method in order to define
a wake width. In essence, a wake is a region of un-recovered
axial velocity, when compared to the free-stream velocity. This
method defines the wake width as being the width of the
region which has not yet reached the threshold recovery level.
Once the complete wake region has surpassed this recovery
threshold, then the width of the wake becomes zero. For this
work, the threshold used is 90% velocity recovery, although
it should be noted that any arbitrary threshold may be used.

3) Width based on full-width half-minimum (FWHM): The
cross-stream extent of a wake may be measured in a flume
experiment by taking a rake of measurements of axial velocity
in a cross-stream direction. This produces a ‘bucket’ shaped
velocity profile for each rake. Borrowing techniques from
signal processing for the evaluation of the width of a peak
in a signal, a ‘full-width half-minimum’ method is employed.
This method evaluates the width of a peak (or in this case,
the inverted peak or ‘bucket’), by taking into account the
maximum magnitude of the deviation in signal - in this case,
maximum velocity deficit at this point in the wake. The width
of the wake is then defined as the width of the velocity
profile which has recovered to half the deficit of the maximum
measured for that velocity profile. In effect, the full-width of
the profile, at half the maximum velocity deficit. This method
may also be considered to be using a threshold value of
recovered velocity in order to evaluate the wake width, but,
in contrast to the fixed threshold method, the FWHM method
takes into account the local maximum velocity deficit at this
point in the wake.

C. Swirl

Swirling flows are those in which tangential (rotational) mo-
mentum is transferred in the axial direction. Such flows have
been studied due to their importance in areas such as flame
stability and mixing in combustors[15], and the strength of
swirl in a jet has been shown to affect jet growth, entrainment
and decay[16]. Swirl provides another metric which can be
used to examine turbine wakes, as it can provide an insight into
wake mixing and recovery processes, and it has been examined
in previous CFD studies using a RANS turbulence model[17].

Lilley[16] defined swirl as follows:

_ Gy
T Gur
Where S is the non-dimensionalised swirl number, G is the

axial flux of angular momentum, and G, is the axial flux of
linear momentum. Lilley defined r as the distance from the
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axis of rotation to the geometry edge; in this case, the turbine
radius has been used.

IV. RESULTS

Results are shown of wake length and width measurement
metrics for a range of tip-speed ratios for the turbine discussed
in section II. For each tip-speed ratio a model was run using
a k-w SST turbulence model for 1200 timesteps of 0.005 s, in
order to initialise the flow-field for the DES run. The models
were then run for a further 1200 timesteps of 0.005 s in order
to allow the flow field to become statistically steady using the
DES model. At this point, sampling for time-averaging was
started, and the models run for a further 10 000 timesteps,
representing 50 s of flow time, over which averaging was
carried out in order to produce converged values for mean
velocities in the wake region. Seven CFD runs at tip-speed
ratios of A = 1.5,2.5,3.0,3.65,4.0,4.5 and 5.5 were carried
out for the same inlet flow conditions, which are identical
those used in the validation study[7]. For all wake results
presented here, each metric will be accompanied by a figure
showing the change of the value of that metric with flow-time.
This provides an indication of how much flow time must be
simulated in order to have confidence in the results. This is
important for deciding how useful each metric is for time-
limited CFD simulations. Results for wake length, width and
swirl were calculated via scripts written in MATLAB 2016b,
which operated on flow data obtained from the Fluent data
file.

The torque and thrust data required for the calculation of
the turbine performance characteristics (coefficients of power,
torque and thrust) were gathered via a User Defined Function
(UDF) which output this data to a text file for each timestep of
the simulation. The results quoted below are based on analysis
of the data obtained in the portion of the CFD run where time-
averaging was taking place.

A. Turbine operating condition

Three commonly used metrics for describing turbine perfor-
mance and operating condition are the non-dimensionalised
power coefficient, Cp, thrust coefficient, Cp, and torque
coefficient, Cy, defined by equations 3, 4 and 5 respectively.

TW
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Cp, Cr and Cy were calculated at every timestep, using
torque and thrust data obtained via the UDF. Mean values
were then calculated for the 50 s of flow time over which time
averaging was carried out. The results are presented in Figures
2, 3 and 4 for Cp, Cr and Cp respectively. The shape and
position of these curves closely match that previously found
for this turbine geometry[12]. Figure 2 shows, as in previous
studies, that this turbine geometry has a peak C'p at a tip-speed
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Fig. 2. Power curve for this turbine geometry. C'p is calculated as a mean
over a time period of 50 s of flow time.

mean thrust coefficient, Cp

tip-speed ratio, A

Fig. 3. Thrust curve for this turbine geometry. C'r is calculated as a mean
over a time period of 50 s of flow time.

ratio of 3.65, and a peak Cy between a tip-speed ratio of 2.5
and 3.0. The curve of C1 contains no peak, but increases
steadily to approximately A = 3.5, and becomes essentially
flat beyond A\ = 4.

B. Wake length

Wake length was evaluated using time averaged values
of axial velocity on planes perpendicular to the axis of the
turbine, spaced at 1D intervals downstream of the turbine
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Fig. 4. Torque curve for this turbine geometry. Cy is calculated as a mean
over a time period of 50 s of flow time.
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the A = 3.65 case, showing how increasing sample time for time averaging
affects the curve.

rotor, starting at a distance of z/D = 2. Centreline velocity
recovery curves for the different tip-speed ratios are displayed
in Figure 6, and axial velocities, volumetrically averaged
across the swept area of the turbine are shown in Figure 8.
The centreline wake recovery curves (Figure 6) show, with
the exception of the A = 1.5 case, that initial centreline
recovery is higher as tip-speed ratio increases. However,
after approximately 10D downstream, the centreline recovery
becomes very similar. The A = 1.5 case initially shows
very low centreline recovery, but recovers very quickly, such
that by 5D downstream, it has recovered to a greater extent
than any of the other cases. The volumetric averaged velocity
recovery curves exhibit slightly different trends. For the cases
2.5 < X\ > 4.5, the wake recovery curves are all very similar,
with the lower tip-speed ratios demonstrating slightly higher
initial recovery, up to approximately 4D downstream of the
turbine plane, where they become similar to the other cases.
The A\ = 1.5 case shows much higher wake recovery for the
entirety of the region shown, and the A = 5.5 case starts
off with a low initial recovery, then shows faster recovery
than the 2.5 < A > 4.5 cases, before once more becoming
similar to these after approximately 8D. Convergence of the
centreline velocities and volumetrically averaged velocities are
represented in Figures 5 and 7 respectively, using the A = 3.65
case as an example. Wake recovery curves are plotted at 0.25 s
intervals for the 50 s over which time-averaging took place.
These figures show that both curves converge very quickly to
their final quoted values, indicating a high confidence in the
stability of both of these metrics.

C. Wake width

Wake width was evaluated for each method discussed in
III-B. This was carried out on a time-averaged axial velocity
data on a horizontal plane containing the turbine axis. The data
was extracted in a series of rakes spaced at 1D intervals down-
stream of the turbine rotor, starting at a distance of z/D = 2.
Normalised wake widths using the fixed threshold method
are shown in Figure 10, using the full-width half-minimum
method in Figure 12 and using the point of maximum shear
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Fig. 6. Normalised axial velocity at centreline.
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method in Figure 14. Wake width curves based on the fixed
threshold method (Figure 10) all show a similar trend, with all
except the curves for A = 4.5 and A\ = 5.5 showing a steady
decrease in width as downstream distance from the turbine
increases. This indicates that the width of the region which
is less than 90% recovered is getting narrower as the wake
recovers downstream of the turbine. The A = 4.5 and A = 5.5
cases show a slight increase in width until z/D =~ 6, before
following the trend of the other curves. For all cases, a higher
tip-speed ratio leads to a wider wake, with the differences
being most pronounced in the low tip-speed ratio region.
Wake width curves using the FWHM method (Figure 12) also
indicate that a higher tip-speed ratio leads to greater wake
width, but here the general trend is towards increasing wake
width with downstream distance, indicating that the whilst the
intensity of the wake might be decreasing as the wake recovers,
the width of the region affected by the wake increases. Whilst
there is an overall trend of increasing width with downstream
distance, for the cases where 3.0 < A\ > 4.5 the width appears
to first narrow, with a minimum width at z/D = 6 before the
wake starts to widen. Convergence of the wake width curves
for these two metrics can be seen in Figures 9 and 11, using the
A = 3.65 case as an example. These show that these metrics
are well converged, with very little change visible beyond a
sample time of 30 s, allowing a high confidence in the stability
of both these metrics.

Wake width curves using the maximum shear definition of
wake width (Figure 14) are much less clearly defined, and
the curves appear to be much less well converged. This is
supported by the evidence of Figure 13, which indicates poorly
converged values in the region z/D > 6, with significant
fluctuations in width even after longer sample times. For
downstream distances z/D < 5, the metric yields good
convergence, allowing a higher confidence to be had for this
region. It appears that, following the trends in the other width
measurement metrics, higher tip-speed ratios correspond to
wider wakes when this method is used. However, the trend
is much weaker than that shown by the other two methods.
Similarly, there is a slight trend to an increase in wake width
with increasing downstream distance for all cases. For tip-
speed ratios greater than 2.5, widths are very similar in the
region 2 < z/D > 5. This also corresponds to the region
of greatest convergence when compared with Figure 13. This
indicates that the point of maximum shear is indeed located
in the same place for all these cases.

D. Swirl

Wake swirl was calculated as defined by Lilley[16]. This
was carried out on time-averaged data for velocity, on planes
perpendicular to the axis of the turbine, spaced at 1D intervals
downstream of the turbine rotor, starting at a distance of
z/D = 2. This was carried out across the swept area of the
turbine (r = 0.25 m). The results are shown in Figure 16.
This shows the highest swirl is found in the wakes at tip-
speed ratios of 2.5, 3.0 and 3.65, with tip-speed ratios of 5.5
and 1.5 demonstrating the least swirl. These correspond to the
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Fig. 9. Convergence of width measurement based on the fixed threshold
method for the A = 3.65 case, showing how increasing sample time for time
averaging affects the curve.
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Fig. 11. Convergence of FWHM method for the A = 3.65 case, showing

how increasing sample time for time averaging affects the curve.
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Fig. 13. Convergence of width measurement based on the maximum shear
method for the A = 3.65 case, showing how increasing sample time for time
averaging affects the curve.
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tip-speed ratios in the regions of highest and lowest Cy values
respectively. Figure 15 presents the convergence of the swirl
curve for the A = 3.65 case, and shows the swirl number
values to be well converged in the wake region.

V. DISCUSSION
A. Wake length and Tip-Speed Ratio

The two charts showing wake recovery (Figures 6 and 8),
when taken together, provide a large amount of information
about the wake. A comparison of the two gives an indication
of the uniformity of the flow in the wake region. Where
the two charts show similar values, then the wake is more
uniform, but where there are differences, then this indicates
that the centreline value is very different from the average.
These differences arise due to the thrust developed by the
turbine at different operating conditions. At low values of A,
the thrust produced by the blades of the turbine is low. This
means that the wake deficit is in large part due to the drag
from the nacelle, rather than that of the blades. This leads to
the difference between Figures 6 and 8 for the A = 1.5 case,
particularly in the near wake region, where there has been little
opportunity for mixing to take place. The centreline chart is



heavily influenced by the drag from the turbine nacelle, and
thus recovery is very low. For the volumetrically averaged
chart, the whole of the wake area is used for the calculation,
and the large majority of this is not influenced by the nacelle,
but rather, from the blades. The thrust on the blades at this
tip-speed ratio is very low. Therefore, when volumetrically
averaged, the wake recovery is high.

In addition to the A = 1.5 case, the A = 5.5 case differs
significantly between Figures 6 and 8. The A = 5.5 case shows
the highest initial centreline velocity recovery, but is one of
the lowest cases for initial volumetrically averaged velocity
recovery. This is due to a reverse of the phenomenon which
was observed in the A = 1.5 case. The high tip-speed ratio
case demonstrates the highest thrust, which comes primarily
from thrust on the outer portions of the blades. This not only
leads to the flow being diverted outside and around the turbine
(increasing wake width), but also leads to flow being diverted
to the inside, towards the nacelle. This promotes a rapid
recovery of the wake along the turbine centreline, but with
an overall lower rate of wake recovery when a volumetrically
averaged approach is used.

It should also be noted that the extreme cases of A = 1.5
and A = 5.5 show the greatest volumetric averaged wake
recovery from approximately z/D = 4 onwards, whilst the
A = 3.65,4 and 4.5 cases generally show the lowest rates
of recovery. More energy has been extracted from the flow
for these cases, which leads to lower velocities in the wake
region. Nonetheless, other than the extreme cases of A = 1.5
volumetrically averaged velocities become very similar for all
cases from z/D = 7. This suggests that, for array designers,
turbine operating condition probably has little practical effect
on wake length as it is unlikely that turbines will be placed
less than 8D downstream of each other due to the lack of
overall wake recovery.

B. Wake width and Tip-Speed Ratio

Wake width appears to increase, regardless of the metric
used, as the tip-speed ratio increases. This follows the trend
of C'7, and suggests that a turbine presenting more resistance
to the flow will tend to cause more flow to divert around it.
The widths in the far wake region for the four highest thrust
cases (A = 3.65,4.0,4.5 and 5.5) are very similar (for the
FWHM and fixed threshold method), which is reproduced in
the flattening of the C'r curve in this region. The same general
trends can be seen in the far wake of the max shear width
method (Figure 14), but the results in this region are very
sensitive to fine changes in shear, and therefore the authors
do not recommend using this technique. This sensitivity is
due to the shape of the velocity profiles, which are similar
for all tip-speed ratios beyond approximately z/D = 7.
These profiles are approximately v-shaped, leading to a large
cross-stream extent with almost an identical shear. This leads
to the convergence difficulties seen in Figure 13. A slight
deviation anywhere along this curve can lead to large changes
in the position of the point of maximum shear, without any
fundamental change to the curve itself. For A > 3.0, and

downstream distances of z/D < 4, the results are well
converged. This is because, for these tip-speed ratios in this
region, the velocity profiles are shaped like an inverted top-hat.
This means that the point of maximum shear occurs within a
very small cross-stream region. This clearly defined point of
maximum shear means that the width metric is less susceptible
to small deviations in this region.

In section III-B it was discussed that both the threshold
width, and FWHM methods can both be thought of as methods
which use a velocity threshold to define the wake width. In the
case of the fixed threshold method, this velocity threshold is
arbitrarily set at 90% of the free stream velocity, whereas the
FWHM bases the velocity threshold it uses on the maximum
velocity deficit at that point in the wake. The difference
that this makes can be clearly seen by comparing Figures
10 and 12. For all tip-speed ratios, with a fixed threshold
velocity, the wake starts wide and gets narrower as downstream
distance increases. This is due to the fact that wake recovery
is caused by the mixing of the reduced velocity wake and
the surrounding free-stream, and therefore occurs from the
outside to the centre. For the A = 1.5 case, the wake width
at z/D = 15 reduces to zero by this definition, as the entire
wake has recovered by more than 90%. In contrast to this, at
A > 3.0 for the FWHM method, the wake starts wide, then
narrows at approximately z/D = 6 before widening again.
This is due to a change in shape of the velocity profile from
an inverted top-hat shape to a v-shape.

Combining the FWHM and fixed-threshold methods pro-
vides more information about the change in width of the wake
as downstream distance from the turbine increase than either
of these methods on its own. The FWHM method indicates
that the wake width is increasing, but when this information
is combined with that provided by the fixed threshold method,
then it can be seen that the width of the region with a high
velocity deficit is decreasing. This definitively shows that the
wake width is increasing, but the strength of the wake is
decreasing, and this kind of detailed information is crucial
for array designers considering where to site their turbines.

C. Wake swirl and Tip-Speed Ratio

Figure 16 shows a decay in swirl number, of a shape
characteristic of that in a vortex[16]. This indicates that the
flux of rotational momentum decreases with respect to the
flux of linear momentum as the wake develops downstream.
Whilst the curves all demonstrate similar behaviour, some
have a higher swirl number than others. The two cases with
the highest amount of swirl are the A = 2.5 and A = 3.0
cases. These correspond to the two cases with the highest
torque coefficients, as shown in Figure 4. The case with the
lowest swirl is the A\ = 5.5 case, which corresponds to the
lowest torque coefficient case shown in Figure 4. This is to be
expected, as if there is a higher torque on the turbine, then it
follows that there this must be countered by a higher reaction
torque on the flow, which expresses itself as an increase in
rotational momentum. Accurate representation of rotation in
the flow downstream of a turbine is important in array design,



as it could potentially alter the anticipated angle of attack of
blades on downstream turbines, or could potentially be utilised
by downstream turbines rotating in the opposite sense to their
upstream counterparts.

VI. CONCLUSIONS AND PROSPECTS

This study compares three different metrics which can be
used to analyse the width of a turbine wake. Both the fixed
threshold and FWHM methods have been demonstrated as
capable of providing useful, albeit subtly different information
about the wake width. The FWHM method indicates that the
wake width increases with downstream distance. This shows
that the area which is affected by the presence of the turbine
increases with downstream distance, but it does not indicate
the intensity of the wake at each point. In contrast to this, the
fixed threshold method indicates that the wake width decreases
with downstream distance. In fact, this method indicates that
the area of the wake which still has a particular intensity
decreases. Using these two methods allows the conclusion that,
as downstream distance increases, the wake simultaneously
broadens, and its intensity weakens — information of great
interest to array designers. The third method of analysing the
wake width; basing the width on the position of the point of
maximum shear, was shown to be less reliable. This is due to
the shape of the velocity profiles downstream of the turbine.
In all cases, with z/D > 6, the velocity profiles develop into
a v-shape, which means there is a large region over which the
shear is almost constant. Consequently, very small changes in
velocity can lead to a large shift in the calculated position of
the wake edges, without changing the shape of the velocity
profiles in a meaningful way. This leads to this method being
extremely sensitive to small changes in velocity, and whilst
the general trends of wake width obtained from this method
are the same as with the other two methods (higher thrust
corresponding to wider wakes), the convergence difficulties
associated with this method mean that the authors do not
recommend its use.

This work also shows that there is a strong correlation
between turbine operating condition and wake length, width
and swirl. The clearest trend is that turbine operation at a
higher C can be expected to produce a wider wake overall.
This is explained as a higher thrust on the turbine indicates
a greater resistance to the flow, therefore more flow will be
diverted around the turbine, making the wake wider. At lower
values of C7, There is less flow diversion, and therefore
the wake remains narrower. The combination of the fixed-
threshold method and the FWHM method provides a more
detailed pictured still, and shows that whilst the overall area
influenced by the wake increases with downstream distance,
the strength of this effect decreases.

With regards to wake length, a pattern also emerges, relating
the rate of wake recovery to turbine operating condition. For
both centreline and volumetric averaged measurements, the
cases at A = 1.5 and 5.5 show the fastest overall wake recov-
ery. The slowest initial rate of recovery of volumetric averaged
velocity is demonstrated by the tip-speed ratios corresponding

to maximum power extraction. However, with the exception
of the extreme case of A = 1.5, volumetric averaged velocities
in all cases become extremely similar after approximately
8D downstream, and centreline velocities become extremely
similar after approximately 10D downstream. This indicates
that wake length is essentially independent of tip-speed ratio
beyond these distances.
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