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Abstract—This paper aims to establish a control-oriented state-
space model for the M4 wave energy converter for the purpose
of controller design. The Euler-Lagrangian equation is used to
describe the dynamics of M4 in a unified and concise format. The
linear wave radiation damping term is expressed as a state-space
subsystem, which is then integrated into a state-space model for
the whole device. A model order reduction technique is used to
reduce the order of the state-space model. The fidelity of the
resulting state-space models with different orders is validated in
both frequency domain and time domain. The result of this paper
paves the way for the future research on developing model-based
controller for M4 device to further improve its energy conversion
efficiency. The modeling procedure can be transferred to other
types of multi-float multi-motion WECs.

Keywords− Wave energy converter, state-space model, model
order reduction.

I. INTRODUCTION

Many different wave energy converters (WECs) have been
invented to harness wave energy, ranging from single-float
single-motion point absorbers to multi-float multi-motion
WECs (MWECs). Besides the development of device design,
control is considered as another indispensable approach to
further improve the energy conversion efficiency and surviv-
ability of WECs [1]. Most early WEC control methods, such as
latching control and declutch control, are based on impedance
matching principle, that is, maximum energy output can be
achieved when the resonance frequency of a WEC is close to
the dominant frequency of incoming waves [2].

Recent studies reveal that model-based optimal control
strategies developed for WEC control, e.g. noncausal linear
optimal control [3], model predictive control (MPC) [4],
[5], pseudospectral control [6], [7], can significantly improve
WEC operation performance over conventional WEC control
strategies. However, the performance of these advanced model-
based WEC control methods rely more on the fidelity of the
control-oriented WEC models and can be more computation-
ally demanding compared with the conventional WEC control
methods, especially for those control methods which need
online optimization, e.g. MPC. This explains why most of

Fig. 1. Tank experiment of M4 in Manchester [8]

the existing case studies for these advanced control methods
are mainly focused on single float point absorbers, which have
much less modeling complexity than MWECs.

Motivated by the fact that model-based optimal control
methods can significantly improve performance of single float
WECs [1], [9], this paper aims to develop control-oriented
models for MWECs with sufficient fidelity but reduced com-
plexities in terms of nonlinearities and the model order,
which paves the way for further development of economically
implementable model-based advanced control strategies for
MWECs. We choose M4 developed in Manchester as a case
study, see Fig. 1 for a specific M4 device during tank testing.
M4 is a well-designed multi-float multi-motion two-raft-type
WEC with reconfigurable structures [8]. Two particular advan-
tages of choosing M4 as a case study are: i) the reconfigurable
design of M4, in terms of the number of floats, size, layout
etc, brings great convenience for the study of this device with
different levels of design complexities; ii) its linear diffraction
modelling has been shown to be accurate for both operational
and high wave conditions, which makes the control-oriented
modeling and the future controller design much less challeng-



ing. M4 has six possible modes and typically three (surge,
heave and pitch) are prominent in absorbing wave energy for
conversion to electricity and the absorption from each mode
are additive. A lot of efforts have been made in the design
phase for optimizing the power capture ability of M4 and its
conversion efficiency can be potentially further improved by
control of its power take-off (PTO). For this purpose, a control-
oriented model is the prerequisite and will be developed in this
paper from an accurate linear diffraction model proposed in
[8].

The rest of the paper is organized as follows. The M4
device and its hydrodynamic model are introduced in Section
2 as well as the control-oriented model. Simulation results are
demonstrated and discussed in Section 3. Section 4 concludes
this paper and addresses the future work.

II. THE M4 DEVICE AND ITS HYDRODYNAMIC MODEL

A. The M4 device

By changing the number of mid and stern floats, different
formats of the device can be built up suitable for different
wave conditions. Fig. 2 presents the geometry of a laboratory
scale(1:40) three-float M4. From left to right, the bow float,
middle float, stern float, beam connecting bow and middle
float, beam connecting middle and stern float, and the power
take-off (PTO) unit are indexed from 1 to 6, respectively. The
M4 with the simplest configuration of type 1-1-1 (indicat-
ing the numbers of bow, mid and stern floats respectively)
is adopted here for demonstration purpose. Note that the
modelling method proposed in this paper can also be used
on other formats of the device without lose of generality.
With the bow float and mid float connected by a beam to
form one rigid body, the stern float connected by a beam to
hinge point as another rigid body, the device can rotate about
the hinge point when it is aligned to the wave propagating
direction. The PTO unit above the hinge point reacts against
the body rotation to absorb kinetic energy from incoming
waves. Positive directions of displacements are shown in Fig.
2. All rotations are about hinge point O and clockwise positive.

Some useful notations for the following sections are shown
in Table I.

B. M4 Dynamic modelling

An energy-based Lagrangian modelling method is presented
in [10] for a two-raft-type wave energy converter. This method
is adopted and extended in this paper for the time domain
dynamic modelling of the 1-1-1 type M4 with 3 floats. In
this section the motion equation is deduced and the process to
derive the final state-space model is demonstrated.

The six degrees of freedom (DOF) surge, sway, heave, roll,
pitch and yaw of a float are denoted as mode from 1 to 6,
respectively. The device is moored from the bow float and it
aligns naturally with the wave direction. And roll motion of
the device is prevented by outrigger buoys added to the bow
float. Then for simplicity and consistency, the concern in this
paper will be only motion in x-o-z plane. Therefore, the linear
wave forces are also considered only in mode 1, 3 and 5.

TABLE I

Symbol Description

i index of each part
ri radius of float i
xi surge motion of i
zi heave motion of i
x0 surge motion of hinge O
z0 heave motion of hinge O
θ1 pitch of i which are on the left of the hinge O
θ2 pitch of i which are on the right of the hinge O
hi horizontal distance from COG of i to hinge O
vi vertical distance from COG of i to hinge O
mi mass of i, including ballast if its a float
Ii inertia of i relative to its own COG
ρ water density
g gravitational constant

The Lagrangian-Euler equation is used to derive the motion
equation for this multi-float device with displacement and
rotation about the hinge point. First, the generalized coordinate
is chosen as q = [x0 z0 θ1 θ2]

T . This generalized coordinate is
proven to be independent, complete and holonomic to describe
the plane motion of the system. Then for each part of the
device, the surge and heave motion can be expressed by the
generalized coordinate, as shown in (1). Since θ is small,
approximations sin θ ≈ θ is used in the following coordinate
transformation:

x1 = x0 − v1θ1, z1 = z0 + h1θ1
x2 = x0 − v2θ1, z2 = z0 + h2θ1
x3 = x0 − v3θ2, z3 = z0 − h3θ2
x4 = x0 − v4θ1, z4 = z0 + h4θ1
x5 = x0 − v5θ2, z5 = z0 − h5θ2
x6 = x0 − v6θ2, z6 = z0 − h6θ2

(1)

The dynamics of the M4 device can be expressed by a generic
Lagrangian-Euler equation

d
dt
(
∂L

∂q̇
)− ∂L

∂q
= Q (2)

where the Lagrangian L := T −V , with T as the total kinetic
energy

T =
∑

i=1,2,4

[
1

2
mi(ẋ

2
i + ż2i ) +

1

2
Iiθ̇

2
1

]
+
∑

i=3,5,6

[
1

2
mi(ẋ

2
i + ż2i ) +

1

2
Iiθ̇

2
2

]
(3)

and V is the total potential energy:

V =

6∑
i=1

migzi (4)

Q is the generalized force acting on the system, and represents
the virtual work done by all non-conservative forces when the



Fig. 2. Diagram of laboratory scale three-float M4 [8]

system is displaced by an infinitesimal value of the generalized
coordinate:

Q = fb,q + fw,q + fpto,q (5)

where fb,q denotes buoyancy force, fw,q denotes linear wave
forces, and fpto,q denotes PTO unit moment. Then from the
Lagrangian equation, we derive

Mq̈(t) + C = fb,q(t) + fw,q(t) + fpto,q(t) (6)

Here M is from the kinetic energy derivative, shown in (7).
Diagonal terms are summation of mass and inertia with the
hinge point O as the reference. Non-diagonal terms account
for the coupling dynamics between displacement and rotation.
C is from the potential energy derivative, and is expressed by

C =


0∑6

i=1mi

m1h1 +m2h2 +m4h4
−m3h3 −m5h5 −m6h6

 g (8)

C indicates the gravity force acting on the system, and
it is cancelled by the generalized buoyancy force fb,q at
equilibrium [2]. This indicates that all the energy absorbed
by the PTO unit comes from the kinetic energy of the system.

According to linear wave theory, the linear wave force fw,q

is composed of the excitation force, radiation damping force
and hydrostatic restoring force [11], and is denoted by

fw,q = fe,q + frd,q + frs,q (9)

The dynamic equation (6) can now be written as,

Mq̈(t) = fe,q(t) + frd,q(t) + frs,q(t) + fpto,q(t) (10)

We replace the generalized coordinate index q by i,j to
denote the forces or torques acting on float i in j mode, with
j = 1, 3, 5 denoting surge, heave and pitch mode, respectively.
Thus, the generalized linear wave forces can be calculated as
(11), (12), and (13). Note that all ‘f ’s are functions of time.
Linear wave forces act only on floats. Beams and the PTO
unit are above the water surface and have no interaction with
waves.

C. Hydrodynamic coefficients and linear wave forces

Hydrodynamic coefficients, derived from hydrodynamic
software WAMIT, are used to calculate the linear wave forces
for each float. The coefficients include excitation force ampli-
tude Fex, excitation force phase φ, infinity added mass matrix
Ainf and radiation damping coefficient Bmn(ω). These forces
are calculated as follows:

1) Wave excitation force: Wave excitation force is inde-
pendent of the system, and it is treated as a disturbance input
to the control system. We use the JONSWAP (Joint North
Sea Wave Project) wave model to generate irregular wave
spectrum with a frequency intervals 200, which is the same as
the wave profile used in [8]. Thus, Fex and φ are matrices of
size 200× 18 (here 18 = 3 floats × 6 DOFs). The excitation
force for float i in mode j is

fe,i,j =

200∑
n=1

H(n)Fex(n, 6(i− 1) + j)

cos(φ(n, 6(i− 1) + j) + φran(n)) (14)

where H(n) and φran(n) are the amplitude and random phase
of JONSWAP wave spectrum, of size 200×1. Substituting all
the ‘f ’ terms in (11) by the expression of (14) yields the final
generalized excitation force, which is a 4× 1 vector.

2) Radiation damping force: Radiation damping force can
be expressed by Cummins equation which is a convolution of
impulse response function(IRF) and the first derivative of a
motion. The IRF Lmn is calculated by the radiation damping
matrix Bmn for m, n = 1 . . . 18,

Lmn(t) =
2

π

∫ ∞
0

Bmn(ω) cos(ωt)dω (15)

Thus the radiation damping force for float i in mode j in time
domain can be calculated as,

frd,i,j =

3∑
n=1

ẋn ∗ L6(i−1)+j,6(n−1)+1(t)

+

3∑
n=1

żn ∗ L6(i−1)+j,6(n−1)+3(t)



M =


∑6

i=1mi 0 −m1v1 −m2v2 −m4v4 −m3v3 −m5v5 −m6v6
0

∑6
i=1mi m1h1 +m2h2 +m4h4 −m3h3 −m5h5 −m6h6

−m1v1 −m2v2 −m4v4 m1h1 +m2h2 +m4h4
∑

i=1,2,4(Ii +mi(h
2
i + v2i )) 0

−m3v3 −m5v5 −m6v6 −m3h3 −m5h5 −m6h6 0
∑

i=3,5,6(Ii +mi(h
2
i + v2i ))


(7)

fe,q(t) =


fe,1,1 + fe,2,1 + fe,3,1
fe,1,3 + fe,2,3 + fe,3,3

fe,1,5 + fe,2,5 − fe,1,1v1 − fe,2,1v2 + fe,1,3h1 + fe,2,3h2
fe,3,5 − fe,3,1v3 − fe,3,3h3

 (11)

frd,q(t) =


frd,1,1 + frd,2,1 + frd,3,1
frd,1,3 + frd,2,3 + frd,3,3

frd,1,5 + frd,2,5 − frd,1,1v1 − frd,2,1v2 + frd,1,3h1 + frd,2,3h2
frd,3,5 − frd,3,1v3 − frd,3,3h3

 (12)

frs,q(t) =


frs,1,1 + frs,2,1 + frs,3,1
frs,1,3 + frs,2,3 + frs,3,3

frs,1,5 + frs,2,5 − frs,1,1v1 − frs,2,1v2 + frs,1,3h1 + frs,2,3h2
frs,3,5 − frs,3,1v3 − frs,3,3h3

 (13)

+

2∑
n=1

θ̇1 ∗ L6(i−1)+j,6(n−1)+5(t)

+ θ̇2 ∗ L6(i−1)+j,6(n−1)+5|n=3
(t) (16)

Here the summation index n refers to each float. Notation ‘∗’
denotes convolution with upper and lower limits for integration
as t and −∞. For example, the portion of radiation damping
force acting on float 1 in surge direction caused by the heave
motion of float 2 is,

f(t) =

∫ t

−∞
L1,9(t− τ)ż2(τ)dτ (17)

The lower limit can be set to t− 4Tp with sufficient accuracy
[8], where Tp is the wave peak period.

Convolution calculation is time-consuming, and there are 81
convolutions in total to be calculated according to the above
analysis. Substituting all ‘f ’s in (12) with (16), applying the
linear property of convolution and introducing the motions of
each float into the generalized variable by (1), we can write
the generalized radiation force in a matrix form

frd,q(t) =

∫ t

t−4Tp

Frd(t− τ)q̇(τ)dτ (18)

where Frd is a 4 × 4 matrix with an IRF of length 4Tp in
each entry. q̇ is first derivative of the generalized coordinate
vector. Now the number of convolutions need to be calculated
is reduced to 16.

A state-space model can be derived from each convolution
term, as shown in [12]. The Hankel singular value decompo-
sition algorithm is used to convert each convolution term to
a state-space model. The order of the model is proportional
to the length of the IRF Frd,mn and can be very high;
in this case study, it is around 400. Then assembling the

16 converted state-space models into one state-space model
with with an order of around 6400 × 6400, which is too
high for model-based control algorithms. Thus, model order
reduction is necessary for reducing each state-space model.
The truncated balanced reduction method is employed to
reduce the originally converted state-space model with an
order of around 400 to a model with an order of 3 to 8. System
identification and truncated balanced reduction method are
implemented using MATLAB routines imp2ss() and balmr(),
respectively. Order 8 for each subsystem is chosen in this paper
for simulation, validation in both time and frequency domain
is shown in next chapter.

Now the generalized radiation damping force can be ex-
pressed as,

żs = Aszs +Bsq̇(t)

frd,q(t) = Cszs +Dsq̇(t) (19)

where żs is the state variable of the identified and assembled
system with an order of 128 and has no physical meaning.
As, Bs, Cs, Ds are the state-space representation matrixes.
Their sizes are 128×128, 128×4, 4×128, 4×4, respectively.

The added mass matrix Ainf when the frequency ap-
proaches infinity is of size 18×18, with only a constant value
in each entry. The added mass term can be viewed as a force
relative to second derivative of the generalized variable, q̈(t).
It can also be added to the matrix M , after reassembled to a
4×4 matrix m∞ following the same way of radiation damping
force in (12), which is adopted here.

3) Hydrostatic restoring force: Hydrostatic restoring force
is dependent on the heave displacement and pitch rotation,
but not on surge, i.e. frs,i,1 = 0. The heave restoring force for
float i is frs,i,3 = −ρgπr2i zi, and the pitch restoring torque for



float i is frs,i,5 = −ρgπ r4i
4 θ1or2. From (13), the generalized

hydrostatic restoring force can be written in a matrix form

frs,q(t) = Kq(t) (20)

where K is the 4× 4 hydrostatic restoring force matrix,

K =


0 0 0 0

0
∑3

i=1 kzi kz1h1 + kz2h2 −kz3h3
0 kz1h1 + kz2h2

∑2
i=1 kri + kzih

2
i 0

0 −kz3h3 0 kr3 + kz3h
2
3


(21)

kzi = −ρgπr2i , kri = −ρgπ r4i
4 are respectively the restoring

coefficients for heave force and pitch moment of float i.
To sum up, the motion equation for M4 can be written as,

(M +m∞)q̈(t) + frd,q(t) +Kq(t) = fe,q(t) + fpto,q(t)

żs = Aszs +Bsq̇(t)

frd,q(t) = Cszs +Dsq̇(t) (22)

At the modelling stage, the PTO moment Mmech is modelled
as Mmech = −Bmechθ̇r, where Bmech is a constant coefficient
and θ̇r := θ̇1 − θ̇2 is the relative pitch rotation velocity.
However, the generalized PTO force can be viewed as a
manipulable control input to the whole system at the controller
design stage and takes the form of

fpto,q(t) =


0
0

−Mmech(t)
Mmech(t)

 (23)

By defining a new state vector x := [q, q̇, zs]
T , the final

state-space representation of the M4 control-oriented model
can be written as

ẋ = Ax+Bfe,q(t) +Bfpto,q(t)

y = Cx+Du

(24)

where the system matrices are

A =

 04×4 I4×4 04×n
−K

(M+m∞)
−Ds

(M+m∞)
−Cs

(M+m∞)

0n×4 Bs As

 (25)

B =

 04×4
(M +m∞)−1

0n×4

 (26)

C =
[
I8×8 0n×8

]
(27)

D =
[
08×8

]
(28)

with A ∈ R136×136 This multi-input-multi-output state-space
model has 4 inputs including the wave excitation the manipula-
ble PTO control inputs and 8 outputs which are the generalized
motion and its velocity.

III. VALIDATION AND SIMULATION

A. Validation of state-space models with different reduced
orders

There are totally 16 subsystems expressed by state-space
models, all of which need to be validated. For demonstration
purpose, we only present the models for the first and the
third diagonal subsystems. We compare the time responses of
the original hydrodynamic radiation model and the converted
state-space models with different orders in Fig. 3 and Fig. 4.
It can be seen from Fig. 3(a) and Fig. 4(a) that for different
orders, the state-space models with full order, 20th-order
and 8th-order match well with the response of the original
IRF. The IRF of the 3rd-order state-space model has an
obvious degradation. Fig. 3(b) and Fig. 4(b) illustrate the bode
diagrams of the state-space models with different orders; the
3rd-order system has a large variation compared with others
at low frequency. Based on this analysis, each subsystem is
modelled by a state-space model with an order of 8 to form
the final system.

B. Responses to wave excitation forces

The system described in (24) is discretized for simulations
in MATLAB. The same wave profile is used for all the models
in the simulation. The significant wave height of wave input is
Hs = 0.04 meter and peak period is 1.8 seconds. The linear
PTO moment coefficient is chosen as Bmech = 6. The number
of simulation time steps in one peak period is 200, and each
time step is δt = 0.009s. Simulation time duration is 180
seconds, which is long enough to see the model response.

Linear diffraction model simulation is run using Fortran
and the result has good agreement with tank experiment result
[8]. Power is calculated as P (t) = Bmechθ̇

2
r(t). Fig. 5 shows

that the state-space model reproduces very similar responses
for each motion, PTO torque and power to that of the linear
diffraction model when the same wave excitation force profile
is used. Fig. 6 and Fig. 7 show the relative pitch motion and
power for the first 50 seconds, which more clearly demonstrate
that the state-space model and the linear diffraction model can
produce very close responses for the same wave excitation
forces.

IV. CONCLUSION

In this paper, a control-oriented state-space model is devel-
oped for a typical multi-motion multi-float wave energy con-
verter, M4. Energy based Lagrangian-Euler modelling method
is adopted to provide a concise and generic mathematical
description of the device’s dynamics including the coupling
among different modes. System identification and model order
reduction algorithms are used to derive the state-space models.
The resulting state-space models with different orders are
validated by comparing the responses in both time domain and
frequency domain with those of the original linear diffraction
model, which has been experimentally validated. Based on
this state-space model, we will develop model-based optimal
control strategies for M4 to further improve its energy capture
ability.
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