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Abstract—This study presents dynamic simulation results of
two point absorber wave energy converters comparing between
linear, pseudo-nonlinear, and CFD models. When modelling wave
energy converters, linear assumptions are commonly used to
simplify calculations. One such assumption is that the hydrody-
namic parameters do not change with pose. This study proposes
the inclusion of position and orientation dependence in force
estimation, specifically the hydrodynamic terms. A comparison
between linear, the proposed pseudo-nonlinear, and CFD models
show the effect of the linear assumption for cylindrical and
spherical submerged buoys in three degrees of freedom, subject
to regular waves. For the case of strong nonlinear hydrodynamic
coupling between degrees of freedom, the linear and pseudo-
nonlinear models are compared with published literature trends.
Accounting for pose dependence of hydrodynamic forces, drag
forces, and infinite frequency inertial effects showed trends closer
to CFD results but with generally higher motion amplitudes.
Significant differences in results for the cylinder are due to the
presence of near-surface nonlinear effects that are not captured
using linear potential flow solvers. Furthermore, a second order
effect was observed in the results, suggesting the proposed method
may be well suited to model sufficiently submerged buoys.

Index Terms—Submerged point absorber, nonlinear hydro-
dynamics, numerical wave tank, wave energy converter, linear
parameter varying

I. Introduction
Wave energy converters (WEC), as a concept, have been

developing for over two centuries [1]. As demand for power
moves away from fossil-based fuels, research efforts have been
intensifying since the 1970s. This enthusiasm has developed
into a worldwide interest, leading to a number of technologies
employing a variety of different operation principles [2].
Even with large interest globally, most devices are in the
research and prototype stage [3]. For this technology to achieve
economic viability for large scale energy production, a key area
to develop for further study is modelling capability [4].

A common WEC design is a point absorber (PA), which
is a device usually insensitive to wave direction. A typical
cylindrical submerged point absorber is shown in Fig. 1. To
model WECs, efficient and reliable computational methods
are essential. Conventional modelling methods include linear
boundary element method (BEM) solvers ANSYS AQWA
[5], WAMIT [6], and NEMOH [7]. These solvers are used
to calculate hydrodynamic parameters which are included in

Fig. 1. A schematic of a single tether submerged cylindrical WEC displaying
heave, pitch, and surge motions.

subsequent dynamic simulations. The more computationally
intensive numerical wave tank (NWT) CFD approach, such as
OpenFOAM or ANSYS Fluent, is becoming increasingly com-
mon in the industry. The BEM (also known as potential flow
models) and NWT techniques represent linear and nonlinear
approaches, respectively [1].

Linear BEM solvers provide fast solutions required for
design optimisation studies. They do not account for changes
in hydrodynamic coefficients as a function of geometric
nonlinearities due to changes in pose, as the hydrodynamic
coefficients are typically calculated around one position and
orientation. Therefore, using results from linear BEM solvers
cause the dynamic model to quickly lose accuracy as the
motion amplitude of the buoy increases and nonlinearities
become dominant [8].

Approaches to capture the nonlinear effects have been
attempted previously by using extended linear solving meth-
ods,such as varying parameter model of a floating buoy with
changing pitch [9]. Other models have involved recalculating
the hydrodynamic parameters based on buoy wetted area at
each time step for a floating spherical buoy [10] [11] and for a
floating cylindrical buoy [11]. These models were constrained
to move only in the heave direction. For submerged buoys,



the hydrodynamic parameters have a different dependence on
depth and are independent of wetted area, which remains con-
stant. Therefore, it is important to consider how hydrodynamic
parameters change with both pitch and heave. Linear models
for both floating and submerged buoys generally overestimate
motion, and hence power [12], as the motion constraining
effects of nonlinearities are ignored. As a whole, comparisons
between linear and nonlinear modelling of submerged buoys
remains largely unexplored and improvements in the current
methods used may be needed to accurately model and rapidly
develop these devices.

This paper explores the impact that pose has on the hy-
drodynamic coefficients and therefore the dynamics of two
submerged point absorbers: (i) a cylinder, where coefficients
are a function of position and orientation; (ii) a sphere, where
coefficients are only a function of position.

Presented in this paper is a comparison between the motion
characteristics of linear, pseudo-nonlinear, and fully nonlinear
CFD models in three degrees of freedom (DOF) under regular
(single frequency) waves. The linear model was constructed
using the linear BEM solver NEMOH to find the hydro-
dynamic coefficients about a nominal position. The linear
model does have geometric nonlinearities and drag forces but
is referred to as linear in this study to reflect the method
of calculating the hydrodynamic properties. The pseudo-
nonlinear model used the same solver to find the hydrodynamic
coefficients at a grid of points around the motion amplitude to
provide linearly interpolated position-dependent hydrodynamic
coefficients. Furthermore, the viscous drag force calculation
incorporates velocity dependence on drag coefficients and
basic orientation dependence. These coefficients and forces
were used to investigate the nonlinear dynamics of the PA
using MATLAB Simulink. An existing NWT in OpenFOAM
was used to compare the linear and pseudo-nonlinear methods
against CFD.

The mathematical model is presented in Section II. Included
is the governing equation of motion and a description of each
constituting term. An overview of typical linear assumptions
is also provided for context. Section III discusses the imple-
mentation of the pseudo-nonlinear model and the simulation
parameters. Section IV presents the results from the linear,
pseudo-nonlinear, and CFD models subjected to regular waves.
The results and implications on future modelling are discussed
in Section V, with concluding remarks given in Section VI.

II. Mathematical Model of WEC
The schematic of the cylindrical buoy used in this study

is shown in Fig. 1, with three DOF: surge, heave, and pitch,
represented by

x = ©­«
Surge
Heave
Pitch

ª®¬ = ©­«
x
z
θ

ª®¬ . (1)

Mathematically, the model can be represented by the gov-
erning equation, expressed as

MÜx = Fe + Fr + Fh + Fpto + FD , (2)

where M is the mass matrix containing the inertial terms for
each DOF, given by

M =

m 0 0
0 m 0
0 0 I

 , (3)

with m being the mass of the buoy and I the moment of inertia
about the centre of mass in the pitch direction.

The remaining terms Fe, Fr, Fh, Fpto, and FD, are known as
the excitation force, radiation force, hydrostatic or buoyancy
force, power take off (PTO) force, and drag force respectively.
Each of these terms, as well as how they may be estimated
is discussed in the following sections, along with typical
assumptions made to model them.

A. Excitation Force
The excitation force, Fe, from waves acting on the buoy

is a function of input wave frequency, wave amplitude, buoy
geometry, and buoy pose.

Fe = Fe,amp sin(ωt − ϕ) , (4)

where Fe,amp is the excitation force amplitude, and ϕ is
the excitation force phase vector. t represents time, and ω
represents the wave frequency. The excitation force is the
combination of the diffraction and Froud-Krylov forces [10].

B. Radiation Force
The radiation force, Fr, is the force applied to the buoy

as it radiates waves as a result of motion. Radiation force
is commonly represented in the time domain through the
Cummins equation [13], given by

Fr = −A∞ Üx −
∫ t

0
K(t − t ′) Ûx(t ′)dt ′ , (5)

where A∞ is the infinite frequency added mass and K is known
as the memory function. This convolution integral represents
the fluid memory affect in which the past state of the fluid
effects the current state. In the frequency domain, the radiation
force may be described as

F̂r = −[B(ω) + iωA(ω)] Û̂x(iω), (6)

where B(ω) and A(ω) is the frequency-dependent radiation
damping and added mass respectively. In practice, within sim-
ulations, the radiation force is found using a well established
method [14], involving constructing transfer functions from
radiation damping and added mass with velocity as input and
the integral in Equation (5) as the output [15]. For the purpose
of these models, transfer functions of order five were found to
appropriately fit the data.

C. Hydrostatic and PTO Forces
The hydrostatic force, Fh, acts only in the heave direction

and PTO force, Fpto, is applied in the direction of the tether.
Typically, for submerged buoys, there exists a pretension force
provided by the PTO to counteract the hydrostatic force
and give an equilibrium position below the surface of the



water [16]. For this study, the PTO force is considered to be
a simple spring-damper arrangement,

Fpto = T(−b∆Ûl − k∆l − |Fh |) , (7)

where b and k are the damping coefficients and spring con-
stants of the PTO respectively. The extension of the tether is
represented by ∆l. These parameters greatly impact the dy-
namics, and therefore the total power generated by the device.
A transform, T, converts the PTO force to the conventional 3
DOF [16].

Both b and k can be optimised for a given frequency wave
and buoy [17]. Accordingly, for the purpose of comparing
between linear, pseudo-nonlinear, and fully nonlinear CFD,
these values will be optimised for each frequency to compare
optimal cases. Optimal values are approximately given by the
following by assuming tether extension is primarily due to
heave motion,

bopt = Bz(ω) , kopt = ω
2(m + Az(ω)) , (8)

where the subscript z refers to the heave direction. In the sim-
ulations, the optimal conditions gave large motion amplitudes
with part of the buoy breaching the surface. To avoid this, the
amplitude was reduced by increasing the damping value while
using the optimal PTO stiffness to allow the range of motion
to match the sampling grid.

The resonance frequencies of submerged single tether buoys
for surge and heave directions are well established [18]. The
two resonances approximately overlap when the following
stiffness condition is met;

kpto,overlap =
g(ρV − m)(m + Az(ω))
(l + a)(m + Ax(ω))

, (9)

where l is the length of the tether, a is the distance between
the tether connection point on the buoy and the center of mass,
g is the acceleration of gravity, ρ is the density of water, V is
the buoy volume, and Ax and Az are the added mass in surge
and heave, respectively.

When resonances coincide there will be a strong nonlinear
coupling between surge and heave. This one-to-one internal
resonance condition will be used in this study to demonstrate
the impact of including some nonlinearities within the models.
The optimal stiffness will be used for comparison with CFD
cases to show the impact on weakly nonlinear operating
conditions.

To calculate the power generated, PTO nonlinearities are
ignored and the simplified equation for instantaneous power is

Pinst = b∆Ûl2 . (10)

D. Drag Force
The drag force, FD, acting on the buoy is modelled as

FD = −1
2

CDρAD | Ûxr | Ûxr , (11)

where CD and AD are the coefficient of drag and characteristic
area respectively, and Ûxr is the relative velocity of the buoy
with respect to the surrounding water. The values for CD and

AD are fixed in the body frame but not the global Cartesian
frame and remain approximately constant for a large range of
Reynolds numbers [19].

E. Typical Assumptions

The aforementioned forces are complicated to model within
the time domain without a number of simplifications and
assumptions. Typical assumptions include that:

• the hydrodynamic parameters are independent of buoy
pose,

• the coefficients of drag are constant, independent of pitch
angle and velocity, the surrounding fluid is stationary, and

• the phase of the excitation force remains constant as the
buoy changes surge location.

III. Implementation of Pseudo-Nonlinear Model

In this section, the assumptions listed in Section II-E are
addressed in the development of a pseudo-nonlinear dynamic
model. Hydrodynamic parameters were introduced in the form
of gain-scheduled methods for the excitation force and infi-
nite frequency added mass, and an LPV (linear parameter-
varying) system for the radiation force. For the cylinder, these
parameters were varied as a function of heave and pitch.
For the sphere, only heave was varied as the coefficients are
independent of pitch. The viscous drag force was calculated
by including velocity dependence in the drag coefficient in
the form of Reynolds number calculations. Additionally, for
the cylinder, the drag force incorporated pitch dependence by
transforming the flow into vector components. For the sphere,
the drag force is independent of pitch angle due to symmetry.
Excitation force phase change due to motion was implemented
as a function of surge, discussed in Section III-C.

A. Hydrodynamic Parameter Position Dependence

Model behaviour is highly dependent on the hydrodynamic
parameters (Fe, B(ω), A(ω)). It is therefore critical to inves-
tigate the validity of holding these parameters constant for
given frequencies as the pose of the buoy changes. Here, the
calculation of these parameters was performed using NEMOH,
a linear BEM solver [20]. NEMOH provides the amplitude
and phase of the excitation force, the hydrodynamic damping,
and added mass for a particular buoy at a range of input
wave frequencies. To incorporate position dependence, the
amplitude and phase of the excitation force and the infinite
frequency added mass were calculated through gain-scheduled
methods within Simulink. These methods linearly interpolate
between a three dimensional lookup table for the cylinder
(using heave and pitch), and between a two dimensional lookup
table for the sphere (using heave). The radiation force was
implemented with an LPV block in Simulink. This block
takes an array of state-space models containing a sampling
grid, enabling interpolation between models for varying heave
and pitch values as required. A block diagram showing the
excitation force gain-scheduled method approach is shown in
Fig. 2.



Fig. 2. Block diagram showing the excitation force gain-scheduled method
approach. This details the flow of data used to find the interpolated force
amplitudes for the cylinder. Force amplitudes for the spherical buoy did not
use pitch values.

The range of motion for the cylinder involved varying heave
position from −1.5m to 1.5m around the nominal position
and pitch angle from −10° to 10°. For context, geometries
of the buoys are provided on Table II. For both DOF, seven
different positions and orientations were used, resulting in a
sampling grid of 49 different poses. For the spherical buoy,
due to symmetry, the pitch angle has no effect. Therefore,
only the heave position was varied over the same range as the
cylindrical buoy.

To summarise the methodology used for the proposed
position-dependent hydrodynamic parameters, the following
list shows the step by step procedure.

1) Specify heave and pitch positions
2) Use NEMOH to find B(ω), A(ω), Fe,amp, and ϕ
3) Use B(ω) and A(ω) to create transfer functions describing

how each DOF effects the radiation force in another DOF
4) Create a combined state-space for each pose
5) Combine state-space models into state-space array with

sampling grid according to heave and pitch positions
6) Use the LPV block in Simulink to implement the state-

space array
7) Specify Fe,amp and ϕ into respective arrays and implement

in Simulink using the Lookup Table block
8) Specify each element of A∞ into respective arrays and

implement in Simulink using the Lookup Table block

B. Drag Force Position Dependence

The viscous drag forces acting on the Sphere and Cylinder
in the surge and heave directions were approximated through
a similar gain-scheduled method. Firstly, the water velocity

Fig. 3. Block diagram showing the viscous drag gain-scheduled method
approach. This details the flow of data used to find the interpolated drag
coefficients, and hence drag force amplitudes for the sphere. Force amplitudes
for the cylindrical buoy change with pitch and are rotated accordingly.

around the surge and heave positions were found using es-
tablished theory [17]. The velocity of the buoys relative to
the fluid was then used to calculate the Reynolds number at
a given time step in each direction. This number was used
to find a corresponding drag coefficient based on tabulated
data [19]. In the spherical case, no viscous drag torque was
modelled in the pitch direction due to symmetry. For the
cylindrical buoy, the drag coefficient in the pitch direction
was estimated from a previous study with a similar buoy [21].
The cylindrical buoy also has viscous drag forces which are
pitch dependent. For an inclined cylinder, as a step towards
including position dependence in the viscous drag force, the
flow is divided into components in the axial direction of the
cylinder, and perpendicular to the axial direction. The forces
in the respective directions are found using the previously
discussed method to estimate drag coefficients in the rotated
reference frame. These forces are then rotated to align with
the surge and heave directions. A block diagram showing
the flow of data within the pseudo-nonlinear model of the
spherical buoy is given in Fig. 3. Though this does not fully
capture the nonlinearity of viscous drag, it is expected that
this approach is a better representation of drag effects than if
the drag coefficient is assumed to be constant and the pitch
rotation of the cylinder was ignored.

C. Excitation Force Phase Position Dependence

The excitation force amplitude and phase provided by
NEMOH is a description of the force experienced by the buoy
at a nominal surge position. Therefore, as the buoy moves in
the surge direction, the force experienced by the buoy should
reflect this new position. The excitation force is described in
Equation (4). The phase change due to surge position (ϕs) can
be represented in the context of the excitation force by

Fe = Fe,amp sin(ωt − ϕ + ϕs) , (12)

where the phase change from surge is

ϕs = kx , (13)

and k is the wave number, found as the solution to [22]

ω2 = gk tanh(kh) , (14)

where h is the water depth.



D. Partially-Nonlinear Models from Literature

Previous work has included recalculating the excitation
forces at each time step [11] based on the instantaneous wetted
area of a floating buoy. This approach still uses a linear
model for the radiation force and does not include drag forces.
Additionally, the WECs were restricted to oscillate only in the
heave direction. A similar study [10] calculated the excitation
force at each time step based on instantaneous wetted surface,
and uses a second order approximation of the diffraction and
radiation force. This model also ignored viscous drag forces,
was constrained to move vertically, and only simulated a
single regular wave. Such techniques are common in partially-
nonlinear models. Nonlinearity in the excitation force is ex-
pected to be the most influencial nonlinearity within PA WEC
systems [2]. Comparatively, the radiation and diffraction forces
require far more computational effort and have less impact on
results.

One study, closer to the presented case, uses a Fully
Nonlinear Potential Flow model on a submerged cylindrical
buoy [23]. The submerged cylindrical buoy is restricted to two
DOF, heave and surge. This nonlinear flow model effectively
simulated two dimensional NWT results for limited scenarios,
involving a small buoy and small wave amplitudes (cylinder
with radius of 0.05m, and wave amplitude of 1.7cm). These
limitations predispose the simulation to act in a regime in
which linear assumptions provide reasonable results. While
nonlinear potential flow models show promising results, fur-
ther research is needed to quantify overall accuracy [2].
Additionally, such models are still computationally expensive
compared to linear models [24].

Nonlinearities can have differing results for a change in
simulated conditions [25]. One study, on submerged spherical
buoys oscillating in the heave direction, showed that a weakly
nonlinear model, based on the weak scatterer approximation,
predicted lower amplitudes for some frequencies and higher
for others [25]. Research in this area seems to indicate that
nonlinearties impact models in differing ways and cannot be
summarised as a simple increase or decrease compared to the
linear model.

Another study which compares linear and nonlinear hydro-
dynamic parameters for cylinders [26] found that for cylinders
close to the surface, the added mass and radiative damping
in the heave and pitch directions differ significantly between
linear and nonlinear simulations, whereas the surge direction
remained relatively unchanged. Also shown in this study was
that vortex shedding occurs on the edge of the cylinder, though
this nonlinearity is expected to have minimal impact for the
case presented. A more influential result seen in this study is
the formation of a chute of water as the cylinder oscillates.
We expect that this phenomenon could cause significant dis-
crepancy between linear and nonlinear models.

The proposed pseudo-nonlinear method combines the non-
linear relationships present in hydrodynamic parameters as the
pose varies, with the computational speed of linear modelling,
and in three DOF. For the purpose of this study, the general

trend of the responses at varying frequencies will be compared
to investigate the degree to which nonlinearities are captured
within the proposed model. Additionally, this model applies
the same pseudo-nonlinear approach towards quantifying vis-
cous drag effects, a force ignored in previous BEM studies.

E. Simulation Parameters
To compare the performance of each model, some common

parameters were selected (Table I). In addition to the simula-
tion parameters, the properties of the buoys and PTOs must
be consistent between the respective models. These properties
relating to the cylindrical and spherical buoys are presented in
Table II.

TABLE I
Simulation Parameters

Parameter Value Units

Acceleration of gravity, g 9.81 m·s−2

Water density, ρ 1025 kg·m−3

Kinematic viscosity of water, ν 1.004 × 10−6 m2·s−1

Water depth, h 50 m
Submersion depth (buoy top), ds 2.5 m
Wave amplitude, Aw 0.5 m

TABLE II
Buoy Properties

Property Value Units

Cylinder radius, rc 5 m
Cylinder height, hc 5 m
Sphere radius, rs 5 m
Buoy density, ρbuoys 0.7ρ kg·m−3

For the linear and pseudo-nonlinear models, the viscous
drag can only be approximated from literature values. In the
linear case, the drag coefficients are assumed to be constant
irrespective of surge and heave position. These coefficients of
drag and the corresponding characteristic areas are given in
Equations (15) and (16) where CD, c, AD, c, CD, s, and AD, s
are the coefficients of drag for the cylinder, characteristic area
of the cylinder, coefficients of drag for the sphere, and the
characteristic area of the sphere respectively [21].

CD, c =
©­«
1 0 0
0 1.1 0
0 0 0.2

ª®¬ ,CD, s =
©­«
0.5 0 0
0 0.5 0
0 0 0

ª®¬ (15)

AD, c =
©­«
hr2

c 0 0
0 πr2

c 0
0 0 (2rc)5

ª®¬ ,AD, s =
©­«
πr2

s 0 0
0 πr2

s 0
0 0 0

ª®¬ .(16)

In the pseudo-nonlinear case, the drag coefficients for surge
and heave are found by interpolating between tabulated results
from literature [19], while the pitch drag coefficient is constant.



Fig. 4. A broad overview of the NWT is shown with the spherical buoy (left),
and the cylindrical buoy mesh within the NWT (right).

For the fully nonlinear case, due to the computational
resources required for this type of model, only five test cases
were selected based on a distribution of periods. These five
test cases, and the corresponding PTO parameters are given in
Table III. The optimal PTO stiffness according to Equation (8)
was used in these simulations. Test frequencies for the linear
and pseudo-nonlinear model range from 0.1 to 2.5 rad/s.

TABLE III
CFD Test Cases

Period (s) 6 8 10 12 14

Kpto,cylinder
(MN·m−1)

1.07 0.62 0.38 0.25 0.17

Kpto,sphere
(MN·m−1)

0.79 0.46 0.29 0.20 0.14

Bpto,buoys
(MN·s·m−1)

0.14 0.14 0.14 0.14 0.14

F. CFD Setup
CFD models are nonlinear models used to simulate fluid

structure interaction. They are computationally expensive but
can be a powerful tool to acquire accurate simulated results.
The CFD model was adapted from previous studies [12], [27].
A broad view of the numerical wave tank and a detailed view
of the mesh surrounding the cylindrical buoy can be seen in
Fig. 4. This model has been checked for convergence and has
been validated against experimental data for spherical buoys.

IV. Results
A. Hydrodynamic results from NEMOH

Hydrodynamic parameters at a range of poses for the
cylinder and sphere were found using NEMOH. Representative
graphs of the added mass from Equation (6) for the cylindrical
buoy at a heave position of 0.5m and varying pitch angles, and
the added mass for the spherical buoy at varied heave positions
are given in Figs 5 and 6, respectively. Radiation damping
of the cylindrical and spherical buoys follow similar trends.
Representative excitation forces and phases from Equation (4)
are given in Figs 7 and 8 for the cylindrical and spherical
buoys, respectively.

These added mass and damping coefficients were used to
construct a model of the radiation force for different positions.
However, for the spherical buoy, some terms fluctuate about
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Fig. 5. Representative added mass values for the cylinder at constant surge
and heave locations. Shown are the contributions to the added mass in the
surge direction due to motions in all three DOF.
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Fig. 6. Added mass values for the sphere at nominal surge location and
pitch orientation. Shown are the contributions to the added mass in the surge
direction due to motions in all three DOF.

zero due to numerical error or mesh imperfections. Addition-
ally, the pitch-pitch and cross terms were expected to be zero
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Fig. 7. Representative excitation forces (left) and phases (right) for the cylin-
der at nominal surge and heave locations. The excitation moment amplitude
in the pitch DOF is shown.

0 0.5 1 1.5 2 2.5

, rad/s

0

1

2

3

4

5

6

F
e
,

 (
N

)

10
4

z = 1.5m

z = 1.25m

z = 1m

z = 0.75m

z = 0.5m

z = 0.25m

z = 0m

z = -0.25m

z = -0.5m

z = -0.75m

z = -1m

z = -1.25m

z = -1.5m

0 0.5 1 1.5 2 2.5

, rad/s

1.5

2

2.5

 (
ra

d
)

z = 1.5m

z = 1.25m

z = 1m

z = 0.75m

z = 0.5m

z = 0.25m

z = 0m

z = -0.25m

z = -0.5m

z = -0.75m

z = -1m

z = -1.25m

z = -1.5m

Fig. 8. Representative excitation forces (left) and phases (right) for the
sphere at nominal surge location and pitch orientation. The excitation moment
amplitude in the pitch DOF is shown.

but were found to be two orders of magnitude lower than surge-
surge and heave-heave. These values are likely due to mesh
imperfection and were also set to zero for the purpose of this
study. Likewise, for the cylinder at the nominal pitch angle,
the cross terms were near zero. These quantities were also
set to zero in the calculation of transfer functions to prevent
numerical artefacts in the radiation forces.

B. Simulation results in regular waves
In order to show the extent of the difference between the

linear and pseudo-nonlinear models, the resonance frequency
in heave was matched with the resonance frequency in surge
using Equation (9). This provides large opportunity for strong
nonlinear cross coupling effects. To isolate the effect of the
hydrodynamic nonlinearity from viscous drag nonlinearity,
the drag coefficient was held constant as with the linear
simulations. In another set of simulations, the drag force
was calculated according to the pseudo-nonlinear method
with varying drag coefficient, (Fig. 9). This figure shows the
oscillation amplitude for the cylinder when subjected to regular
waves. A similar effect was also seen for the spherical buoy
(not shown).

The linear, pseudo-nonlinear, and fully nonlinear models
were subjected to simulated regular waves. Under this exci-
tation, the steady state response of the WEC was recorded for
each frequency. The mean of each DOF was found and used
to center the signal for each DOF. A spectrum was obtained
from this time domain signal using a Hamming window and a
suitable frequency resolution. The maximum amplitude seen in
each simulation was identified. The resulting peak oscillation
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Fig. 9. The peak oscillation amplitude for the linear, pseudo-nonlinear
(indicated by LPV), and pseudo-nonlinear with constant drag coefficient
(indicated by LPV, C) models when the resonant frequencies in surge and
heave are close. Results for the cylindrical buoy are shown.

in three DOF are presented in Figs 10 and 11 for the cylinder
and sphere, respectively. The mean position of each buoy
subjected to regular waves is shown in Figs 12 and 13 for
the cylinder and sphere, respectively.

For practical WEC systems, another aspect to consider is
the maximum PTO forces and power generated. The maximum
PTO forces and the mean of the power generation were found
at each frequency and displayed in Figs 14 and 15 for the
cylinder and sphere, respectively.

V. Discussion
The simulated results show a notable difference between

the linear and pseudo-nonlinear models. For the strongly
coupled case with constant drag coefficients, the linear model
and the pseudo-nonlinear models are approximately equivalent
with the linear model overestimating and underestimating at
different frequency ranges. However, when the drag coefficient
is varied as a function of velocity, larger amplitudes are seen.
This indicates the constant drag coefficients lead to an overes-
timate of drag forces. This finding informs the interpretation of
subsequent results for the linear, pseudo-nonlinear, and fully
nonlinear comparison. That is, larger motion amplitudes are
expected for fully nonlinear results due to an overestimate
in viscous drag forces in the linear model. Optimal stiffness
conditions lead to increased motion amplitudes, which were
used to further compare the linear, pseudo-nonlinear, and CFD
approaches.

For the optimal stiffness condition, the heave oscillation
amplitude of the pseudo-nonlinear model of the cylinder
shows an increase around larger amplitudes and is relatively
unchanged elsewhere compared to the linear model. A no-
ticeable difference between the results is the change in mean
positions about which the buoy oscillates. In both the strongly
coupled and optimal stiffness PTO conditions, the pseudo-
nonlinear approach resulted in larger displacements for the
cylinder than for the spherical buoy. This is expected due to
spherical symmetry preventing strong coupling between DOFs.
This behaviour arises due to an asymmetric force experienced
by the buoy over each oscillation cycle; that is, a net drift
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Fig. 10. The peak oscillation amplitude for the cylinder at various excitation
frequencies when optimal PTO stiffness is used. The linear, pseudo-nonlinear
(indicated by LPV), and fully nonlinear CFD results are shown.

force. Drift forces are known to be a second order effect
[28]. This behaviour is caused by a phase difference between
the heave and surge excitation forces. This phase difference,
coupled with the changing position of the buoy, creates a net
movement in one direction until the stiffness force of the PTO
is large enough to balance this drifting effect. The CFD results
show the same bias trend though different peak locations
and magnitudes for the spherical buoy. However, the mean
position of the cylindrical buoy was clearly over-estimated in
the pseudo-nonlinear method. One speculated result of this
surge bias is that the tether extension is more coupled with
rotation, allowing pitch to have more influence over power
generation.

The difference between linear and pseudo-nonlinear oscil-
lation amplitudes may, in part, be due to coupling between
the three modelled DOF. This coupling can be seen in the
hydrodynamic parameters in Fig. 5 for non-zero pitch angles.
For the cylinder, pitch has a large effect on the effective added
mass between surge and heave and pitch and heave motions.
In the linear system, these cross terms are typically neglected
as the pitch angle position is assumed to be zero. Conversely,
the amplitude of oscillation of the spherical buoy is relatively
unchanged for all DOF. Due to symmetry, the cross terms are
zero and a changing heave location does not lead to strong
hydrodynamic coupling. Consequently, less change between
linear and nonlinear models is expected for spherical buoys.

The CFD results (Fig. 11) demonstrate that the linear model
loses accuracy as the motion amplitude increases, agreeing
with literature expectation. Results for the pseudo-nonlinear
method do not clearly match CFD results but show a closer
trend than the linear case, indicating that the LPV method
captures some, but not all, nonlinearity in the hydrodynamics
acting on the buoy. The trend for the sphere seems to be
the peak thinning and a higher peak amplitude. The pseudo-
nonlinear model results begin to show the same increase in
peak amplitude. The pseudo-nonlinear model of the cylindrical
buoy showed two distinct peaks, a large deviation from the
linear model. Increased heave amplitudes occurred around the
same frequencies as decreased surge amplitudes, indicating
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Fig. 11. The peak oscillation amplitude for the sphere at various excitation
frequencies when optimal PTO stiffness is used. The linear, pseudo-nonlinear
(indicated by LPV), and fully nonlinear CFD results are shown.

some degree of coupling between heave and surge. The
CFD results for the cylinder again show that the pseudo-
nonlinear results capture trends better than linear counter-
parts, though with greatly decreased amplitudes. The pseudo-
nonlinear method gives larger amplitudes due to asymmetry
in excitation forces in heave direction. That is, the exponential
trend in excitation force indicates a greater increase for excita-
tion force amplitude above the nominal position than decrease
for below (Fig. 8). Therefore, nonlinearity in the excitation
force is being captured. However, the motion amplitude is far
less in the fully nonlinear CFD model (Fig. 10), indicating
there is significant nonlinearity missing which the linear BEM
hydrodynamic coefficients do not capture.

Other nonlinear forces acting on the buoy, such as overtop-
ping or slamming, are not able to be modelled with linear BEM
solvers. Submerged buoys, however, are away from highly
nonlinear surface effects, and the outlined method does more
closely approximate the nonlinearity of hydrodynamic forces
than the simple linear BEM solver about a nominal position.
It is commonly thought that the most influential nonlinearity
for PA WEC systems is excitation force [2]. However, these
results show that while the inclusion of nonlinearities in
the excitation force does impact the results, there are more
influential nonlinearties for this system not captured.

Linear BEM solvers are not able to fully capture the
radiation forces for cylindrical buoys closer to the surface due
to the formation of water jets and vortex shedding [26]. It
was noticed that in the CFD simulations, significant vorticity
was periodically occurring above the cylinder, indicating the
presence of some complex resonance effect present in the
column of water above the cylinder. Also, poor sampling
grid resolution in the pseudo-nonlinear method and higher
order nonlinear forces could be the reason for the discrepancy
between pseudo-nonlinear and fully nonlinear results. Further-
more, interpreting the CFD results was made difficult due
to the limited number of sampled frequencies. These reasons
suggest that the proposed pseudo-nonlinear method is suited
towards rapid modelling of submerged WEC devices only
if additional improvements can be made which incorporate
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Fig. 12. The mean location for the cylinder at various excitation frequencies
when optimal PTO stiffness is used. The linear, pseudo-nonlinear (indicated
by LPV), and fully nonlinear CFD results are shown.

nonlinear trends as buoys approach the surface. Alternatively,
the proposed modelling method may be suited to specific oper-
ating conditions, such a sufficient submergence depth, because
linear BEM solvers may adequately represent hydrodynamic
parameters in particular conditions.

To comprehensively model WEC devices, it is important
to accurately model the PTO forces. These forces influence
installation cost and power generated. As an indication, the
tether forces and power generated for all three modelling
methods is provided in Section IV. These results show the
pseudo-nonlinear method generally overestimates PTO forces
and power generated. It should be emphasised that the viscous
drag coefficient for the linear model is held constant and
has been shown earlier to be the result of an over-estimated
drag coefficient. However, as both the linear and pseudo-
nonlinear model overestimate motion at higher frequencies,
this is further evidence of the limitation that strong frequency-
dependent nonlinearities are not captured using linear BEM
solvers. One limitation of this study is that the CFD model was
validated only against experimental data of spherical buoys,
not cylindrical. Another limitation is that the results present
the frequency of maximum oscillation amplitude seen in the
response of the WECs when subjected to a regular wave, which
does not account for harmonic distortions. Such harmonics
were seen in the time domain results of CFD models, and, to a
lesser extent, the pseudo-nonlinear model, particularly around
natural frequencies.

Though the linear method proposed in this study has signif-
icant limitations, there are some benefits to such methods. The
primary benefit of the linear and pseudo-nonlinear models is
the drastic reduction in simulation time compared to CFD. The
pseudo-nonlinear method is marginally more computationally
expensive than the linear model. The linear method was
able to simulate 2000 seconds in approximately 4 seconds,
while the pseudo-nonlinear method took 10–15 seconds, on
a standard computer. The CFD model simulated 300 seconds
in approximately 2–3 days on a supercomputer. The found
results and the potential benefits merit further investigation
into the applicability of this modelling technique under a range
of operating conditions. If the proposed pseudo-nonlinear
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Fig. 13. The mean location for the sphere at various excitation frequencies
when optimal PTO stiffness is used. The linear, pseudo-nonlinear (indicated
by LPV), and fully nonlinear CFD results are shown.

model can be shown to capture significant nonlinearities in
hydrodynamic forces, it can greatly speed up development of
submerged WEC devices.

Further extensions of this research include improving the
modelling method of the drag forces in each direction, which
could be made more accurate by including drag coefficients
of inclined cylinders rather than decomposing the flow di-
rection into components. Furthermore, the resolution of the
sampling grid of different positions and orientations may be
increased to more adequately represent nonlinear trends in the
hydrodynamic parameters. The model could be extended to
explore the effect of larger wave amplitudes on submerged
buoys. The CFD model could also be used to acquire results
from more excitation frequencies to gain a clearer perspective
of nonlinear effects over a broad range of operating conditions.
Alternatively, the effect of surface nonlinearities in CFD could
be further explored by varying the submergence depth. For
submerged devices, this pseudo-nonlinear method presents a
potential alternative to greatly improving simulation speed
from CFD, while capturing some nonlinear behaviours arising
from position dependant hydrodynamic parameters.

VI. Conclusion
In this study a linear, pseudo-nonlinear, and fully nonlinear

hydrodynamic parameter model for two point absorbers were
developed and the corresponding motion and forces were
compared. The linear and pseudo-nonlinear models displayed
similar motion amplitudes for a spherical buoy and differ-
ing amplitudes for a cylindrical buoy. The pseudo-nonlinear
model incorporated position dependence into the hydrody-
namic parameters and drag forces. The results showed in-
creased nonlinear behaviour and more closely match the trend
in the CFD results compared to linear methods. The proposed
model demonstrated the ability to capture some higher order
nonlinearities such as drift forces and nonlinear trends in
excitation forces. The pseudo-nonlinear model showed only a
small increase in computation time over the linear model, but
showed some basic nonlinear behaviours noticed in the CFD
results and matched the trend of the fully nonlinear results.
The significant differences between the pseudo-nonlinear and
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Fig. 14. The maximum PTO force (left) and mean of instantaneous power
(right) experienced for each regular wave frequency for the cylindrical buoy.

fully nonlinear for the cylindrical buoy results suggest that
nonlinearity in the hydrodynamic excitation forces are not the
most significant nonlinearity for the buoy dynamics, and that
the linear potential flow method for calculating hydrodynamic
parameters becomes inadequate close to the surface. For the
concept of submerged buoys, the results presented demonstrate
the applicability of pseudo-nonlinear modelling for rapid sim-
ulation compared to fully nonlinear alternatives, and justify
further investigation of this method.
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