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Abstract—Theoretical and experimental investigation of yaw
motion instability in a submerged axi-symmetric wave energy
converter is presented. The device is a truncated vertical cylinder
which is taut-moored via three tethers. Assuming linear hydro-
dynamics, but retaining non-linear geometry associated with the
tethers, governing equations are derived in 6 degrees of freedom.

Due to the axi-symmetry of the system, there is no hydrody-
namic excitation moment in yaw. However, the yaw governing
equation - correct to second order in buoy motions - reveals
a time-varying restoring moment coefficient. Such systems can
undergo large oscillations given a small initial perturbation,
through the well known Mathieu instability. Targeted regular
wave experiments were used to verify the model predictions on
the onset of yaw motion instability in the first two instability
branches. The yaw motion in a three-tethered system is analogous
to sway motion in a single-tethered device. The yaw instability
and the transverse/sway motion instability both arise due to
coupling with heave. Due to small damping, the instabilities can
be prevalent. The theoretical analysis presented is applicable to
other floating WECs.

Index Terms—submerged buoy WEC, Mathieu instability, yaw
instability, mode coupling, parametric resonance

I. INTRODUCTION

Motion instabilities in floating wave energy converters
(WECs) have recently been studied by a number of authors.
[1] study a pitching device, called SEAREV, which is found
to be prone to parametric roll and yaw motion under specific
wave conditions. Parametric roll and pitch are examined by
[2] for an axi-symmetric heaving device called Wavebob, and
by [3] for a floating axi-symmetric oscillating water column.
Wave-activated WECs free to move in multiple degrees of
freedom may be particularly prone to instabilities as they are
designed to undergo large-amplitude motions. In the above
studies the motion instabilities in WECs were undesirable as
they appeared to be associated with reduction of the productive
mode of motion.

Carnegie Clean Energy is developing the CETO technol-
ogy which consists of a large disc-shaped buoy, which is
shallowly submerged. The latest generation of CETO utilises
three integrated mooring and PTOs; the buoy is attached to
anchoring points on the sea bed via three tethers (see Figure
1). The device can move in six degrees of freedom, and power
is extracted from heave, surge and pitch. Due to the axi-
symmetry of the device, power can be effectively absorbed
from the incident waves irrespective of the angle of incidence.
Compared to a single-tethered converter, power absorption can

be significantly increased when the other modes of motion
(surge and pitch) are coupled to the PTO (see [4] and [5]).

Fig. 1. Diagram of prototype multi-moored CETO wave energy converter
with three integrated mooring and PTO systems.

For a single-tethered submerged buoy a mechanism respon-
sible for sway (transverse) motion instability was identified
(see [6] and [7]). A time-varying spring coefficient in the
sway governing equation arises due to coupling with heave. As
such the governing equation can be rewritten as the Mathieu
equation, which can give rise to unstable (exponentially grow-
ing) solutions given a small perturbation. The simple model
based on the Mathieu equation was used to predict onset of
instability, and its validity was demonstrated in both regular
and irregular tests from previous laboratory campaigns.

Theoretical analysis in this paper reveals that yaw motion in
a three-tethered system is analogous to the sway motion in a
single-tethered system in a number of ways; the motions do not
couple to the power take-off (PTO) at first order, are weakly
damped, and are coupled with heave at second order. Mathieu-
type instability in yaw motion in a three-tethered system is thus
investigated with targeted regular wave experiments.

II. MODEL DERIVATION
Let us define a fixed coordinate system centred at the initial

position of the buoy’s centre of gravity (CoG), with horizontal



axes x and y and vertical axis z, with the incident waves
assumed to propagate along the x-axis. Let X = [X Y Z]T be
the buoy’s CoG translational motions of surge, sway and heave
along the fixed coordinate system axes. Let θ = [θx θy θz]

T

denote the buoy’s rotational motions about a translating co-
ordinate system, which is centred at the instantaneous CoG
and whose axes are parallel to the fixed coordinate system.
These extrinsic rotations are referred to as roll, pitch and
yaw respectively. Aspects of the derivation that follows are
analogous to the work of [7] and [5]. Figure 2 shows a diagram
of the buoy under consideration. The centre of buoyancy is
assumed to coincide with the CoG. The derivation below
assumes a symmetric arrangement of equal length tethers,
with one tether pointing in the down-wave direction (along the
positive x axis), and two tethers pointing obliquely up-wave.
The tether attachment points on the buoy’s hull are denoted by
position vectors Ai with i = 1 . . . 3. The anchor points on the
sea bed are denoted by position vectors Si with i = 1 . . . 3.
Their definitions are

A1 = X +R [rsθ, 0,−rcθ]T, (1)

A2 = X +R [−1

2
rsθ,−

√
3

2
rsθ,−rcθ]T,

A3 = X +R [−1

2
rsθ,
√

3

2
rsθ,−rcθ]T,

S1 = [Lsα + rsθ, 0,−Lcα − rcθ]T,

S2 = [−1

2
(Lsα + rsθ),−

√
3

2
(Lsα + rsθ),−Lcα − rcθ]T,

S3 = [−1

2
(Lsα + rsθ),

√
3

2
(Lsα + rsθ),−Lcα − rcθ]T,

where sα, cα, sθ and cθ denote sinα, cosα, sinθ and cosθ
respectively. R is the standard 3x3 rotation matrix (a function
of θx, θy and θz; and given in Equation 2), r and θ are
respectively the length and the angle (measured from the
vertical) of a line between the buoy’s centre of gravity and
any of the attachment points, and similarly L and α are
respectively the length and the angle (measured from the
vertical) of the initial/static tethers (when X = θ = 0). The
superscript T denotes vector transpose. The rotation matrix is
defined as

R =

 cycz −cysz sy
cxsz + czsysx cxcz − sysxsz −cysx
sxsz − cxczsy czsx + cxsysz cycx

 , (2)

where sx and cx denote sinθx and cosθx respectively, and
similarly for the pitch θy and yaw θz .

The instantaneous tether vectors, from the attachment point
Ai to the anchor point Si, are given by Ti = Si −Ai. PTO
extension ∆Li and PTO velocity ∆L̇i, which represent the
change in tether length and the rate of change of the tether
length respectively, are thus defined as

∆Li = |Ti| − L, (3)

∆L̇i =
∂

∂t
|Ti|,

where | . | represents the magnitude of the vector under
consideration (i.e. the Euclidean norm). When allowing for
motions in all 6 degrees of freedom, the full expressions for
PTO extension and PTO velocity are complicated. By setting
α = θ = 0, we recover the expressions for a single-tethered
device (see [7]).
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Fig. 2. Schematic diagram of three-tethered CETO converter.

The governing equations, in 6 degrees of freedom, are
derived below. The forces considered to be acting on the
WEC are buoyancy minus self-weight, hydrodynamic forces
and tether forces.

The net buoyancy force FB acts vertically upwards. For
a fully submerged buoy considered here, the expression is
independent of the instantaneous body position. When the
centre of gravity and the centre of buoyancy coincide, as
is assumed here, the buoyancy force moments MB vanish
completely. The expressions read

FB = [0, 0, ρV g −mg]T, (4)
MB = [0, 0, 0]T,



where ρ is the fluid density, V and m are the buoy volume and
mass, and g is the magnitude of the gravitational acceleration.

The tether, or power take-off, forces FPTOi act along each
tether (with i = 1 . . . 3). The PTO implementation considered
here is composed of a pre-tension force, a linear spring
restoring force and a linear damping force. We note that the
pre-tension forces counteract the buoyancy force in still/initial
conditions. The PTO forces give rise to moments MPTOi.
The expressions for both are given as

FPTOi =
( C

3 cosα
+K∆Li +B∆L̇i

) Ti
|Ti|

, (5)

MPTOi =
(
Ai −X

)
× FPTOi,

where C denotes the magnitude of the buoyancy force C =
|FB | = ρV g−mg, K is the linear spring coefficient, B is the
linear damping coefficient and × denotes a vector cross prod-
uct. The PTO settings, K and B values, are assumed identical
for all three tethers. In the PTO force expression, the terms
in the brackets represent the tether tension magnitude, which
is multiplied by a unit vector of the appropriate orientation to
yield the horizontal and vertical force components.

Assuming linear hydrodynamics, the radiation and diffrac-
tion problems are decoupled, and the governing equations are
given by

M

(
Ẍ

θ̈

)
=

(
FB
MB

)
+

(
FPTO
MPTO

)
+

(
Fexc
Mexc

)
+

(
Frad
Mrad

)
, (6)

where Ẍ and θ̈ are the buoy’s translation and rotation ac-
celerations, and M is the 6x6 mass and moments of inertia
matrix, with non-zero entries only along the main diagonal
due to the definition of our coordinate system and the buoy
shape. The contributions from all three tethers are expressed
as FPTO =

∑3
i=1 FPTOi and MPTO =

∑3
i=1MPTOi.

Fexc and Mexc are the hydrodynamic excitation forces and
moments, which are due to the incident and diffracted waves.
Frad and Mrad are the radiation forces and moments, which
are due to the hydrodynamic pressure resulting from the buoy’s
motion. As only planar incident waves in the x-direction are
considered, and the buoy is assumed cylindrical, Fexc(2) = 0
and Mexc(1) = Mexc(3) = Mrad(3) = 0.

III. LINEARISED MODEL

The governing equations can be linearised, by retaining only
first order terms from a multi-variable Taylor expansion of the
power take-off forces and moments. The dynamic equations
of motion, interpreted in the frequency domain, are given in
Equations 7, 8 and 9.

The surge and pitch motions are coupled, both hydrodynam-
ically and through the tether. The coupled governing equations
for sway and roll have been omitted for brevity, as they are
equivalent to the homogeneous version of Equation 7.(

m+ a11 a15
a15 Iyy + a55

)(
Ẍ

θ̈y

)
+B

(
Ẋ

θ̇y

)
+K

(
X
θy

)
=

(
Fexc(1)
Mexc(2)

)
, (7)

where

B =

(
B11 B15

B15 B55

)
and K =

(
K11 K15

K15 K55

)
,

such that

B11 = b11 +
3Bs2α

2
,

B15 = b15 +
3Br

4

(
c2α−θ − cθ

)
,

B55 = b55 +
3Br2

2
s2α−θ,

K11 =
3K

2
s2α +

C

2L

(
cα +

1

cα

)
,

K15 =
3Kr

4

(
c2α−θ − cθ

)
− Cr

4Lcα

(
3cθ + c2α−θ

)
,

K55 =
3Kr2

4

(
1− c2α−2θ

)
+ Cr

(
cθ +

sα
2cα

sθ
)

+
Cr2

2L

( 1

cα
+ cα−2θ

)
.

To first order, the heave and yaw motions are uncoupled
from the other modes.

(m+ a33)Z̈ + (3Bc2α + b33)Ż +
(

3Kc2α +
Cs2α
Lcα

)
Z = Fexc(3). (8)

Izz θ̈z +
(Cr2s2θ
Lcα

+
Crsαsθ

cα

)
θz = 0. (9)

In the above equations, ajk and bjk denote the frequency-
dependent added mass (or added moment of inertia) and
radiation damping coefficients respectively, and Ijj are the
buoy’s moments of inertia. The hydrodynamic coefficients
for a submerged truncated vertical cylinder are computed
according to the analytical solution of [8], [9] and [10]. As the
buoy is axi-symmetric, the only linear hydrodynamic cross-
mode coupling elements are a15 = a51 = −a24 = −a42,
and similarly b15 = b51 = −b24 = −b42, while also
a11 = a22, b11 = b22, a44 = a55, b44 = b55, Ixx = Iyy,
and a66 = b66 = 0.

At first order, all modes of motion, apart from yaw, couple
to the PTO and thus contribute to the overall power production.
When α = θ, the expressions agree with those presented in [5].
The pitch motion becomes independent of the PTO. The cross-
coupling terms in the surge-pitch equations reduce to B15 =
b15 and K15 = Cr

L , and as such the surge-pitch coupling is
weak for a small thin buoy in deep water. When α = θ = 0,
the system becomes equivalent to a single-tethered device.

The governing equation for yaw is uncoupled from the other
modes. The restoring force is due to buoyancy/pre-tension. In
our simplified model, the yaw motion is un-damped. We recall
that in a single-tethered system, when α = θ = 0, all non-
inertial terms in the linear yaw governing equation vanish,
which is clearly not the case here. We would like to draw
comparisons between the yaw equation in the three-tethered
system and the sway equation in the single-tethered system.
For completeness, the (decoupled) sway equation is shown



below (see [7] for derivation, or deduce from Equation 7 by
imposing α = θ = 0).

(m+ a22)Ÿ + b22Ẏ +
C

L
Y = 0 (10)

We note similarities between Equations 9 and 10:
- the motions do not couple to the PTO,
- there is no exciting force/moment,
- the restoring force/moment is due to buoyancy,
- the motions are weakly damped (or not damped at all).

A. Natural frequencies

Excluding the excitation and damping terms, natural (un-
damped) angular frequencies ωn = 2πfn in the above modes
can be easily computed by assuming the variables are time-
harmonic.

The yaw natural frequency ωn6 = 2πfn6 is given by

ωn6 =

√
Cr2 sin2 θ
L cosα + Cr sinα sin θ

cosα

Izz
. (11)

The heave natural frequency ωn3 = 2πfn3 is given by

ωn3 =

√
3K cos2 α+ C sin2 α

L cosα

m+ a33
. (12)

We note that if the heave added mass a33 was constant, and not
frequency dependent, a single value of the natural frequency
ωn3 would follow. However, due to frequency dependence of
the hydrodynamic coefficient, multiple resonances can arise.

For the coupled surge-pitch (and sway-roll) equations, an
eigenvalue problem arises, with the eigenvalues ω2

n represent-
ing the square of the natural frequencies and the eigenvectors
vn representing the associated mode shapes. The expressions
are given below.

ωn15± =

√
−b±

√
b2 − 4ac

2a
, (13)

vn15± =

(
aω2

n15± +K15a15 −K55(m+ a11)
−K11a15 +K15(m+ a11)

)
,

where

a = (m+ a11)(Iyy + a55)− a215,
b = −(m+ a11)K55 − (Iyy + a55)K11 + 2a15K15,

c = K11K55 −K2
15.

Similarly to heave, due to frequency dependence of the hydro-
dynamic coefficients a11, a15 and a55, more than two roots for
ωn15 are possible.

When α = θ and the remaining cross-coupling terms
K15 = Cr

L and a15 in Equation 7 are assumed to be
small, the expressions for surge and pitch (uncoupled) natural
frequencies ωn1 and ωn5 simplify considerably, as shown
below. Lastly, we recall that using this approximation, the pitch

motion, and the natural frequency, become decoupled from the
PTO.

ωn1 ≈

√
3K sin2 α+ C

L (cosα+ secα)

2(m+ a11)
when α = θ. (14)

ωn5 ≈

√
Cr(L+r)

2L (cosα+ secα)

Iyy + a55
when α = θ. (15)

The computed natural frequencies are displayed in Figure 3,
together with (normalised) experimental motion spectra. The
measurements are from irregular wave runs for a buoy with
two different mooring arrangements (specified by angle θ, and
denoted by θhigh and θlow). More details on the experimental
campaigns are provided in Section V. We note that for a given
buoy geometry, it is not always possible to align the heave
and surge-pitch natural frequencies with the incident wave
frequencies (by choosing appropriate value of the mechanical
stiffness coefficient K). The plots suggest that the computed
values for ωn6 and ωn15− are reasonably accurate. We recall
that the yaw natural frequency is independent of the PTO
settings, and simply depends on the system geometry. From
Equation 11 it follows that smaller θ angles result in lower
ωn6, and this trend is clearly seen in Figure 3.

The surge-pitch unit eigenvectors for the two buoys and the
applied PTO settings from Figure 3, calculated according to
Equation 13, are vn15− = [−0.59, 0.81]T and vn15− =
[−0.13, 0.99]T . These suggest that at the ωn15− natural
frequency, the pitch and surge motions would be out of phase
in both runs. For the buoy with θhigh both surging and
pitching motion would occur (with surge (in m) slightly lower
compared to pitch (in radians)), whereas for the buoy with θlow
the motion would be highly pitch dominated. The top plots
in Figure 4 display the calculated phase difference between
surge and pitch motions, from cross-spectral analysis of the
experimental measurements. The observed behaviour at ωn15−
matches the theoretical prediction. The bottom plots in Figure
4 display components of a unit vector of the experimental
surge and pitch motion amplitudes (calculated from the mo-
tion spectra in Figure 3). At ωn15− the agreement with the
theoretical unit eigenvectors is very satisfactory. We note that
as the natural frequency ωn15+ is within the incident wave
spectrum, the eigen-analysis results would not be reflected in
the measurements, and as such are omitted.

In the spectral plots we note presence of yaw motion.
Although not discernible from these normalised plots, we note
that the yaw rotations could become quite substantial in certain
tests. We recall that due to our axi-symmetric geometry, there
is no yaw excitation moment, and as such yaw cannot be
excited by the fluid alone. In the next Section we therefore
extend our model in order to try to explain the experimentally
observed yaw oscillations. We note in passing that for the
measurements shown, the surge and pitch responses do not
coincide with the incident wave frequencies. This non-linearity
will not be investigated in this work, however.
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IV. SECOND ORDER MODEL

Retaining terms of up to second order in the buoy motion
variables, another set of approximate governing equations can
be derived. When allowing for α 6= θ, the expressions are
rather lengthy, and will not be given below. In this section,
we focus on the second order yaw equation.

Equation 16 is the second order governing equation for yaw
in a three-tethered system. The first two terms follow from
Equation 9. The third term represents second order coupling
between yaw and heave (and yaw and heave velocity). On
the right hand side, we have collected all second order terms
independent of yaw.

Izz θ̈z + β
C

cα
θz + β

((
3Kcα −

C

L

)
Z + 3BcαŻ

)
θz = F, (16)

where

β=
(r2s2θ
L

+ rsαsθ
)
,

F=F (Xθx, Y θy, θxθy, XẎ , ẊY,Xθ̇x, Ẋθx, Y θ̇y, Ẏ θy, θxθ̇y, θ̇xθy).

In our previous work on a single-tethered buoy, the decou-
pled sway second order governing equation was derived in [7],
and is given below.

(m+ a22)Ÿ + b22Ẏ +
C

L
Y +

((K
L
− C

L2

)
Z +

B

L
Ż
)
Y = 0. (17)

We note similarities between Equations 16 and 17 as both
contain a time-varying spring coefficient due to the coupling
with heave (and heave velocity). If we assume the heave
motion to be harmonic at the incoming wave frequency ω,
then the equations can be re-written as the classical Mathieu
equation.

Ÿ + 2µẎ +
(
δ + 2ε cos(2τ)

)
Y = 0, (18)

where the non-dimensionalised time τ is given by ωt = 2τ ,
and as such the non-dimensional damping coefficient is 2µ,
the non-dimensional spring coefficient is δ = 4(ωn

ω )2, and



the amplitude of the oscillating spring coefficient is 2ε. From
Equation 16 it follows that

ε =
2

ω2

AZ
Izz

β

√(
3Kcα −

C

L

)2
+ ω2(3Bcα)2, (19)

where AZ is the harmonic heave motion amplitude. We note
that Equation 16 is an undamped version of the Mathieu
equation, with a non-zero right hand side. For stability analysis
only the homogeneous equation is considered, and as such the
additional terms do not preclude us from the same analysis
as was pursued in [7]. However, the right hand side terms
could be considered as excitation terms which could lead to a
perturbation which triggers the instability.

According to Floquet theory, the Mathieu equation admits
both bounded and unbounded solutions. Without any external
excitation, an initial perturbation can grow exponentially if
the system is in the unstable regime. Figure 5 shows the
stability diagram for the Mathieu equation. We see that the first
two instability branches are most likely to be troublesome, as
damping significantly reduces the further instability regions.
The first and second instability branches correspond to ω =
2ωn6 and ω = ωn6 respectively. Odd-numbered instability
branches exhibit a period-doubling phenomenon, meaning
that the underlying period of the unstable response/motion
is twice the period of the oscillating restoring force/moment
component. Even-numbered instability branches do not posses
this period-doubling behaviour. We have indicated this in the
diagram. We note that in practice the small perturbations
will always be present (even in well controlled laboratory
experiments, and of course in the ocean). However, the growth
of the unstable motion will not be unbounded (as predicted
by the Mathieu equation), but eventually saturate at a level
dependent on the dissipation in that mode and the full non-
linear structure of the governing equations.
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Fig. 5. Stability diagram for the damped (blue curve, µ = 0.1) and undamped
(red curve, µ = 0) Mathieu equation.

V. EXPERIMENTAL RESULTS
Results from a model-scale experimental campaign carried

out by Carnegie Clean Energy and the University of Western

Australia are presented. The experiments were conducted in
the Ocean basin at the Coastal, Ocean And Sediment Transport
laboratory (COAST lab) at the University of Plymouth, UK.
Parameters of the tested model CETO device are listed in Table
I. Two different mooring arrangements (characterised by angle
θ) were tested, and are referred to as θhigh and θlow. Details of
the integrated mooring and power take-off system are omitted
from the Table for confidentiality reasons.

The free surface elevation at a number of locations around
the WEC was measured by wave gauges. A Qualisys motion
capturing system was used to track the buoy instantaneous
position (in 6 degrees of freedom). Three model scale power
take-offs were used, each consisting of a tether, a winch
and a pulley. Each pulley was attached to the bottom of the
basin, and the tether would pass through it onto the computer-
controlled winch, which was positioned above water. The
winch torque, as well as the length of the reeled and un-
reeled tether were continuously measured. As such a pre-
scribed tension force function (such as the one given below
in Equation 6), could be achieved. PTO extension and tether
tension were also recorded. A large number of tests, primarily
using irregular wave conditions, were carried out, together
with a smaller selection of regular wave tests. All tests utilised
uni-directional waves.

TABLE I
BUOY PARAMETERS (MODEL SCALE).

parameter value
buoy radius (m) 0.625
buoy height (m) 0.25
buoy mass m (kg) 249
water depth (m) 1.5
submergence depth (m) 0.1

Targeted regular wave experiments were conducted to check
the presence of yaw instability predicted by our simple model.
For the buoy with θhigh, the calculated yaw natural period is
2.2s (10s in full scale), and as such the second instability
branch (where ω = ωn6) was investigated. The range of
incident wave periods was 1.7 - 2.8s (7.5 - 12.5s in full scale).
For the buoy with θlow the yaw natural frequency is around
3.8s (17s in full scale). The first instability branch (where
ω = 2ωn6) was investigated, with the range of incident wave
periods of 1.5 - 2.7s (7 - 12s in full scale). The intention was
to run multiple tests at each frequency, such that tests both
above and below the instability boundary would be carried
out. By varying the incident wave amplitudes, and thus the
resultant heave motion, the vertical position ε in the stability
diagram changes.

Using the buoy parameters and the applied PTO coeffi-
cients (K, B and C values), together with the experimental
heave amplitude AZ , the values of δ and ε are evaluated
for each test. These are plotted in the stability diagrams in
Figure 6. Each run has been colour-coded by examining the
recorded yaw motion. Runs which exhibited noticeable yaw
oscillations (mean yaw oscillation amplitude threshold set
to 1◦) are displayed in red. On the other hand, runs with
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Fig. 7. Timeseries of heave and yaw motion from regular wave experiments. The x-axis has been normalised with the incident wave period T , and the heave
motion timeseries has been normalised with the harmonic heave amplitude AZ . Left: test [δ, ε] ≈ [4, 1] for a buoy with θhigh. Right: test [δ, ε] ≈ [0.97, 0.15]
for a buoy with θlow .

minimal recorded yaw motion are shown in green. If our
model worked flawlessly, all red markers would be above
the predicted instability boundaries. The orange marker was
used to denote a test in which the buoy exhibited yaw motion
initially (oscillations of ±5◦ during the first 30 wave periods),
followed by the buoy remaining stable for the remainder of
the test (≈ 100 wave periods).

From Figure 6 we note that our instability prediction is
reasonably accurate for both buoys. Our model cannot give an
indication of the yaw oscillation amplitudes. It simply predicts
the onset of the yaw instability. From the measured yaw
timeseries we note that for the θhigh buoy, the maximum yaw
motion recorded in the regular wave runs was within ±20◦,
whereas for the θlow buoy, the maximum yaw oscillations
could reach ±45◦. This is perhaps not surprising as for a buoy
with attachment points Ai closer to its centre (i.e. smaller
angle θ), the yaw moments due to the tether force are smaller,
and as such provide a weaker restrain.

Figure 7 shows the measured heave and yaw timeseries
from two of the regular wave tests. The period doubling
phenomenon in yaw is clearly visible in the bottom right
plot. This test is for the θlow buoy and corresponds to the
middle of the first instability branch where ω ≈ 2ωn6 (i.e.

δ ≈ 1). Such behaviour is characteristic for odd-numbered
instability branches. The recorded yaw motions from the
second instability branch do not exhibit period-doubling, the
yaw motion is at the incident wave frequency. This can be
seen in the left plots in Figure 7, which correspond to a test
for the θhigh buoy at ω ≈ ωn6 (i.e. δ ≈ 4).

VI. CONCLUSIONS AND DISCUSSION

Mathieu-type yaw motion instability was studied, theoret-
ically and experimentally, in an axi-symmetric submerged
tethered buoy system with three integrated mooring and PTOs.
The governing equations of the WEC in six degrees of
freedom were derived taking into account hydrostatic, linear
hydrodynamic and PTO forces and moments. Various degrees
of non-linearity associated with the tethers were considered. At
first order (in buoy motion variables), the natural frequencies
in all modes were identified. All modes of motion, apart from
yaw, are coupled to the PTO at first order. The yaw natural
frequency depends on tether pretension, mass moment of
inertia of the buoy and geometrical parameters of the mooring
systems.

Similarities between the yaw motion in a three-tethered
system and the sway motion in a single-tethered system were
highlighted. The motions are not strongly damped, and are



subject to Mathieu-type instability due to a coupling with
heave. The occurrence of yaw instability was verified by lab-
oratory experiments with two different mooring arrangements
tested. A range of regular wave periods of 7 - 12s (in full
scale) was used. The instability prediction from our model was
satisfactory. In both mooring set-ups, notable yaw oscillations
were observed in tests which fell well within the predicted
instability branches. However, some inconsistencies remain,
which we hope to resolve by coupled analysis of the other
modes of motion. In the present work we considered yaw-
heave coupling only, whereas in fact all modes of motion are
coupled at second order. Additionally, analysis of yaw motion
instability in irregular tests is also remaining.

Implications of the yaw instability in irregular waves, for
power absorption and for design of the integrated mooring and
PTO system, remain to be identified. If necessary, mitigating
strategies may be adopted, thanks to the understanding of
the yaw motion instability mechanism identified in this work.
Changing the yaw natural frequency such that the incident
wave frequencies did not align with at least the first two
instability branches would reduce occurrence of the instability.
Increased damping in yaw, perhaps in the form of short bilge
keels, would also be beneficial, as this would shrink the
instability branches.

The analysis presented in this paper aims to enhance under-
standing of parametrically excited motions in WECs, which
is a phenomenon likely to affect many wave-activated WEC
designs which are free to respond in a number of modes. In this
respect, we would like to highlight the usefulness of laboratory
tests. Numerical simulations might disregard modes of motion
not directly excited by the fluid (for example sway, roll and
yaw for a symmetric device), or might utilise symmetry to
only model part of the domain, and as such would not reveal
such motions.
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