Optimization of Heterogeneous Arrays of Wave Energy Converters

Habeebullah Abdulkadir* Ossama Abdelkhalik

Department of Aerospace Engineering, Iowa State University

Contents

- Background / Research Question
- Problem description
- WEC Array Optimization
- Homogeneous array optimization
- Heterogeneous array optimization
- HGGA-Heterogeneous array optimization
- Simulation and results
- Conclusion

Background/Research Question

- The WEC dimensions are usually designed for the prevailing sea conditions in a particular location.

Control co-design is desired.

- WEC arrays usually contain identical devices

Can we optimize the dimensions and control to maximize the overall power absorption?

- How can we further improve performance by optimizing the number of devices in the array?

Dynamic Model: Spring-Mass-Damper Approximation

Water surface

Array dynamics

$$
\left(M+M_{\infty}\right) \ddot{\vec{x}}+C_{r} \dot{\vec{x}}+K \vec{x}=\vec{f}_{e}-\vec{u}
$$

> Hydrodynamic coefficients

$$
\begin{aligned}
M_{\infty} & =\left[\begin{array}{ccc}
m_{\infty 11} & \cdots & m_{\infty 1 n} \\
\vdots & \ddots & \vdots \\
m_{\infty n 1} & \cdots & m_{\infty n n}
\end{array}\right] \\
C r_{\omega} & =\left[\begin{array}{ccc}
C r_{\omega 11} & \cdots & C r_{\omega 1 n} \\
\vdots & \ddots & \vdots \\
C r_{\omega n 1} & \cdots & C r_{\omega n n}
\end{array}\right]
\end{aligned}
$$

$>$ A simple point absorber WEC

$$
\left(m+m_{\infty}\right) \ddot{x}+C_{r} \dot{x}+k x=f_{e}-u
$$

$$
\mathrm{q}-\text { factor }=\frac{P_{\text {array }}}{N * P_{\text {isolated }}}
$$

Problem I: Homogenous array optimization

Homogenous array

$$
\text { Maximize: } q=\frac{P_{\text {array }}(R, D)}{N * P_{\text {isollated }}(R, D)}
$$

Problem II: Heterogenous array optimization

Maximize: $p=\frac{P_{\text {heterogeneous }}}{P_{\text {homogeneous }}}$
Subject to:
$R_{i} \in\left[R_{\text {min }}, R_{\text {max }}\right], D_{i} \in\left[D_{\text {min }}, D_{\max }\right]$
Total Vol. of Het array \leq Total Vol.of Hom.array.

WEC Array Hydrodynamics

> We need to compute added mass, radiation damping coefficients, and excitation force coefficients.
> Boundary Element Methods tools vs. an approximate analytic method
> GA needs objective values only; qualitative conclusions on the objective values of different solutions are okay

Approximate analytic coefficients computation

$$
\emptyset(r, \theta, z)=\overbrace{\emptyset_{0}(r, \theta, z)+\emptyset_{7}(r, \theta, z)}^{\text {Diffraction }}+\underbrace{\sum_{q=1}^{6} \emptyset_{q}(r, \theta, z)}_{\text {Radiation }}
$$

Fluid Domain.

Validation of hydrodynamics

Validation of hydrodynamics

Validation of hydrodynamics

Computational speed

2 device array

	Semi Analytic	Nemoh
2	4.18226 s	113.814748 s

The radii are, $r=5 m, R=8 m$, draughts $\mathrm{h}=8 \mathrm{~m}, \mathrm{H}=7 \mathrm{~m}$.

7 device array

	Semi Analytic	Nemoh
7	13.9748 s	$2912.662 \mathrm{~s}(48 \mathrm{mins})$

Control Force

> The objective function:

$$
\begin{equation*}
\text { Mininimze: } J\left(u(t), x_{2}(t)\right)=\sum_{n=1}^{N} \int_{0}^{t}\left\{-u_{n}(t) * x_{2 n}(t)\right\} d t \tag{3}
\end{equation*}
$$

Subject to EOM:

$$
\begin{gathered}
\dot{\vec{x}}_{1}=\vec{x}_{2} \\
\dot{\vec{x}}_{2}=\frac{1}{M}\left(\vec{f}_{e}\left(x_{3}\right)-C \vec{x}_{2}-K \vec{x}_{1}-\vec{u}\right) \\
x_{3}=1
\end{gathered}
$$

$>$ The power constraints and control constraints:

$$
\vec{u}(t) * \vec{x}_{2}(t) \geq-\vec{\epsilon}, \quad|\vec{u}(t)| \leq \vec{\Gamma}
$$

Control Force and Power Computation

Energy extracted when using ORL and PCBSB.

Simulation

The simulation parameters are as follows:

- Wave condition: $T=6 s, H=0.8222 \mathrm{~m}$. (site: Newport, Oregon)
- (Radius and draught) Upper Bound $=10 \mathrm{~m}$.
- (Radius and draught) Lower Bound $=1 \mathrm{~m}$.
- Hydrodynamic parameters are calculated using the approximate analytic method.
- Power from the array is computed using the constrained control PCBSB

Homogenous array result - 3 Devices

Homogenous array result - 5 Devices

Heterogeneous array result: 3 devices

- Optimized dimensions
- Homogeneous: $R=7.2249 m$

R1	$\mathbf{R 2}$	$\mathbf{R 3}$	\mathbf{p}
7.7297	6.6232	6.6095	1.0668
7.7527	6.6143	6.6214	1.0667

Heterogeneous array result: 3 devices

Heterogeneous array result: 5 devices

Heterogeneous array result: 5 devices

Problem III: HGGA-Heterogenous array optimization

Heterogeneous array

Maximize: $p=\frac{P_{\text {heterogeneous }}}{P_{\text {homogeneous }}}$

Subject to:

$R_{i} \in\left[R_{\min }, R_{\max }\right], D_{i} \in\left[D_{\text {min }}, D_{\text {max }}\right], N \in\left[1, N_{\text {homogenous }}\right]$

Total Vol.of Het array \leq Total Vol.of Hom.array.

Problem III: HGGAHeterogenous array optimization

Hidden Genes GA (HGGA)

HGGA

- A variation on GA that allows optimizing the number of design variables, simultaneously with the variables.

Example of 4 WECs

A maximum of 4 WECs
Variables: Radius R1 - R4, Draughts D1 - D4, and tags.

Homogeneous Array from literature

Test case from Giassi 2018.
$R=2 \mathrm{~m}$, draft $\mathrm{d}=0.5 \mathrm{~m}$, and water depth $\mathrm{h}=25 \mathrm{~m}$.
Wave site in Lysekil on the Swedish west coast.

- Regular wave, wave height $\mathrm{H}=1.53 \mathrm{~m}$, period $\mathrm{T}=5.01 \mathrm{~s}$.
- Wave propagating along the x-axis.

$$
\text { Maximize: } p=\frac{P_{\text {heterogeneous }}}{P_{\text {homogeneous }}}
$$

HGGA-Heterogeneous array result

Conclusion

- Investigated increasing power by allowing devices of different dimensions in the same array.
- Could allow the number of devices to vary during optimization
- Heterogenous arrays can produce more power while reducing total volume of buoys.

Acknowledgements

This paper is based upon work supported by NSF, Grant Number 2048413.

Authors would like to thank the collaborators from Maynooth University and Queens University Belfast for their input feedback: John Ringwood, Oliver Mason, Andrei Ermakov, and Pal Schmitt.

Questions

Semi-analytic hydro coefficients

$>$ In the whole fluid domain, the governing equation $\nabla^{2} \emptyset=0$
> Boundary conditions:
> Free surface boundary conditions

$$
\omega^{2} \emptyset-\left.g \frac{\partial \phi}{\partial z}\right|_{z=0}=0
$$

> Seabed condition $\left.\quad \frac{\partial \phi}{\partial z}\right|_{z=-d}=0$
$>$ Impermeable surface condition on the body surface

$$
\frac{\partial \phi}{\partial r}=0,(r=a,-h \leq z \leq 0), \frac{\partial \phi}{\partial z}=0,(0 \leq r \leq a, z=-h)
$$

> Summerfeld radiation condition $\quad \lim _{x \rightarrow \infty} \sqrt{r}\left(\frac{\partial \phi}{\partial r}-i k_{n} \varnothing\right)=0$

Radiation: exterior potential functions

> The homogenous potential function
$\emptyset_{3, h}^{E}=D_{R 0} \frac{H_{m}\left(k_{0} r\right)}{H_{m}\left(k_{0} a\right)}+\sum_{q=1}^{\infty} D_{R q} \frac{K_{m}\left(k_{q} r\right)}{K_{m}\left(k_{q} a\right)}$
Progressive and evanescent waves.

$$
\emptyset_{3, p}^{E}=0
$$

(a) $m=0, n=0$

$$
\text { (d) } m=0, n=1
$$

(e) $|m|=1, n=1$
(f) $|m|=2, n=1$

(b) $|m|=1, n=0$

Radiation: Interior potential functions

> Based on the methods of variable separation and matching eigenfunction expansion for the velocity potential.
> Separation of variables: $\emptyset_{3, m}^{I}(r, z)=\varnothing_{3, h}^{I}+\emptyset_{3, p}^{I}$
> The homogenous potential function

$$
\emptyset_{3, h}^{I}=\frac{C_{R 0}}{2}\left(\frac{r}{a}\right)^{m}+\sum_{n=1}^{\infty} C_{R n} \frac{I_{m}\left(\frac{n \pi r}{(d-h)}\right)}{I_{m}\left(\frac{n \pi a}{(d-h)}\right)} \cos \left(\frac{n \pi z}{(d-h)}\right)
$$

> The particular solution

$$
\emptyset_{3, p}^{I}=\frac{1}{2(d-h)}\left[(z+d)^{2}-\frac{r^{2}}{2}\right]
$$

Continuity conditions

> In both the radiation and diffraction problems, the matching conditions represent the continuity of mass flux, pressure and normal velocity.
> The velocity potentials between interior and exterior domains are matched at the imaginary boundary $(r=a)$.
$\emptyset^{I}=\emptyset^{E}, \frac{\partial \phi^{E}}{\partial r}=\frac{\partial \phi^{I}}{\partial r}(-h \leq z \leq-d), \quad \frac{\partial \phi^{E}}{\partial r}=0,(-h \leq z \leq 0)$,
$>$ The unknown Fourier coefficients $C_{n}, D_{n}, C_{R n}, D_{R n}$ are solved using the matching conditions.
> The hydrodynamic coefficients are found by integrating the potential functions over their corresponding area.

