
Journal Pre-proof

Hybrid Deep Learning Model for Wave Height
Prediction in Australia's Wave Energy Region

Abul Abrar Masrur Ahmed, S Janifer Jabin Jui,
Mohanad S. AL-Musaylh, Nawin Raj, Reepa Saha,
Ravinesh C Deo, Sanjoy Kumar Saha

PII: S1568-4946(23)01021-9

DOI: https://doi.org/10.1016/j.asoc.2023.111003

Reference: ASOC111003

To appear in: Applied Soft Computing

Received date: 10 June 2023
Revised date: 16 September 2023
Accepted date: 29 October 2023

Please cite this article as: Abul Abrar Masrur Ahmed, S Janifer Jabin Jui,
Mohanad S. AL-Musaylh, Nawin Raj, Reepa Saha, Ravinesh C Deo and Sanjoy
Kumar Saha, Hybrid Deep Learning Model for Wave Height Prediction in
Australia's Wave Energy Region, Applied Soft Computing, (2023)
doi:https://doi.org/10.1016/j.asoc.2023.111003

This is a PDF file of an article that has undergone enhancements after acceptance,
such as the addition of a cover page and metadata, and formatting for readability,
but it is not yet the definitive version of record. This version will undergo
additional copyediting, typesetting and review before it is published in its final
form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier.

https://doi.org/10.1016/j.asoc.2023.111003
https://doi.org/10.1016/j.asoc.2023.111003


 

 

Hybrid Deep Learning Model for Wave Height Prediction in Australia's Wave 

Energy Region 

 

Abul Abrar Masrur Ahmeda, S Janifer Jabin Juib, Mohanad S. AL-Musaylhc, Nawin Rajb, Reepa 

Sahad, Ravinesh C Deob, Sanjoy Kumar Sahae 

 

aDepartment of Infrastructure Engineering, The University of Melbourne, Victoria 3010 Australia 

b School of Mathematics Physics and Computing, University of Southern Queensland, Springfield QLD 4300, 

Australia. 

c Department of Information Technologies, Management Technical College, Southern Technical University, 

Basrah 61001, Iraq 

d Department of Electrical and Computer Engineering, University of Alabama at Birmingham 

Birmingham, Alabama, United States 

 
e LOS Cable Solutions, Bandadalen 17, 5417 Stord, Vestland, Norway. 

 

         E-mail addresses:  abulmasrur.ahmed@unimelb.edu.au (A. A. Masrur Ahmed) 

sjanifer.jui@usq.edu.au (S. J. J. Jui) 

mohanad.al-musaylh@stu.edu.iq  (M. Al-Musaylh) 

nawin.raj@usq.edu.au (N. Raj) 

reepa@uab.edu (R. Saha) 

ravinesh.deo@usq.edu.au (R. C. Deo) 

Sanjoy.saha@los-cablesolutions.no (S. K. Saha) 

  

Corresponding Author*: Prof Ravinesh Deo (ravinesh.deo@usq.edu.au)  

Abstract 

Waves are emerging as a renewable energy resource, but the harnessing of such energy remains among 

the least developed in terms of renewable energy technologies on a regional or a global basis. To 

generate usable energy, wave heights must be predicted in near-real-time, which is the driving force 

for wave energy converters. This study develops a hybrid Convolutional Neural Network-Long Short-

Term Memory-Bidirectional Gated Recurrent Unit forecast system (CLSTM-BiGRU) trained to 

accurately predict significant wave height (Hsig) at multiple forecasting horizons (30 minutes, 0.5H; 2 

hours, 02H; 3 hours, 03H and 6 hours, 06H. In this model, convolutional neural networks (CNNs), 

long-short-term memories (LSTMs), and bidirectional gated recurrent units (BiGRUs) are employed 
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to predict Hsig. To construct the proposed CLSTM-BiGRU model, historical wave properties, 

including maximum wave height, zero-up crossing wave period, peak energy wave period, sea surface 

temperature, and significant wave heights are analysed. Several wave energy generation sites in 

Queensland, Australia were tested using the hybrid deep learning CLSTM-BiGRU model. Based on 

statistical score metrics, scatterplots, and error evaluations, the hybrid CLSTM-BiGRU model 

generates more accurate forecasts than the benchmark models. This study established the practical 

utility of the hybrid CLSTM-BiGRU model for modelling Hsig and therefore shows the model could 

have significant implications for wave and ocean energy generation systems, tidal or wave height 

monitoring as well as sustainable wave energy resource evaluation where a prediction of wave heights 

is required.  

Keywords deep learning model; significant wave height; wave energy; renewable energy; sea 

level monitoring system 

1.0 Introduction 

Global warming has become one of the world's most critical issues today. In the last decade, the global 

mean surface temperature (GMST) was over 1.2 °C higher than the pre-industrial baseline [1]. Increasing 

temperatures worldwide have been linked to climate change, and severe and frequent extreme weather 

events, such as droughts and bushfires [1-5]. In Australia, the catastrophic wild bushfire in 2019-20 

caused due to climate change wiped away 17 million hectares of land, 3000 houses, 33 people, and over 

a billion wild animals across New South Wales (NSW), Victoria, ACT, Western Australia, and South 

Australia [6, 7]. The use of fossil fuels to produce energy contributes to the increase in significant gases 

(GHG) [5], [8]. This affects not only available fossil fuel resources and the increase in global temperature 

but also the population's health due to breathing in poor-quality air [9, 10]. Isphording and Pestel [11] 

have also explored the short-term exposure to ambient air pollutants on the spread of Covid-19 and 

discovered a positive effect on death numbers. With the increase in urbanization, 40% of the total world’s 

energy consumption is for lighting, cooling, and heating [5]. Energy consumption is expected to increase 
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over time, as will the risk of extreme weather events. To mitigate this problem, it is essential to carry out 

effective fuel management and find more economical and sustainable alternatives to fossil fuels [12]. 

Over the last few decades, scientists and researchers have explored renewable energy sources such 

as solar, hydroelectric, and wind power resources. In 2020, Australia generated 24% of its total electricity 

from renewable sources, of which 9% came from solar, 9% from wind, and only 6% from hydropower 

[13]. The ocean surrounding Australia provides a potential source of wave energy, as waves travel long 

distances without losing energy in deep water [14], and is a cost-effective alternative to conventional 

energy. However, oceanic waves are variable, often unpredictable, and are affected by various natural 

phenomena. Therefore, understanding the correlated variables and utilizing them in a forecasting model 

is the key to using this energy.   

One component essential for wave energy is significant wave height (Hsig). Hsig, the mean wave height 

of the highest third of the waves, is computed by the difference between the wave crest and the preceding 

wave through [15, 16]. Accurate prediction of Hsig is also vital for safe operations in marine and offshore 

environments [17], installation of wind turbines, cargo transfer, rescue missions [18], marine and coastal 

engineering [19], and energy generation [20], to name a few. Therefore, numerous data-driven 

forecasting models have been developed to estimate Hsig [20-23].  

Forecasting and modelling of Hsig are still in their infancy since coastal waves are unpredictable, non-

stationary, and nonlinear [24]. Numerous studies have examined algorithms such as k-nearest neighbours 

(kNN), linear regressions (LR), model trees (M5), multilayer perceptron neural networks (MLP), robust 

regressions, and support vector regressions (SVR) [25-27]. Özger [28] has concluded wavelet fuzzy logic 

approach (WFL) outperforms when compared with artificial neural network (ANN) and autoregressive 

moving average (ARMA). Cuadra et al. [29] compared MLP and other regression models with ANN and 

found out ANN performs better than the regression models. In the prediction of Hsig,, Etemad-Shahidi, 

and Mahjoobi [19] g depicted ANN are less transparent than semi-empirical regression-based models like 

M5 algorithm as neural network (NN) requiring more time to find network parameters such as the number 

of hidden layers and neurons through trial and error. Furthermore, these studies have utilized standalone 
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models, which are sometimes unsuitable for analysing complex inputs and stochastic features within the 

data.  

To resolve this issue, several studies have used hybrid forecasting models [30-34]. James et al. [35] 

trained a machine learning model to act for a physical-based SWAN (Simulating WAves Nearshore) 

model representing the significant wave height field, and an SVM model simulated the characteristic 

period. The hybrid machine learning (ML) model, integrated with the extreme gradient boosting model 

(XGBoost) and decision tree (DT), has performed significantly better than other standalone ML models 

[36]. Ali et al. [24] have introduced an extreme learning machine (ELM) named improved complete 

ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) by incorporating a Gaussian 

white noise with ensemble-EMD to eliminate the mode mixing issue in EMD; again, it was not entirely 

noise-free for which complete ensemble empirical mode decomposition with adaptive noise 

(CEEMDAN) was proposed [37]. The data decomposition is time-consuming and, therefore, unsuitable 

for analysing more extended time series. Furthermore, conventional machine learning approaches can 

suffer from data overfitting issues, especially with large datasets [38], and do not identify the short- and 

long-term correlations between the predictors and the target [15], which can be overcome by using deep 

learning (DL) approaches. 

DL hybrid models for forecasting have become extremely popular [39-44]. Deep learning models 

can extract deep features and multidimensional dependencies to generate better predictions [45, 46]. This 

technology is also easy to use, automated, and capable of analysing large amounts of data that would 

otherwise require computationally expensive methods [47, 48]. The study is based on a hybrid model 

that combines a convolutional neural network (CNN), a long short-term memory (LSTM), and a 

bidirectional gated recurrent unit (BiGRU). Numerous studies have demonstrated that CNN outperforms 

many existing machine-learning methods in forecasting applications [49, 50].  

Accordingly, this study employs CNN to extract features to improve prediction accuracy [51]. LSTM 

and BiGRU (an improved version of LSTM requiring less training, thus timesaving) are variants of 

recurrent neural networks (RNN) that can avoid short-term memory issues related to gradient vanishing 
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and explosion revealing information in time-series data. There have been some recent studies hybridizing 

CNN and GRU in week-ahead evapotranspiration forecasting [52], CNN and LSTM in solar radiation 

and air quality forecast [51, 53], and CNN-BiGRU in load forecasting [54]. In this study, LSTM and 

BiGRU are employed for prediction purposes, combined with CNN for feature extraction. Notably, this 

hybrid approach has not been used before in any other studies, particularly in forecasting significant wave 

heights, Hsig.  

To build a reliable model, this paper examines the complex, stochastic patterns of oceanic significant 

wave height (Hsig), as well as the maximum wave height (Hmax), zero up crossing wave period (Tz), peak 

energy wave period (Tp), sea surface temperature (SST) to forecast Hsig over relatively short time intervals 

(i.e., half-hourly, two hours, three hours, and six hours) in Queensland, Australia. The proposed hybrid 

model CLSTM-BiGRU has been tested against standalone models and their respective hybrid models. 

This study, therefore, examines the efficacy of the proposed model at four key study sites (i.e., Cairns, 

Emu Park, Mooloolaba, and Gold Coast) in Queensland, Australia, as these locations may be used to 

identify probable spots for future wave energy generation, adding more renewable energy to the main 

transmission systems and achieving energy sustainability.  

2.0 Theoretical Overviews of Predictive Models 

While Convolutional Neural Networks (CNN) are well-known for working on spatial or 2D 

image datasets, they can also extract hidden features from time-series data and generate filters capturing 

those features in predictive models [43]. The CNN works more like a regularized version of the feed-

forward neural network (NN) for solving one-dimensional problems (time series classification and 

prediction). As part of the extraction process, three mapping layers are typically applied: the 

convolutional layer, the pooling layer, and the fully connected layer. An LSTM network has been used 

to interpret wave height features based on the extracted feature information from CNN across time steps. 

Consequently, the combination of two sub-models: CNN and LSTM, has been employed together as C-

LSTM to produce better performance in time series data problems, such as wave height predictions. 

Convolutional filtering is generally used in the convolutional layer to extract potential features. In 

Jo
ur

na
l P

re
-p

ro
of



 

 

addition to reducing the size of the series, the pooling layer preserves the essential characteristics 

identified by the convolutional layer. In this layer, the objective variables are estimated based on the 

features of the predictor variable. Each convolutional layer is defined as follows: 

hij
k = f((Wk ∗ x)ij) + bk         (1) 

where 𝑓 in equation (1) denotes the activation function, Wk is the weight of the kernel connected to kth 

feature map and the star (∗) is an operator of the convolutional process. 

The two most popular variants of recurrent neural networks (RNN) are the long-short-term 

memory neural network (LSTM) and the gated recurrent unit (GRU). Both variants can capture the 

temporal characteristics of the prediction problem, which avoids short-term memory issues related to 

gradient vanishing and explosion, as well as reveal the intrinsic association between time series data [55]. 

This network comprises an underlying component known as the memory cell, which can memorize the 

temporal state using three types of gates: input, forget, and output [55]. The input gate activation tracks 

the input information stored in the memory cell. In contrast, the output gate can control the dissemination 

of the latest information to the ultimate state. The function of the forget gate is to determine unimportant 

information and forget that information from the training data. Additionally, there is another update gate 

to update the cell. These four gates together help regulate the information flow. 

To implement, update the LSTM cell state, and compute the LSTM outputs, the equations (2)–

(9) are required to follow [55]. 

Ft =  σ(WxfXt  + WhfHt−1 + Bf)        (2) 

It =  σ(WxiXt  + WhiHt−1 + Bi)         (3) 

Ct̅ =  σ(WxcXt  + WhcHt−1 + Bc)         (4) 

Ct =  Ft ∗ Ct−1  + It ∗ Ct̅)          (5) 

Ot =  σ(WxoXt  + WhoHt−1 + B0)         (6) 

Ht =  Ot tanh (Ct)           (7) 

Yt =  σ(WhyXHt  + By)          (8) 

σx =  
1

1+e−x           (9) 
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where Xt,  Yt , It, Ft , Ot , Ct, Ct̅,  and σ represent input vector, output vector, input gate outcome, forget 

gate outcome, output gate outcome, finishing state in a memory block, temporary, and sigmoid function.  

Wxf , Wxi, Wxc, and Wxo symbolize input weight matrices and Whf , Whi, Whc, and Who are recurrent 

weight matrices in equations (2)- (5), Why is output weight matrix in equation (8) and Bf , Bi, Bc, B0, and 

By are the related bias vectors for equations (2)- (5),(6),(8). 

The sigmoid function’s output values range from 0 to 1, allowing the neural network to remove 

unrelated information. The hybrid CNN-LSTM (or CLSTM) configuration, incorporates one 

convolutional layer, one max pooling layer, a flattened layer, an LSTM layer, and a fully connected layer 

with the output to reduce raw data features using conventional filters [56]. The wave height prediction 

result using CLSTM has shown high accuracy and better prediction performance than the standalone 

LSTM or CNN network. Despite the superior performance, this hybrid CLSTM configuration is 

relatively complex compared to other individual configurations. 

Gated Recurrent Unit (GRU), a modification of the LSTM concept, requires less training and 

computational time but provides improved network performance. Moreover, GRU combines the hidden 

and cell states into one state; therefore, it has fewer parameters. Thus, the total number of gates in GRU 

is half compared to the total number of LSTM gates, making GRU popular and a shortened variant of the 

LSTM cell. To define the relationship between predictors and predictands in a GRU Network, two input 

features, i.e., input vector 𝑥(𝑡) and output vector ℎ(𝑡 − 1), need to be considered in each layer [57]. The 

outcome of each gate can be generated employing logical operation (pointwise multiplication and 

addition) and nonlinear transformation of predictors using equations (10)-(13), as shown in Fig 1. The 

equations are defined as follows: 

r (t) =  σg (Wrx(t) +  Urh(t − 1) + Br)       (10) 

z (t) =  σg (Wzx(t) +  Uzh(t − 1) +  Bz)        (11) 

h (t) = (1 −  z(t))o(t − 1) +  z(t)oh (t)        (12) 

h (t) =  σh (Whx(t) +  Uh(r(t))oh (t − 1))        (13) 

Jo
ur

na
l P

re
-p

ro
of



 

 

where r(t), z(t), W and U are defined as the reset gate vector, update gate vector, parameter metrics and 

vector respectively. σh, and σg  are signified as a hyperbolic tangent, and a sigmoid function.  

In order to forecast the height of waves with confidence, a forecasting model must be able to 

extract both the implicit features and the complex variances within the sequence data. It must be noted, 

however, that the GRU can only extract information from the forward direction. Therefore, a model must 

draw valuable information from backward time series data. To extract information from both directions, 

the Bidirectional GRU, or BiGRU, is implemented effectively to encapsulate knowledge between 

production variance and input variables. The BiGRU is a sequence processing model comprising two 

GRUs. Out of two GRUs, one GRU takes the input in a forward direction and the other in a backward 

direction. It is a bidirectional recurrent neural network with only the input and forgets gates. According 

to the proposed Bi-GRU model, bi-directional regularities can be depicted between multiple inputs and 

outputs, and it could be used to investigate the mechanism of stimulation performance based on relevant 

production data. 

In both LSTM and BiGRU algorithms, gates control the memory process; GRU uses fewer 

training parameters, requires less memory, and is faster than LSTM, while LSTM is more accurate on a 

large dataset. The BiGRU shows efficacy when past and future information is required to be incorporated 

into production sequences. We used a classical machine learning model as a baseline, random forest (RF) 

model, a popular supervised machine-learning algorithm, can accumulate predictors associated with 

different values of random vectors sampled independently [58]. This model trains several trees (decision 

tree 1, 2, …, N), in parallel and uses the majority voting/ averaging of the trees as the final prediction or 

results of the RF model. This model adopts a bagging-type ensemble (collection). A randomly selected 

sample is assigned to each split node that obtains a better prediction result with a higher accuracy rate 

and avoids overfitting. The individual decision tree model is easy to interpret. Still, the model is 

nonunique and exhibits high variance. Equation (14) calculates the predicted values for unseen 

complexes: 

𝑦 =  
1

𝐵
∑ 𝑡𝐵(𝑥)𝐵

𝑏=1           (14) 
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where 𝐵 represents the number of data points, 𝑡𝐵(𝑥) portrays the result of (𝑓𝑏 − 𝑦𝑏)2.  𝑓𝑏  is showing the 

value returned by the model and 𝑦𝑏 is the actual value for datapoint b.  

The hybrid architecture of RNN and convolutional neural network (CNN) has emerged mainly to 

capture the temporal correlation of data along with extracting features from a given dataset, e.g., high-

resolution images or tensor concurrently in addition to classifying or making predictions. Exploiting 

CNN and LSTM collectively, the CLSTM neural network is proposed to handle the input data containing 

many features efficiently. It is noteworthy that time-series data usually are lengthy due to the high 

sampling frequency of digital signal devices nowadays, which will be facilitated by feature extraction 

via convolutional layers.  

Therefore, we propose a novel CLSTM-BiGRU-based deep learning hybrid model, which takes 

advantage of the intrinsic features of CLSTM neural networks and a bidirectional GRU, or BiGRU, to 

forecast significant wave height in this study. In this hybrid approach, statistical methods are combined 

with machine learning methods to compensate for the limitations of one approach with the strengths of 

the other, especially in forecasting time series data. 

3.0 Study Area and Data Description 

This study aims to develop a set of forecasting models based on the wave time-series recorded at four 

data collection stations in Queensland. The study used a 30-minute interval dataset of recorded wave 

parameters (see Table 1) from 2015 to 2021. Table 2 and Fig. 1(a) show the selected sites and their 

geographical locations. Since the data-driven models depend on predictive features in historical data for 

future forecasting, wave features are used for significant wave height forecasting. 

Table 1 The model input parameters and their descriptions including units. 

Wave Property Parameters Descriptions Unit 

Time-Lagged Combinations 

of Predictor (Input) 

Variables (see Fig. 2) 

Hmax Maximum Wave Height m 

Tz Zero Up Crossing Wave Period Seconds  

Tp Peak Energy Wave Period Seconds 

SST Sea Surface Temperature 0C 
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Hsig Significant Wave Height m 

Objective Target Variable Hsig Significant Wave Height m 

 

 Table 2 The geographical location of the study sites where the proposed CLSTM-BiGRU 

was constructed.  

Study Site Geographical Location 

Gold Coast 27° 57' 53" S, 153° 20' 58" E 

Cairns 16° 55' 34" S, 145° 46' 27" E 

Mooloolaba 26° 40' 53" S, 153° 07' 09" E 

Emu Park 23° 15' 25" S, 150° 49' 35" E 

 

 

 

Fig. 1. (a) Geographic location of the present sites studied to build the CLSTM-BiGRU-based hybrid 

deep learning model to forecast significant wave height was developed: Cairns, Emu Park, 

(a) 
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Mooloolaba, and Gold Coast located in Queensland, Australia. (b). The monitoring buoys that 

are employed in the Queensland waters where data were collected. 

 

 

Fig. 2 Schematic workflow of CLSTM-BiGRU model development and architecture of the 

convolutional neural network (CNN), long-short term memory (LSTM), and bidirectional 

gated recurrent unit (BiGRU) to forecast significant wave height at multi-step horizons. 

Note that the model is constructed using oceanic significant wave height (Hsig), as well as 

the maximum wave height (Hmax), zero up crossing wave period (Tz), peak energy wave 

period (Tp), sea surface temperature (SST) to forecast Hsig over relatively short time (i.e., 

half-hourly, two hourly, three hourly, and six hourly) intervals in Queensland, Australia. 

 

Considering, 𝐻𝑠𝑖𝑔 as the target time series variable for the 30-minute interval, the significant lags 

are then used with other wave features; maximum wave height (Hmax), zero up crossing wave period (Tz), 

peak energy wave period (Tp), and sea surface temperature (SST) to predict the significant wave height 

𝐻𝑠𝑖𝑔. It is noted that 𝐻𝑠𝑖𝑔 is generally measured as an average of the third-highest wave in the recording 

period, and this measurement is based on the hypothesis that smaller waves are not considered because 
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they are insignificant by the observer. As a rule, these smaller waves do not have much influence on the 

overall processes of the waves. The Hmax, another property used to develop the proposed model, is defined 

as the distance between the top of the wave (i.e., the wave crest) and the bottom of the wave (wave 

trough). In a wave, the Tz parameter indicates the time between two zero-level up-crossings. Basically, 

SST refers to the temperature close to the surface of the ocean, which is called the 'skin' temperature of 

the ocean. Surface temperature is generally measured from the range of 1 mm to 20 m from the top. In a 

wave recording, Tp represents the wave period of the waves giving the most energy. In addition to ocean 

waves, distant disturbances such as storms can also generate these waves. Using various wave properties 

to construct the proposed CLSTM-BiGRU-based deep learning hybrid model was a deliberate strategy 

to maximize the performance of the model used to predict significant wave height. 

These wave parameters are monitored continuously by floating buoys located at the study sites in 

Queensland. During the wave heave recording and processing, the wave heave is recorded and processed 

electronically. As soon as the data has been collected, it is sent to the nearby station (see Fig. 1b). The 

station devices, which include a computer, radio receiver, and modem, store and analyse the data. 

Datasets are sent to the data server for further processing. The buoys are calibrated for twelve months 

before being deployed in the ocean. The buoy is a stainless-steel device that can range from 0.4 m to 0.9 

m and is designed to follow the movement of the wave. 

4.0  Model Development Procedures  

4.1 Data Normalization 

To improve the model’s convergence into its optimal state for best accuracy, the predictors and 

predictands are normalized to remove both dimensionality and variance of variables. To execute the 

normalization stage, the minimum and maximum values of each variable, 𝑥𝑖 was calculated. For each 

data sample, 𝑥𝑗, the normalization process is denoted in Eq. 15.  

𝜔‾ 𝑖 =
𝜔𝑖− min

1≤j≤n
{𝜔𝑗}

max
1≤𝑗≤n

{𝜔𝑗}− min
1≤𝑗≤n

{𝜔𝑗}
                (15) 

where 𝜔𝑖 ∈ {𝜔1, 𝜔2, ⋯ , 𝜔n} is the original data and 𝜔‾ 𝑖 ∈ [0,1] is the normalized data. 
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4.2 Data Partitioning 

This study used data partitioning as a regular method of validating the deep hybrid CLSTM-BiGRU 

model against independent BiGRU and RF models. By using the PACF and CCF methods, the 

predictands (Hsig) are correlated to create the input and target data necessary to build a predictive model 

(see Fig. 3). It is necessary to divide the input data into training, testing, and validation sets when building 

predictive models. For the model to learn more about the characteristics of the data over time, it uses a 

training set, which consists of a collection of data that is repeatedly used during training. The validation 

process intends to provide information that may be used to adjust the model hyperparameters. Training 

sets are different from validation sets, which are used to assess and validate the model as it is being 

trained. The test set is used only after a model has been trained (using train and validation sets) and 

primarily to evaluate the model. The datasets between Jan 2015 and Aug 2021 at 30 min interval is 

partitioned as 70% for training, 15% for validation, and 15% for testing. 

 
Fig. 3 (a) The correlogram shows the covariance between the objective target (Hsig) and the 

predictor (Hmax, Tz, Tp, SST) variables in terms of cross-correlation coefficients (rcross), and 

(b) a partial autocorrelation function (PACF) plot of the Hsig time series exploring the 

antecedent behaviour for Mooloolaba and Emu Park study sites.  
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4.3 The Development of CLSTM-BiGRU Objective Model  

In this study, we developed a novel hybrid predictive model (CLSTM-BiGRU) that incorporates CNN, 

LSTM and BiGRU algorithms. For the prediction of Hsig time series at multiple forecast horizons (i.e., 

0.5H, 02H, 03H, and 06H), the proposed deep learning hybrid CLSTM-BiGRU model consists of three 

convolutional layers, a pooling layer, and the final layer, which is flattened and input to the LSTM and 

then to the BiGRU model.  

Three crucial steps comprise the modelling process: 

• To pre-train the CNN, we first input the training data into the CNN model and then compute the 

convolutional and fully connected layer parameters. Through the convolution layers, the features 

of the training data are retrieved and filtered.  

• Two LSTM layers and one BiGRU layer use the extracted features as input to calculate the 

significant wave height (Hsig) for four hourly horizons. The model's predictive capability is 

increased by retrieving data from the flatten layer's output once more using the CLSTM-BiGRU 

model. 

For a deep learning prediction model, hyperparameter optimization is essential. The optimally selected 

hyperparameters of deep learning models are tabulated in Table A1 which can be placed at Appendix. 

This should be performed to enhance the performance of the model on independent (test) datasets. Grid 

search has also been utilized well because they facilitate the training of deep learning models [59, 60]. 

We employed the Stochastic gradient descent optimization approach, which uses an iterative method for 

optimizing an objective function with appropriate smoothness characteristics [61]. This technique's 

benefits are simplicity, effectiveness, minimal memory requirements, re-scalability of the gradient's 

diagonal, and adaptability for massive data sets [62, 63]. With a constant learning rate of (lr) 0.001, decay 

rates of (1=0.9 & 2 = 0.99), and an epsilon of 10-8, we employed the Adam optimization algorithm. 

Additionally, every output layer was followed by the Rectified Linear Units (ReLU) activation function 

except the final one. ReLU, a popular activation function in DL models, is parameter-free and non-

saturating, which can speed up stochastic gradient descent's convergence saturation [64]. ReLU can 
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greatly boost deep learning performance in terms of faster convergence and higher accuracy when 

compared to its saturated counterpart activation functions, such as sigmoid and tanh [63]. Additionally, 

the robust deep hybrid CLSTM-BiGRU model used in this study to forecast daily Hsig has been 

regularised using the following techniques: 

• During the model training phase: Many epochs during the model training phase can result in an 

overfitted model, while fewer epochs might result in an underfitted model. Early stopping (es) was 

implemented [65] to avoid these mistakes. The training phase is terminated when the model's 

performance does not improve on a validation dataset. As a result, training was stopped during model 

construction after 15 (patience) consecutive epochs in which the loss had ceased reducing. 

• To avoid the over-fitting: The "ModelCheckpoint" call back is used in this study to preserve the 

version of the model with the greatest performance at the conclusion of an epoch after using Keras 

"ReduceLROnPlateau" function to lower the learning rate when a validation loss stops increasing 

[66]. With patience of 10, the learning rate (lr) is decreased by a factor of 0.2. 

4.3 Benchmark Model Development 

The proposed objective model (i.e., the deep hybrid CLSTM-BiGRU) and the benchmark deep learning 

models were created using TensorFlow 2.0.1 [67, 68] and Keras 2.2.4 Libraries on a Python programming 

environment. The training process of all the predictive models was conducted on a system with a CPU 

type of Intel® Core ™ i7, 16GB RAM. A classical machine learning model, i.e., Random Forest 

Regressor (RF), was prepared using scikit-learn to further compare the performance of proposed model.  

4.4 The performance Evaluation Metrics 

We use various visual and statistical criteria during our models' independent testing phase. The 

performance requirements largely concern with the model's characteristics and applicability, information 

about available inputs, and model-specific knowledge [69]. The link between planned and observed 

values determines a model's efficiency; yet these criteria are usually identified without considering the 

model's purposes and projects. Several scoring measures were used, including three efficiency metrics 

(Pearson's correlation coefficient (r), Kling-Gupta Efficiency (KGE) [70] and Nash-Sutcliffe Efficiency 
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(NSE) [71] and two error metrics [72] and Root Mean Square Error (RMSE; m). According to Willmott 

and Matsuura, MAE is a more accurate predictor of model performance than RMSE [73]. Equations (16-

28) give the corresponding mathematical formulas for MAE, RMSE, NSE, MAPE, and RMAE. 

Mean Absolute Error (MAE, m) is defined as:  

𝑀𝐴𝐸 =
1

N
∑ |𝐻sig.for − 𝐻sig.obs|N

i=1 , 0 ≤  𝑀𝐴𝐸 ≤  ∞                     (16)         

Root Mean Square Error (RMSE; m) is given as:    

𝑅𝑀𝑆𝐸 = √
1

N
∑ (𝐻sig.for − 𝐻sig.obs)2N

i=1 , 0 ≤  𝑅𝑀𝑆𝐸 ≤  ∞              (17) 

Nash – Sutcliffe Efficiency (NSE) is expressed as:   

𝑁𝑆𝐸 = 1 − [1 − 
∑ 𝐻sig.for)2N

i=1

∑ (𝐻𝑠𝑖𝑔.𝑜𝑏𝑠− 𝐻̅𝑠𝑖𝑔.𝑓𝑜𝑟)
2N

i=1

] , − ∞ ≤ 𝑁𝑆𝐸 ≤ 1          (18)  

Mean Absolute Percentage Error (MAPE, %) is expressed as:  

𝑀𝐴𝑃𝐸 =
1

N
 (∑ |

(𝐻sig.for− 𝐻sig.obs)

𝐻𝑠𝑖𝑔.𝑜𝑏𝑠
 |i=1

𝑁 ) ∗ 100                              (19) 

Index of Agreement (d) is stated as:   

𝑑 =  1 −  [
∑ (𝐻sig.for−𝐻sig.obs)

2N
i=1

∑ (|𝐻sig.for− 𝐻̅sig.obs|+ |𝐻sig.obs− 𝐻̅sig.obs|)
2N

i=1

] , 0 ≤ 𝑊𝐼 ≤ 1                  (20) 

Relative Mean Absolute Error (RMAE, %)  

𝑅𝑀𝐴𝐸 =
1

𝑛
∑ (

|(𝐻sig.for−𝐻sig.obs)|×100%

𝐻sig.for
)

𝑛

𝑖=1

                        (21)  

In the commonly used persistence model, the calculations assume that atmospheric conditions are 

stationary between the present and the anticipated time. In the case of a positive value, the suggested 

deep hybrid CLSTM-BiGRU predictive model is expected to beat the persistence, baseline model; in the 

case of a negative value, the persistence model is most likely superior. Moreover, this study has evaluated 

the performance of the proposed model using Kling-Gupta Efficiency (KGE) [70].  

  We also adopted the Promoting Percentage of Kling-Gupta Efficiency (KGE) [70] (𝜕𝐾𝐺𝐸) and 

Relative Mean Absolute Error (𝜕𝑅𝑀AE) to compare the various models used in Hsig prediction. 

 𝜕𝐾𝐺𝐸 = |(𝐾𝐺𝐸1 − 𝐾𝐺𝐸2)/𝐾𝐺𝐸1|                  (22) 
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𝜕𝑅𝑀AE = |(𝑅𝑀𝐴𝐸1 − 𝑅𝑀𝐴𝐸2)/𝑅𝑀𝐴𝐸1|                 (23) 

where,   

𝐾𝐺𝐸1 𝑎𝑛𝑑 𝑅𝑀𝐴𝐸1 = CLSTM-BiGRU model performance metrics  

𝐾𝐺𝐸2 𝑎𝑛𝑑 𝑅𝑀𝐴𝐸2  = benchmark model performance 

Kling – Gupta Efficiency (KGE) is expressed as:   

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (
𝑆𝐷𝑠𝑖𝑔.𝑓𝑜𝑟

𝑆𝐷𝑠𝑖𝑔.𝑜𝑏𝑠
− 1)

2

+  (
𝐻̅𝑠𝑖𝑔.𝑓𝑜𝑟

𝐻̅𝑠𝑖𝑔.𝑜𝑏𝑠
− 1)

2

  −  ∞ ≤ 𝐾𝐺𝐸 ≤ 1          (24) 

And r is Correlation Coefficient, which is mathematically expressed as below:  

𝑟 =  {
∑ (𝐻𝑠𝑖𝑔.𝑜𝑏𝑠−𝐻̅𝑠𝑖𝑔.𝑜𝑏𝑠)(𝐻𝑠𝑖𝑔.𝑓𝑜𝑟−𝐻̅𝑠𝑖𝑔.𝑓𝑜𝑟)N

i=1

√∑ (𝐻𝑠𝑖𝑔.𝑜𝑏s−𝐻̅𝑠𝑖𝑔.𝑜𝑏𝑠)
2

 ∑ (𝐻𝑠𝑖𝑔.𝑓𝑜𝑟−𝐻̅𝑠𝑖𝑔.𝑓𝑜𝑟)N
i =1

2N
i=1

}

2

                            (25) 

 

Finally, we adopted the direction of movement as measured by Expanded uncertainty (U95) such that: 

𝑈95 = 1.96 ∗ (𝑆𝐷2 +  𝑅𝑀𝑆𝐸2)2         (26) 

MAE Skill Score (MAESS):  

MAE𝑆𝑆 =  
𝑀𝐴𝐸𝑅𝐹− 𝑀𝐴𝐸𝐷𝐿 

𝑀𝐴𝐸𝑅𝐹
          (27) 

RMSE Skill Score (RMSESS):  

RMSE𝑆𝑆 =  
𝑅𝑀𝑆𝐸𝑅𝐹− 𝑅𝑀𝑆𝐸𝐷𝐿 

𝑅𝑀𝑆𝐸𝑅𝐹
          (28) 

Where 𝐻𝑠𝑖𝑔.𝑜𝑏𝑠  and 𝐻𝑠𝑖𝑔.𝑓𝑜𝑟 denote the observed and model forecasted value from the ith element; 

𝐻̅𝑠𝑖𝑔.𝑜𝑏𝑠  and 𝐻̅𝑠𝑖𝑔.𝑓𝑜𝑟 denote their average, respectively, SD represents the standard deviation of the data 

and N signifies the number of observations of the Hsig.  DL is referred as three deep learning models (i.e., 

BiGRU, CNN-LSTM and CLSTM-BiGRU).  

5.0 Experimental Results and Discussion 

This study demonstrates the effectiveness of a newly designed deep learning hybrid CLSTM-

BiGRU model over the classic deep learning models of CLSTM and BiGRU, and a machine learning 

model RF, to forecast the significant wave height (Hsig) at four areas: Gold Coast, Cairns, Mooloolaba, 
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and Emu Park located in the state of Queensland, Australia. The models were developed using four-time 

steps of 0.5 H, 2H, 3H, and 6H. In this section, two statistical tools of mean absolute error (MAE) and 

Index of Agreement (d) and different schemes have been used to determine the prediction accuracy and 

performance of the CLSTM-BiGRU model and the comparison models. According to the description and 

mechanism of the MAE and d metrics, the model with the lowest MAE and highest d is elected as the 

best model. 

Comparing the results that are demonstrated in Table 3 for the machine learning model (RF) and the deep 

learning models (hybrid CLSTM-BiGRU, CLSTM, and BiGRU), the machine learning RF model had 

the lowest accuracy with all study areas and prediction steps. On the other hand, when the comparison 

was made among the deep learning models, superior performance was made by the suggested study 

model CLSTM-BiGRU. In terms of the half hourly prediction (0.5H) with all study sites, the CLSTM-

BiGRU model has made the best values for both metrices (MAE/d). For Cairns, Emu Park, Gold Coast 

and Mooloolaba, respectively, those values were 0.033/0.994, 0.024/0.998, 0.055/0.994 and 0.011/0.997 

compared to 0.034/0.988, 0.034/0.995, 0.056/0.990 and 0.014/0.993 for CLSTM and 0.045/0.991, 

0.039/0.990, 0.059/0.991 and 0.019/0.989 for BiGRU. Although by relatively small margin, the BiGRU 

model had the lowest MAE values [0.053 for Gold Coast (2H) and 0.060 for Emu Park (6H)], the 

CLSTM-BiGRU model yielded the best MAE values when the data of 2H and 6H from other sites were 

used as well as the highest d values for all study zones with respect to these time steps. Using 3H datasets, 

excluding the d value for Cairns, the CLSTM-BiGRU model achieved the best values for both metrices 

outperforming the CLSTM and BiGRU models. 

 

 

Table 3 Mean Absolute Error (MAE) and Index of Agreement (d) between the observed and 

forecasted Hsig using the proposed CLSTM-BiGRU model compared to the CLSTM, 

BiGRU and RF models.  

Forecast 

Horizon 

Cairns Emu Park Gold Coast Mooloolaba 

MAE d MAE d MAE d MAE d 

CLSTM-BiGRU (Proposed Model) 
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0.5H 0.033 0.994 0.024 0.998 0.055 0.994 0.011 0.997 

02H 0.037 0.986 0.035 0.995 0.055 0.993 0.015 0.995 

03H 0.041 0.985 0.034 0.994 0.076 0.985 0.047 0.993 

06H 0.053 0.975 0.062 0.982 0.110 0.967 0.054 0.990 

CLSTM 

0.5H 0.034 0.988 0.034 0.995 0.056 0.990 0.014 0.993 

02H 0.040 0.984 0.038 0.992 0.054 0.990 0.021 0.989 

03H 0.051 0.989 0.045 0.991 0.078 0.984 0.054 0.982 

06H 0.058 0.972 0.062 0.979 0.129 0.956 0.058 0.973 

BiGRU 

0.5H 0.045 0.991 0.039 0.990 0.059 0.991 0.019 0.989 

02H 0.042 0.983 0.036 0.993 0.053 0.984 0.032 0.975 

03H 0.049 0.988 0.035 0.988 0.088 0.979 0.056 0.979 

06H 0.058 0.970 0.060 0.981 0.123 0.955 0.057 0.966 

RF 

0.5H 0.061 0.869 0.089 0.969 0.139 0.934 0.052 0.961 

02H 0.112 0.798 0.087 0.970 0.129 0.945 0.124 0.968 

03H 0.113 0.766 0.091 0.968 0.141 0.933 0.132 0.961 

06H 0.113 0.786 0.102 0.955 0.157 0.919 0.148 0.953 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of



 

 

 

 

Fig. 4 Comparison of the predictive skill of the proposed CLSTM-BiGRU model vs. CLSTM, 

BiGRU and RF (benchmark) models in terms of the Mean Absolute Percentage Error 

(MAPE %) and Relative Index of Agreement (drel) computed in the testing period for 0.5H 

forecasting horizon.   
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Fig. 5 An evaluation of the proposed CLSTM-BiGRU model in respect to the benchmark models 

based on absolute forecasted error |FE| for 0.5H forecasting horizon. 

 

Various graphics have been presented in this research to discuss the experimental results further 

to show the proposed model's ability to accurately forecast oceanic significant wave height (Hsig). Firstly, 

the study illustrated the Mean Absolute Percentage Error (MAPE %) and Relative Index of Agreement 

(drel) in Fig. 4 to examine the precision of the models for Hsig prediction in 0.5H horizon. Accordingly, 

the best values (lowest MAPE and highest drel) were created by the CLSTM-BiGRU model when they 

were compared to the developed benchmarked from deep and machine learning models. The 

recommended model performed near unity drel values with significantly low values of MAPE using all 

study sites. Furthermore, the ability of the CLSTM-BiGRU model to predict Hsig was confirmed to be 

the best by presenting the boxplots in Fig. 5. Using the forecasted error |FE| for 0.5H forecasting horizon, 

the boxplots showed the |FE| values with respect to different statistical values of minimum, average, 
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maximum, first quartile (25%), second (medium) quartile (50%) and the third quartile (75%). Based on 

these statistical tools, hence, the study objective model has generated the lowest values due to its 

advantage in dealing with time-series data verifying its considerable ability to yield better estimation of 

Hsig data than the other models. 

 To investigate the relationship between the observed and predicted data, scatterplots were 

employed in Fig. 6 using 0.5 h with all study regions. The regression line of y = ax + b, which is 

corresponding to 𝐻𝑠𝑖𝑔.𝑓𝑜𝑟 = 𝑎 ∗  𝐻𝑠𝑖𝑔.𝑜𝑏𝑠 + 𝑏 in this study, and the correlation of determination (R2) were 

used to assess the deep learning model’s accuracy. The values of R2 were 0.998, 0.997, 0.997 and 0.997 

for CLSTM-BiGRU, 0.995, 0.995, 0.995 and 0.982 for CLSTM and 0.992, 0.990, 0.993 and 0.979 for 

BiGRU using the 0.5H dataset for Cairns, Gold Coast, Emu Park, and Mooloolaba, respectively. Based 

on those values, again, the CLSTM-BiGRU model had the highest accuracy in forecasting the oceanic 

wave height data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Scatter plot of forecasted and observed Hsig in testing phase at the four stations using the 

proposed CLSTM-BiGRU vs. CLSTM and BiGRU models for 0.5 H horizon. Least 
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square regression line and coefficient of determination (R2) with a linear fit is shown in 

each sub-panel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Comparison of the predictive skill for proposed CLSTM-BiGRU vs. CLSTM, BiGRU and 

RF models in terms of the relative error: RRMSE (%) and the NSE value within the testing 

period computed for the multi-step horizons.   
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Concurring with the earlier results, Fig. 7 confirms that the hybrid CLSTM-BiGRU model had 

the most extraordinary power compared to the CLSTM, BiGRU, and RF models to predict oceanic wave 

height values. In association with Fig.7, two metrics of the Relative Root Mean Square Error (RRMSE%) 

and the Nash–Sutcliffe Coefficients (NSE) were utilized to determine the predictive proficiency of the 

used models in which the model that generates the lowest percentage of RRMSE and highest value of 

NSE is considered the best one. Accordingly, the CLSTM-BiGRU technique has achieved these criteria, 

as shown in Fig. 7, presenting better forecasting values and outperforming CLSTM, BiGRU, and RF 

models using the multi-step horizons of 0.5H, 2H, 3H, and 6H with all study station’s datasets. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 8 Empirical cumulative distribution function (ECDF) in absolute forecast error |FE| for the 

proposed CLSTM-BiGRU vs. CLSTM, BiGRU and RF models for Mooloolaba station 

presented for multi-step forecast horizons.  

 

Another model evaluation graphical approach was implemented in Fig. 8 of this study to further check 

the strength of the suggested CLSTM-BiGRU model over the other tested models for forecasting Hsig. 

This was the Empirical cumulative distribution function (ECDF) that was plotted for the forecasted error 

|FE| using the multi-step horizons of the Mooloolaba site. Again, the optimal performance was made by 
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the CLSTM-BiGRU model due to having most of its forecasted errors |FE| in the smallest bracket of 0 

to ± 0.5 for 0.5H, 2H, 3H, and 6H whereas it was 0 to ± 0.2 for the 3H horizon. Fig. 8 presents the more 

detail of this phenomena. 

From the foregoing results and discussion, it can be concluded that the study-selected model 

CLSTM-BiGRU has the considerable ability to produce relatively precise prediction values of oceanic 

wave height. This model can highly support the Australian government by instilling an automatic high-

quality early warning system that can provide different benefits, such as (1) estimating the level of the 

wave before it occurs, (2) offering valuable information for diverse real-world applications such as, in 

marine conveyance, environmental supervising, as well as coastal protection and engineering [74]. Thus, 

the CLSTM-BiGRU model is needed to address the practical problems that create potential risks for 

industries, governments, and people’s daily lives. 

6.0 Further Discussion  

This study has made significant contributions in respect to developing and verifying the predictive 

stability and capability of the proposed hybrid CLSTM-BiGRU model. The approach integrated three 

phases comprised of the CNN, LSTM and BiGRU methods to predict the oceanic significant wave height 

(Hsig). The forecasting achievement of the preferred model has been selected as the best performing by 

comparing it with a two-phase model of CLSTM and two single-phase models of BiGRU and RF. 

Although different criteria from statistical metrices and high quality of graphical analyses have been 

employed in the previous section to determine the best model, this section also presented three other tools 

to further assess the model’s performance. Having these as further results and discussion can confirm the 

power of the CLSTM-BiGRU model in generating optimum forecasting values. 
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Fig. 9 Comparison of the predictive skill of the proposed CLSTM-BiGRU model using the 

Expanded Uncertainty (U95) metric against the benchmark CLSTM, BiGRU and RF 

models for the multi-step forecast horizons.   

 

To measure the 95% level of confidence, Fig. 9 is shown for all models, study sites, and multi-

steps based on the uncertainty at 95% (U95), in which the closest value to zero is expected to indicate 

the best model. Using this method of evaluation, high forecast accuracy was achieved by the CLSTM-

BiGRU model that outperformed other developed models presented in Fig. 9. Additionally, to find the 
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closest model to the CLSTM-BiGRU model, the differencing values in Kling-Gupta Efficiency (KGE) 

and Root Mean Absolute Error (RMAE) named here 𝜕𝐾𝐺𝐸 and 𝜕𝑅𝑀𝐴𝐸, respectively, between the 

suggested model and each developed model have been separately calculated and plotted in Fig. 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10  The prompting percentage change in KGE (𝜕𝐾𝐺𝐸) and RMAE (𝜕𝑅𝑀𝐴𝐸) calculated with 

respect to the proposed CLSTM-BiGRU model for Mooloolaba stations at the multi-step 

forecast horizons.  
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Fig. 11 The time series plot at Mooloolaba study site of: (a) forecasted and observed Hsig for the 

proposed CLSTM-BiGRU model compared with the CLSTM and BiGRU models at 0.5 

h forecast horizons, (b) the forecasted and observed Hsig generated by the proposed 

CLSTM-BiGRU model at multi-step forecasting horizons.  

 

Based on the structure of these tools, the model that achieved the lowest values of 𝜕𝐾𝐺𝐸 and 𝜕𝑅𝑀𝐴𝐸 

signifies the closest model to the CLSTM-BiGRU model. Accordingly, the outcomes of Fig. 10, which 

have been analysed using the Mooloolaba station with multi-step datasets, have shown that the CLSTM 

model accomplished these conditions indicating to have accurate prediction values that are closest to the 

best study model of CLSTM-BiGRU. Finally, the forecasted and observed values are also presented in 
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Fig. 11 for the Mooloolaba station to show the consistency of the presented model over the benchmarked 

models. Fig. 11 (a) shows the forecasted and observed values at 0.5 h for the CLSTM-BiGRU, CLSTM, 

and BiGRU models, while Fig. 11 (b) presents these values for the study suggested model only with 

multi-step forecasting horizons. According to Fig.11, the prediction values obtained by the CLSTM-

BiGRU model are the closest to the observed 0.5 h data when the comparison was made with those values 

generated by the CLSTM and BiGRU models. On the other hand, the forecasting values using 0.5H, 2H, 

3H, and 6H of the proposed model were significantly close to the observed data.  

To assess potentiality of our approach against a state-of-the-art method, we calculated skill score 

of MAE (MAESS) and RMSE (RMSESS) between hybrid deep learning models, namely BiGRU, CNN-

LSTM, and CLSTM-BiGRU, against a baseline model represented by RF (Random Forest), which serves 

as a classical benchmark (Fig. 12). For the MAE Skill Score, the CLSTM-BiGRU model consistently 

demonstrates its superiority over both BiGRU and CNN-LSTM across all time horizons and locations. 

Specifically, at the 0.5H time horizon, the CLSTM-BiGRU achieves a skill score of 0.57, outperforming 

BiGRU's 0.53 and CNN-LSTM's 0.59. This trend continues as the time horizons extend, highlighting the 

robustness of the CLSTM-BiGRU model's predictions. Examining the RMSE Skill Score, again, the 

CLSTM-BiGRU exhibits remarkable proficiency. At the 02H time horizon, it attains a score of 0.45, 

surpassing both BiGRU's 0.56 and CNN-LSTM's 0.56. This pattern endures for subsequent time horizons 

and locations, reaffirming the consistency of the CLSTM-BiGRU’s performance. This comparative 

analysis thus underscores the potential of the CLSTM-BiGRU model as a valuable tool for accurate and 

reliable wave forecasting in various coastal regions, outperforming both BiGRU and CNN-LSTM 

models. 
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Fig. 12 Skill Score of MAE (MAESS) and RMSE (RMSESS) between deep learning models against classical 

machine learning (RF) model for five study regions at multi-step forecasting horizons.  

 

Parameter sensitivity analysis is a technique used to assess how changes in the values of input 

parameters affect the output of a model or a system. Figure 13 shows the % change of RMSE on the 

proposed CLSTM-BiGRU model by systematically altering the input features across varying percentages 

to comprehend the model's responsiveness to parameter changes. For instance, considering a 1% 

increase, the Hmax displayed a 2.0% change, while Tz exhibited a larger 4.0% alteration. Similarly, the 

Tp underwent fluctuations of 5.0%, and the sea surface temperature (SST) showcased a distinct 12.0% 

variation. This comprehensive analysis provides a nuanced understanding of how different input features 

influence the behaviour of our CLSTM-BiGRU model. The proposed model response over different 

forecasting horizon shows a very positive correlation with the input variables. Lastly, the process time is 

important to make the model more adaptable specially when our model consists multi-layered hybrid 

deep learning model. The overall processing time of the proposed model was 11 ± 3 minutes for different 

region and forecasting horizon establishing the approach easily adaptable.  
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Fig. 13 Parameter sensitivity analysis of proposed CLSTM-BiGRU model for RMSE 

 

7.0 Conclusions and further research outlook 

The purpose of this study was to develop an artificial intelligence methodology for forecasting significant 

wave heights at four stations in Queensland, Australia, using deep learning algorithms. The proposed 

deep hybrid CLSTM-BiGRU model was built using an innovative method that combines Convolutional 

Neural Networks (CNN) with Long Short-Term Memories (LSTM) and Bidirectional Gated Recurrent 

Unit (BiGRU) to achieve maximum accuracy. The most important features were extracted by 

incorporating the CNN algorithm into the proposed deep learning model. After the extraction of the 

features, the LSTM and BiGRU layers were used to forecast the significant wave height based on the 

extracted features. Based on the analyses, the deep hybrid CLSTM-BiGRU model outperformed some 

of the most well-known prediction models, including LSTM, BiGRU, and RF. Furthermore, the proposed 
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deep hybrid model was thoroughly tested, which confirmed that our modelling strategy produced a viable 

method of predicting Hsig in the short term. The study shows that the proposed deep hybrid CLSTM-

BiGRU model can be used to solve a variety of complicated and challenging prediction problems, 

including those involving the forecasting of wind speed, crude oil prices, traffic flow, the stock market, 

exchange rates, tidal energy, etc. Accordingly, the CLSTM-BiGRU model was highly accurate in 

predicting Hsig based on the robust evaluation methods used in this study. While the method has been 

successful, there may be some limitations that can be addressed in future research. For example, we may 

improve the model's precision even further by considering other predictors, such as weather data. A 

second challenge is that this study did not assess long-term prediction skills, which can provide more 

useful information in making decisions related to tidal and wave energy systems, as well as establishing 

a robust prediction model for monitoring marine water during natural disasters. 

The proposed CLSTM-BiGRU hybrid model for predicting the wave energy indeed holds promise for 

broader applications within the realm of time series forecasting. This hybrid approach's effectiveness in 

capturing temporal dependencies and spatial patterns within wave data suggests its potential applicability 

to various other time series tasks. The hybrid approaches were adopted in addressing real life problems 

associated with hydrological [43, 52, 75, 76], energy [51, 77-80] and medical [81] sectors.  This model's 

ability to learn from historical data and its capacity to handle multiple input channels, as validated by its 

success in predicting wind energy series, hints at its potential to be employed across diverse domains, 

making it an exhilarating avenue for future exploration. 

In this study, we have developed a multi-step model for significant wave height prediction in Australia’s 

wave energy region. If the model is integrated with a wave energy converter (WEC) through an 

appropriate modelling platform, the CLSTM-BiGRU technique can be used to monitor and predict wave 

energy harnessed at the sites [82]. This model can also provide early warning of energy shortfalls, through 

AI-based predictive methods proposed on this study. We have added a paragraph in conclusion section 

and cites a few references.  
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Appendix:  

Table A1: Optimally selected hyperparameters of deep learning models. ReLU stands for Rectified 

Linear Units, SGD stands for stochastic gradient descent optimiser 

Model Hyper-parameter 
Names 

Optimal Hyper-Parameters 

CLSTM-BiGRU CLSTM BiGRU 

Convolution Layer 1 (C1) 70 70  

C1- Activation function ReLU ReLU 

C1-Pooling Size 1 1 

Convolution Layer 2 (C2) 60 60 

C2- Activation function ReLU ReLU 

C2-Pooling Size 1 1 
Convolution Layer 3 (C3) 80 50 

LSTM Layer 1 (L1)  70 

 

60 

L1- Activation function ReLU Tanh 

LSTM Layer 2 (L2)  70 60 

L2- Activation function ReLU ReLU 

BiGRU Layer 1 (L1)  65  50 

L1- Activation function Tanh Softmax  

Drop-out rate  0.2 0.2 0.2 

Optimiser  SGD SGD SGD 

Padding Same Same Same  

Batch Size 5 7 6 
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Highlights 
• We propose deep learning CLSTM-BiGRU hybrid model to predict significant wave heights  

• CLSTM-BiGRU model is tested at multiple forecast (30 minutes, 2 h, 3 h and 6 h) horizons 

• CLSTM-BiGRU analysed at wave energy sites in Queensland show model’s overall efficacy 

• CLSTM-BiGRU model has positive implications in wave and ocean energy generation 

• CLSTM-BiGRU model is useful for ocean monitoring and wave energy resource evaluations 
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