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large design repository containing known devices and their associated functions. Finally, to



evaluate the model’s application to novel systems, it was tested on a prototype renewable
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in the field. Through these evaluations, I conclude that there is an identifiable relationship
between functionality and maintenance intervals. Furthermore, this relationship can be
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through earlier decision making and lifetime costs through improved system maintainability.
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1
Maintainability is a design parameter.
Maintenance is required as a consequence
of design [6].

Chapter 1: Introduction

1.1 Problem and Motivation

In some long field-life systems, Operations and Maintenance (O&M) can account for a
60-80% of lifetime costs [1]. Mature technologies are able to draw on operational experience
and historical data to better understand the performance characteristics of the components
and assemblies that comprise the device in real-world use and environments. By leveraging
this knowledge, designers are able to predict maintenance requirements and make informed
decisions on aspects that may impact O&M early in the design process before significant
design decisions have been committed. This design process breaks down when the affordances
of mature technologies are removed, as is the case for novel long field-life systems. Several
maintenance-related questions arise in this situation: How can maintenance intervals be
predicted when the system is the first of its kind? Do reliability databases apply when
components and systems are used in a novel context? How can the maintenance demands
of innovative new concepts be evaluated without expending significant time and resources
to detail out the concepts?

To explore these questions and to better understand the impact of novelty on the design
of systems with significant O&M costs, Marine Rewewables Energy systems (MREs) are
examined. MREs are a paragon of the type of novel systems that this research seeks to
support. Characteristics of MREs create challenges in reducing O&M costs during their
design. Offshore wind projects — the most mature MRE — are anticipated to pay up to
one-third of the total project cost in O&M [2-4]. Even at such a high O&M cost, offshore
wind fares the best of all MREs (wave, tidal, salinity gradient, etc.). Incorporating lessons
learned from their terrestrial counterparts lends significant experience and data, a unique
advantage amongst all MREs. Neary [5] uses 6 inputs to predict O&M costs for MREsS,
four of which are directly related to maintenance and one indirectly.

e Marine operations — Performing onsite maintenance

e Shore-side operations — Towing the device shore-side to perform maintenance

¢ Replacement parts — Recoverable parts used during maintenance

e Consumables — Parts consumed during maintenance



e Insurance — Impacted by many risks, one of which is the lack of operational experience

performing maintenance

o Post-installation environmental monitoring

Despite O&M’s status as a major cost driver, it is nearly impossible to estimate their
costs until the latter design stages when the detailed design, environmental factors, and
location are determined. At this stage of a project, O&M is a cost to be mitigated as
opposed to a design variable to be optimized. Current techniques allow for maintainability
considerations during early design but require an extant, completed design with materials
and components specified [6-8]; these techniques have limited application to novel systems
that lack historic data. As a result, the design changes necessary for MREs to improve
maintainability and therefore O&M, are not able to be considered until far later in the
design process. Designers are left mitigating costs or implementing changes that can be 10-
to 100-fold [9] more costly compared to the same changes made during early design. Work
in the design for maintainability field has shown that maintenance is not a set of actions
that occur to a device once designed and manufactured. Instead, maintenance is an aspect
of the device that is inherent to the culmination of design decisions made throughout the
development of the device [10, 11].

The question is neither on the impact of early design for maintainability considerations
nor on the efficacy of those considerations on reducing lifetime O&M costs, but instead on
how these design practices can be implemented despite the limitations inherent to novel
technologies. This research posits that functions, the elementary description of WHAT a
part does as opposed to HOW it does it, has an inherent relationship with the maintenance
demands of the part. Furthermore, this function-maintenance relationship can be leveraged
during early design in conjunction with functional modeling to assess potential concepts

and inform design decisions.

1.2 Contribution

My research contributes to the fields of design theory and design for maintainability in two
ways. This research shows that there are consistent relationships between the maintenance
intervals and the parts used in a design. This relation is based on the abstract functions
embodied by that part rather than through the physical characteristics of the part.

This contribution is seated in the time-value of information; the earlier information

is available the more impactful it can be. Information on the functions of a system is



available long before the detailed information that is required for physical component
testing is available. A function-maintenance relationship model would enable designers
to make more informed decisions regarding maintenance before it would otherwise be
possible. Second, this function-maintenance model can be utilized during conceptual design
to assess functional models and conceptual /high-level designs for their relative maintenance
requirements. The current state of the design for maintainability field provides guidelines
to improve maintainability but lacks assessment tools, especially during early design; this

model works to close that gap.

1.3 Definitions

To ensure clear and consistent communication, key terms used throughout this thesis are
defined below and given additional context as needed.
Part is a general term used for brevity to mean any component, assembly, or system.

Maintainability refers to “..the aspects of a product that increase its serviceability and

repairability, increase the cost-effectiveness of maintenance, and ensure that the product
meets the requirements for its intended use” [12]. A key aspect of maintainability are
the non-technical considerations, including operations costs associated with maintenance,
training of maintenance personnel, and impacts of downtime due to maintenance or logistical
support, etc.

Maintenance is “..all actions necessary for retaining a system or product in or restoring
it to, a desired operational state” [6]. This chapter’s epigraph best summarizes the difference
between maintainability and maintenance. Maintenance is an action that is performed,
whereas maintainability is a result of the summation of design decisions — intentional or not

— made throughout the part’s development. The term maintenance action used throughout

this research is a singular maintenance act.

Component is any part that is repaired, replaced or serviced wholesale, without any
further disassembly performed. An example to clarify the distinction between this and
the next term (assembly), is a hydraulic actuator. Though the actuator is comprised of
a variety of parts — including the piston, valves and seals — those parts would not be
replaced individually during routine maintenance. The entire actuator would be removed
and replaced, making it a component.

Assembly is anything excluded by the definition of a component. The purpose of this

maintenance-centered definition is to capture the context in which the part is used.



Mean time between maintenance (MTBM), for the purposes of this research, is the aver-

age time between preventative maintenance actions. All types of preventative maintenance
are included (described in Section 2.2.1).



Chapter 2: Background

2.1 The Engineering Design Process

2.1.1 Overview

The engineering design process is the iterative process that design teams embark upon that
ends, not when the final bolt is fastened during manufacturing, but when the final bolt is
unfastened and the device decommissioned at the end of its lifetime. Various formulations
exists between codified design processes [9, 13, 14], but a suitable example is provided by
Ullman [1].

Step Title Description
1 Product The market opportunity for a product is identified. The three
Discovery primary sources for products are: technology push, market pull and
product change.
2 Project The finite pool of money, personnel, and equipment are allocated
Planning against uncertain schedules and cost estimates.
3 Product Customers are identified and their requirements for the product are
Definition determined. Engineering specifications and measures of success are
established.
4 Conceptual Concepts are generated and assessed against the information deter-
Design mined in the previous step. Conceptual design is the final step of
what is called ‘early design’ and ends upon selection of a concept.
5 Product The concept selected in the previous step is developed into a com-
Development pleted product and is released for production at the end of this step.
6 Product The final design is manufactured, begins its service life and, depend-
Support ing on the type of product, is decommissioned or disposed of.

Table 2.1: The 6 steps of the Engineering Design Process as described by Ullman. Steps 1
through 4 are often called ‘early design.

For a clear understanding of the design process as formulated by Ullman, each step along



with a brief description is displayed in Table 2.1. This research is primarily concerned with
conceptual design. Specifically, considerations made during conceptual design as opposed
to during product development as well as the impact and timing of those considerations on

product support.

2.1.2  Early Design Decisions

The early design phase of a project is captured by two statements: “early design is
characterized by a lack of information” [6] and “product cost is committed early in the
design process and spent late in the process” [1]. Taken together, the early design phase can
be seen as a race to gather as much information as possible to reduce uncertainty and make
the most informed decisions possible [9, 14, 15]. Regardless of the reduction in uncertainty
and the decisions made — informed and intentional...or otherwise — upon selecting a concept
and moving forward into product development, a significant portion of the project’s costs
have been committed. The commonly cited heuristic is that ~70% (sources range from
70% to 90% [14]) of a product’s cost is committed during early design, but this claim is so
poorly defined as to be unverifiable [16, 17]. Thematically similar, but verifiable results
conclude that decisions made during early design account for 86% of the cost of all design
changes [18] or that the average manufacturing cost can change by 47% based on the design
of the product [17]. A more measured claim would be that any product’s final cost will
have an inherent lower limit. Subsequent design decisions can — at best — maintain this
lower limit, but — at worst — will raise the lower limit [16]. Despite the disagreement in the
value and measurement of costs committed during early design, the design community is
unanimous on early design’s impact; decisions made during early design have a significant
impact on costs, performance, and ultimately, the success of a product.

Fig. 2.1 shows the relationship between committed and spent costs. The purpose of a
thorough early design process and the ‘race’ to gather information is to ensure that the
decisions made, concept selected, and the costs committed represent the best case scenario.

The decisions made during early design can be delayed or changed, but they come at
exponential increase in cost. A well-researched heuristic is that if a design change costs $1
during early design, that same design change will cost $10 during product development and
$100 during production [14]. Within the aerospace industry, an exemplar O&M dominated
system, discussed further in Section 3.2, it was found that decisions made during early

design are 13 times more expensive than decisions made later in the design process [18].
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Figure 2.1: Costs committed versus costs spent throughout the engineering design process.

This highlights the need for early design decisions to be made after reducing uncertainty
as much as possible and utilizing all information available. Bypassing early design doesn’t
bypass this problem; it simply removes the active decision from the designer and replaces
it with passive assumptions. Despite the clear case for a thorough early design process, it

remains “the least managed, the least documented, and the least understood” [14].

2.1.3 Early Design Tools

Two major avenues exist to reduce uncertainty and inform early decisions. A serious effort
devoted towards the generation and evaluation of concepts; and design aids and tools,
including the collection of tools called Design for X (DFX).

The purpose of a devoted effort towards the generation and evaluation of concepts is
two-fold. First, a single concept thrust into development is statistically unlikely to be the
best possible concept. The more concepts that are conceived of, the more likely that one of
them will be a good concept [14]. The second aspect relates to the the definitions of the
seemingly ambiguous descriptors “good”, “better”, and “best”. The “best” concept is the
concept that has the highest potential for success as defined during product definition (a
“good” concept’s definition mirrors this). Without the evaluation of a variety of potential
concepts, a developer isn’t able to reduce the uncertainty in a project’s success as they

don’t know that their concept is “better” than other feasible concepts. The reduction in



uncertainty has been quantified; projects that seriously consider multiple concepts had a
22% failure rate, with failure defined by “.. could not meet the project goals and were
canceled.” Projects that focused on a single concept had a 75% failure rate [19]. Huge
reductions in uncertainty such as this gain even more significance when the relatively
minuscule costs spent generating concepts is factored in.

The second avenue to reduce uncertainty and inform early decisions are design aids
and tools, including DFX. This avenue straddles the line between conceptual design and
product development. Depending on the specific requirements of the tool, it may be used to
produced “better” concepts or may be more appropriate to improve a concept once selected.
Regardless, these tools fill a similar role. By evaluating previous experience and historical
data, relationships and insights were identified and then refined into easily leveraged design
heuristics. Design for assembly was the first design tool developed [20] that provided
all designers with the knowledge and guidance that may otherwise only be available to
expert designers. Shortly after, manufacturing expertise was refined to develop design for
manufacture resources [21]. Following the widespread implementation and resultant benefits
of the then combined design for manufacture and assembly (DFMA) [22, 23], the DFX
field expanded. DFX refers to the variety of design tools including design for: life-cycle,
recyclability, environment, quality, maintainability and reliability [24, 25] (this list is not
exhaustive and includes only some of the most well known).

Design for maintainability and reliability are expanded upon in the following section,
Section 2.2.2, but can quickly be classified into the “improving a concept once selected”
category. Of the DFX and other design tools that are more firmly rooted in the concept
improvement category, they can be leveraged as a concept evaluation tool as well. Using
DFMA for reference, if the fundamental attributes that make a system more easily assembled
and manufactured are known, and the list of potential concepts are of sufficient fidelity,
DFMA can be used to evaluate and determine the “best” concept with regard to DFMA.

Despite the significant impact on development and lifetime costs, uncertainty reduc-
tion, and probability of project success, early design methods fail to accommodate O&M
dominated systems. Instead, O&M considerations are largely addressed during product
development through design for maintainability /reliability and maintenance/reliability

prediction, negating the potential benefits of earlier consideration.



2.2  Maintenance

2.2.1 Overview

In the most extreme cases, estimates attribute 60-80% of lifetime costs to O&M. For offshore
wind, the most developed MRE, O&M costs are 30% of lifetime costs [2, 3] or of cost per
kWh [26]. When considering lifetime O&M costs, designers are left in a situation similar to
that of manufacturing costs; good design for maintainability decisions can limit O&M cost
increases, but bad design decisions stand to significantly increase lifetime O&M costs.

The tools available to designers to influence the O&M costs committed during early
design will be described broadly as design for maintainability. Included in this umbrella
term are design for reliability, inspectablitity, and serviceability. When taken together, these
areas encompass how the design of a device influences it’s required maintenance frequency,
the ease of inspections necessary to evaluate when maintenance is necessary, and the ease
of and time required to perform all activities required to restore a device to a desired
operational state. Related to maintainability is supportability, the ease of logistical and
administrative support for a device. Together, supportability and maintainability closely
align with the “O” and “M” of O&M. This research focuses primarily on maintenance, as
such supportability will not be explored in this research.

All maintenance falls into one of two categories, preventative or corrective. As the names
imply, the difference is in when the maintenance task occurs. Preventative maintenance
occurs before a system/part is no longer in the desired operational state. Corrective
maintenance occurs after a system/part is no longer able to operate as intended. Within each
category are subcategories that further specify the objective or the driver of maintenance [6].

Corrective maintenance includes deferred and emergency maintenance. Emergency
maintenance is the least favorable of any maintenance task and is conducted when immediate
intervention is required. It is considered the least safe, least effective and is estimated to
incur costs three to five times higher than preventative maintenance. Deferred maintenance
is also unplanned, but allows for time to plan and schedule the maintenance task. Run to
failure strategies on non-essential aspects of a design are often maintained using deferred
maintenance.

Preventative maintenance can be broken down into five subcategories, in ascending
order of difficulty to implement they are: time based, failure finding, risk based, condition

based, and predictive. Time based maintenance is the simplest strategy but has the largest
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potential for unnecessary costs. “Replace every 1,000,000 cycles” or “Lubricate every 1,000
operational hours” are time based maintenance tasks. Failure finding maintenance generally
relates to parts that are in a passive state until required, like safety valves or emergency stop
systems. Failure finding maintenance is conducted to ensure the part will operate as desired
when needed. Risk based maintenance is a refined method of time based maintenance;
where the risk (likelihood times consequence) of a failure is considered and used to adjust
maintenance intervals. Condition based maintenance is the strategy of inspecting parts for
signs of early stage failure evidence and planning maintenance based on a part’s condition.
Predictive maintenance is similar to condition based maintenance, but instead uses machine

learning and internet of things to inform maintainers on when maintenance may be required.

2.2.2 Current Methods

The traditional approach to maintainability has largely been to ignore it or only give a
cursory examination until well into product development [27, 28]. Even in aerospace and
military design, where maintainability is a key concern as 304 year expected life cycles
are not uncommon, design teams are often not allocated appropriate time and resources
to give maintainability the consideration it requires. More readily visible problems, like
manufacturing or performance are of greater concern and as a result receive the most design
considerations [27].

The traditional approach leaves maintenance to be addressed in three ways [27]. For
systems with high maintenance demand but low risk (relative to the next example), like
those found in automotive engineering, reliability and maintenance databases built on years
of experience and historical data are leveraged; familiar conditions and applications of parts
allow designers to make decisions informed by history without significant design effort.
During product development, these systems are them optimized for maintainability. In
contrast, systems with high maintenance demand and high risk, e.g. military applications,
similar historical data informs design decisions but a tendency to over-design exists when
faced with novel situations. Though the previous two design approaches have limitations,
maintainability is a consideration. The last method to address maintenance is to wait until
product development begins, implement maintainability axioms and build a maintenance
plan around the emerging design. Without previous experience, historical data or the
resources to over-design systems this is the situation most developers of novel systems find

themselves in. Maintainability axioms have proven effective but they ensure a design, once
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selected, follows best practices, they do not guide design decisions or assess maintainability
prior to concept selection. Tjiparuro and Thompson review 22 maintainability considerations
(e.g. safety, diagnosability, testability, etc.) and build a comparison matrix to assess which
considerations play the most significant and encompassing roles. Through this, five design
for maintainability axioms are provided [10]:
o Simplicity, in design of the system and in parts used. Simplicity impacts accessibility,
modularization, identification among others.

o Parts/Components, the weights of components, their shape, surface texture, space

for tool access and so on are key factors to achieve good maintainability.

e System environment, the conditions under which maintenance is to be carried out

should be controlled to improve serviceability.

o Assembly/Disassembly, the sequence and combination of actions to disassemble and

reassemble components should be as simple as possible.

o Identification, parts and connections should be clearly identified and adjustments

facilitated.

Maintainability prediction techniques are available [6-8], but focus on known or learned
data to estimate reliability, failure intervals, maintenance downtime, etc. While these
are ideal for known systems with large verified data sets, they are intended primarily for
maintenance strategy planning, not conceptual design work.

Despite the current techniques in design for maintainability and maintenance prediction,
there is a distinct lack of maintainability assessment tools targeted at low fidelity conceptual
designs. This gap exists for good reason, without component information, techniques
leveraging historical data are not able to be implemented. This is further compounded
for novel systems as not only is component information unknown, but a lack of design
convergence means that the fundamental structure of a system is unknown. This can
lead to functionally diverse concepts or prototype iterations, making it difficult to quickly
and consistently apply previous understanding to new designs; which is something current

methods are not equipped, or intended, to perform.
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2.3 Functional Modeling

2.3.1 Overview

Functions are the elementary descriptions of WHAT something does. All devices perform at
least one function; a wave energy converter may Generate Electricity. This is the function
of the device, a simple description of what the device does, without any reference to how
the device accomplishes it. By expanding this singular function into multiple sub-functions
that make up a functional chain, we can say that a wave energy converter may Capture
Hydrodynamic Energy, Convert Hydrodynamic Energy into Electrical Energy and Export
Electrical Energy. This process can be repeated until the functions performed by every
system — or all the way down to individual components — are described in simple abstract
terms. This method of decomposing the physical architecture of a device into a series of

functions is called Functional Modeling.

2.3.2 Applications

Developing a robust understanding of a proposed device in terms of function is essential to
meeting the one measure of success that all designs are judged against, does the device’s
function satisfy the customer requirements [13, 14, 29]? This is a fundamental aspect of a
functional approach to design, it focuses and centers the design process on the customer
requirements [30]. The second key aspect of a functional approach is aptly described by
the maxim “Form follows function” [14]. When applied to the realm of mechanical design,
the maxim means that the arrangement and location of parts, the selected components,
the physical processes performed, the geometry of systems, and the device as a whole
follows from the simple description of the device’s function. By describing the function and
sub-functions of a device, the designer is creating a blueprint that will guide the development
of the physical device. The idea that a functional approach provides designers with a useful
understanding of a system is supported by its many successful applications.

By abstracting away from the physical, designers experience reduced component/design
fixation and improved creativity. In exploring a wider breadth of the design space, an
increased quantity and variety of concepts are generated, increasing the likelihood of a
unique and innovative design [14, 29, 31]. Tying functions to specific customer require-

ments improves design focus, improving the probability of adequately satisfying customer
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requirements and limiting non-value added design work [29]. Methods based on functional
modeling not only improve concept generation but allow for concept evaluation methods to
ensure design efforts are focused on the most promising concepts. By relating the frequency
with which certain components solve specific functions, O’Halloran [8] provides a method
to reduce reliability uncertainty in concepts. In a similar vein, functions can serve as the
basis for failure analysis of: complex systems [32-34], rapidly integrated features [35], and
modes of component failure [36]. The key aspect that unites these applications of functional
design is that they are available to designers prior to the specification and selection of any

physical components.

2.3.3 Functional Modeling

To realize the benefits of functional modeling, two problems were necessary to address,
that of a consistent functional language and a more nuances definition of a function [37].
Without a solution, both problems impact inter- and intra-coder reliability. If one designer
doesn’t create a consistent functional model of a system when decomposed at two different
instances, the results of any application of the model would be dependent on the particulars
of that instance of functional decomposition. These effects would be exacerbated by the
differences in modeling of two different designers.

To address this, structured functional modeling methods and languages have been
developed. Collins codified the first functional language, using 105 unique keywords and
antecedent adjectives; but the scope of functional description was limited to rotary-winged
aircraft [38]. Future work included the distinction between functions and flows, with the
verb-object form following from this distinction [39]. Functions were restricted to verbs and
flows restricted to nouns (objects), that when combined described the operation as well as
what the operation was performed on. Using a simple description of a wave energy converter,
the function Capture is performed on the flow of Hydrodynamic Energy. To combat the
varying levels of abstraction possible to describe a single function or flow (Hydrodynamic
Energy versus Energy), a hierarchy was established that allowed for consistent levels of
specificity to be used [40].

Through reconciling two previous functional language efforts [41, 42], Hirtz developed
the ‘functional basis’ [40]. The functional basis has 52 functions and 82 flows that are
combined in the standard verb-object pairing to create function-flow pairs. Functions are

organized into a hierarchy of three levels and flows into four levels, though level-4 will not
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be used for this research as they are too descriptive. Level-1 functions and flows are the
most abstract terms and increase in detail in ascending levels. The 8 level-1 functions are:
Branch, Channel, Connect, Control Magnitude, Convert, Signal and Support. The three
level-1 flows are: Material, Energy and Signal. As Signal is both a function and a flow,
SignalFen and SignalFlow are used to differentiate. Table 2.2 shows the level-1 function
Control Magnitude and flow Energy along with some of their level-2 and level-3 functions
and flows that serve as more descriptive versions of the terms. The middle and right columns
are from “Appendix A: Flow Definitions” and “Appendix B: Function Definitions” [40].
By providing definitions and examples for all terms, Hirtz made a significant progress in
increasing inter-coder reliability by decreasing verbiage. This research utilizes the functional
basis and the method of implementation is described in Section 3.3.2.

The second development necessary for consistent modeling was in a more nuanced view
of a function. Most views on functions can be classified into what Deng describes as the
two types of functions, action-functions and purpose-functions [43-45]. Those definitions
that align with the term action-function are generally interested in describing the physical
processes in component-agnostic terms; describing them without reference to the particular
components that execute that solution. Action-functions are generally more descriptive and
align more closely with functional modeling efforts taken later in the design process when
there is a more clear picture of the design. The term purpose-function encapsulates the
views that functions describe the physical world in component- and solution-agnostic terms;
by capturing the intention of the designer and the end goal of the process. Purpose-functions
are generally more abstract and are more appropriate for early design efforts when there is
more uncertainty in the design.

Utilizing a functional decomposition performed later in this research (seen in Fig. 3.1
found in Section 3.3.2) the example of an aircraft rudder is shown in Fig. 2.2 to be examined
to clarify the action- versus purpose-function distinction. The rudder is controlled by the
pilot and swings port or starboard to induce yaw (rotation of the aircraft about the vertical
axis). Only the level-2 function-flow pair is described for brevity.

The action-function of the rudder is to Guide Gas. As the rudder moves, the flow
of air (Gas) past the rudder is redirected (Guide) port or starboard. This describes the
physical operation of the part without describing the components performing the operation.
However, Guide Gas does not describe — or does so only in the most shallow sense — the
intention of the designer.

The purpose-function Change Mechanical Energy better captures the intention of the
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Function/Flow

Level-1 Level-2 Level-3

Definition

Example

Control To alter or govern the size -

Magnitude or amplitude of a flow
(Material, FEnergy, Sig-
nal).

Change To adjust the flow of En- In ahand-held drill, a variable resis-
ergy, Signal, or Material tor Changes the Electrical Energy
in a predetermined and flow to the motor, this changing
fixed manner. the speed at which the drill turns.

Increment To enlarge a flow in a A magnifying glass Increments the
predetermined and fixed visual signal (i.e., the print) from a
manner. paper document.

Decrement To reduce a flow in a The gear train of a power screw-
predetermined and fixed driver Decrements the flow of Ro-
manner. tational Energy.

Stop To cease, or prevent, the A reflective coating on a window
transfer of a flow (Mate- Stops the transmission of UV radi-
rial, Energy, Signal). ation through a window.

Prevent To keep a flow from hap- A submerged gate on a dam wall
pening. Prevents water from flowing to the

other side.
FEnergy - -

Hydraulic Work that results from Hydroelectric dams generate elec-

Energy the movement and force tricity by harnessing the Hydraulic
of a liquid, including hy- FEnergy in the water that passes
drostatic forces. through the turbines.

Hydraulic ~ The pressure field exerted A hydraulic jack uses the flow Hy-

Pressure by a compressed liquid. draulic Pressure to lift heavy ob-

jects.

Volumetric The movement of fluid A water meter measures the Volu-

Flow molecules. metric Flow of water without a sig-

nificant pressure drop in the line.

Table 2.2: The level-1 function (Control Magnitude) and flow (Energy) with a few of their
corresponding level-2 and level-3 subfunctions/subflows. This is not an exhaustive list of
all subfunctions/subflows for Control Magnitude and Energy but serves to show the tree
structure of the functional basis.
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Vertical Stabilizer

x Rudder

\Rudder Trim Tab

Figure 2.2: The vertical stabilizer and rudder of a civil aircraft. The vertical stabilizer is
found at the rear of the fuselage on all civil aircraft. The rudder is flight control surface
found on the trailing edge of the vertical stabilizer. The rudder rotates about a vertical
axis, at the front of the rudder, that causes its trailing edge to swing port and starboard to
induce yaw.

designer. It describes the physical process — again without reference to the components
performing the operation — but additionally without reference to the solution implemented
to perform the operation. During the earliest stages of design, the aircraft designer identified
the need for the aircraft to exert (Change) a force (Mechanical Energy) that would result
in yaw. At some future point, it was decided that a traditionally implemented rudder was
the preferred manner to accomplish that function.

The reason for this distinction is thus, Guide Gas incorporates an inherent solution to
the problem of inducing yaw, that is to redirect the flow of air. The components required
to perform that operation are not specified, but they have been greatly down-selected by
nature of the implied solution. The purpose-function Change Mechanical Energy provides
no information on the solution to the problem of inducing yaw, let alone the components
required to implement a solution. Though in reality, the purpose-function may down-select
the types of solutions to the problem of inducing yaw; but the restriction is significantly

reduced. Unfortunately, the distinction is not always well defined as either one can imply
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some of the other; “nevertheless, a distinction between these two functions is still necessary
and important” [43].

While the purpose/action distinction may seem pedantic, it is at the core of the benefits
of functional modelings during early design. In aircraft design, where significant design
convergence has occurred; it is unanimous that yaw is best accomplished by a flap that runs
vertically and rotates about a forward vertical axis (a rudder). The design convergence
towards a rudder causes the action- and purpose-function to appear equivalent, but a
difference can be seen in the fact that Change Mechanical Energy could be implemented by
a wider variety of processes. For example, in no-atmosphere conditions, yaw can be induced
by a thruster placed off-center of a spaceship’s vertical axis. In novel fields where design
convergence hasn’t occurred, like with MREs, this distinction allows the earlier examination
of a wider breadth of the design space.

Functional analysis has proven useful during early design but a connection between
function and preventative maintenance intervals has yet to be explored. Furthermore, no
application that relates function to a maintenance adjacent consideration (reliability, failure,
etc.) has provided a simple and comprehensible design aid that is sufficiently transparent

so as to build confidence with a designer who would be using it.

2.4 Machine Learning

2.4.1 Overview

Machine learning is the use of algorithms to build a model, that can process and interpret
data for a useful purpose. Two aspects of machine learning make it distinct from traditional
human or computer based data-analysis. Machine learning differs from traditional data-
analysis because it doesn’t present a static picture of the data. Instead, it interprets data
and can provide predictions, insights or learn dynamically from new data [46]. The second
difference is in scale. The human brain has a limited capacity to interpret the vast amounts
of data available in the modern world. While computers can be limited by computational
resources or complexity of the data, a computer’s capacity eclipse a human’s capacity.
Machine learning models have proven effective at extracting valuable insights from data
sets that are too large or complex for a human — regardless of expertise — to comprehend,
let alone derive useful information from [46].

Within engineering design, machine learning has been heavily explored for it’s capacity
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to support modeling complex optimization efforts, synthesize new designs, and capture
implicit customer or designer knowledge [47]. Focused on early design efforts, machine
learning has been implemented to provide guidance on design methods most appropriate for
a situation. This highlights machine learning’s capacity to leverage the documented expertise
of designers for novel design situations and for less experienced designers [48]. Data-driven
methods, which includes those utilizing design repositories, have proven to be an effective
base of information to draw from for applications in additive manufacturing [49], operational
strategies of renewable energy grids [50], and understanding large sets of customer needs [51,
52]. These methods are able not only bring known design experience into play, but allow
for insights that are otherwise obscured by the size or complexity of data to be brought to
the surface to guide design decisions. The rapid exploration of potential design alternatives
within a broad design space has also been explored as models can explore, generate, combine,
etc. far faster than human designers [53].

Despite the broad application of machine learning in engineering design, many remain
complex and out of reach for designers in industry. Especially for those without the expertise,
time, or company support to invest into machine learning applications.

Within the umbrella term of machine learning, there are two general categories of models:
supervised and unsupervised. The differences in categories relate to what information is
provided to the model and the intended output of the model. Across and within the two
categories, there is no one model that works for everything. An understanding of the
underlying mathematics of the model to be employed, the nuances of the data set, the end
goal and the associated assessment performance metrics are required to inform the best

choice of model for that particular situation.

2.4.1.1 Supervised Models

Data sets to be used with a supervised model are first split between training and testing
subsets — generally 70%/30%, respectively. The algorithm is first applied to the inputs
(features) of the training data and provided with the known outputs, creating a model of the
data. The features of the testing data are then fed into the model, with the known outputs
withheld. The model predicts the outputs of the testing data based on its experience with
the training data. The predicted and known (or reference) outputs are then compared to
calibrate and evaluate the model.

Supervised models can further be distinguished by the desired output of the model,
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classification or regression. Regression models yield a continuous numeric value. A linear
regression model common in statistics or algerbra is a simple supervised regression model.
Classification models make prediction on the category or class that a data point belongs to
based on the input features. The spam filter utilized for emails is a supervised classification
model. Based on the features of an email, the model makes a prediction if the email belongs
to the “spam” or “not spam” category. Characteristics that distinguish supervised models
include:

e Once a model is trained and calibrated, prediction are computationally simple

e The results are generally more accurate and reliable than unsupervised models as

they are trained using known, validated data

e The models are more interpretable, allowing closer inspection of the model

Due to the nature of the data used and the desired outputs, this research uses supervised
machine learning models. This section will focus primarily on the pertinent background

information.

2.4.1.2 Unsupervised Models

Unsupervised machine learning models receive input features that are unlabeled, meaning the
model does not know what the values of each feature in a data point represent. Additionally,
no reference output values are provided, preventing any evaluation of the model. Unique
characteristics of unsupervised machine learning models include:

e Unsupervised models are generally more difficult to implement successfully

e Unlabeled features of large data sets don’t need to be manually labelled

o Allows users to develop an understanding of the data set that may inform further,

more reliable analysis

2.4.2 Supervised Classification Models

Decision trees are the primary machine learning model utilized in this research, as such,
this section will focus on them above other supervised classification models. Decision Trees
are a popular machine learning model whose most significant attribute is their simplicity
to explain and follow the logic of. Decision trees are represented as a tree that starts at a
single node and branches out into additional nodes that can each branch out further. Each

node represents a feature of the system (such as its color); depending upon the attribute of
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that feature (e.g., the color is red), the tree is traversed in the ‘red’ direction rather than,
say the ‘green’ direction. Once a node fails to reduce information entropy (or purity) by a
certain preset parameter or is manually pruned, that branch ceases to split and becomes a
‘leaf’ node. Each leaf node has a categorical determination for any data points following
the branches down to that node.

Decision trees’ other distinct attributes, apart from their ease of comprehension, are the
ability to handle poor performing features, handle missing data, computational speed, and
their propensity towards overfitting. Addressed in turn, feature selection is a major part
of most machine learning endeavors, due to the method implemented by decision trees to
select the feature most appropriate for a given node, they will almost always select the best
option. The method is based on entropy and gain, where Entropy [H(S)] is a measure of
the purity of a node. Purity refers to how many data points at a node are correct versus

incorrect.

H(S) = —py xloga(p+) — p— * loga(p-)

where py and p; are data points at that node correctly sorted and incorrectly sorted,
respectively. Gain is a measure of the relevance of a feature, measured from 0 (no use) to 1
(most useful).

Gain =1 — H(Sy)

where H(Sy) is the entropy of each possible feature that node can assume. Because each
node is selected based on the best possible increase in purity, poor performing features are
never used and can remain in the data set without fear of hurting performance. Decision
trees can handle missing data when presented with a null value for a feature by stopping
the data point at that node and classifying it there. Once a decision tree is calibrated,
predictions are made based on a series of binary choices, allowing for rapid predictions on
large data sets.

Lastly, decision tree are prone to overfitting since they are sensitive to initial conditions
and the particulars of a data set. To combat this, they must be pruned manually or
algorithmically to avoid overfitting. Complexity parameter is a computed term that can
be used to determined the optimal tree size. The implementation varies but generally,
complexity parameter corresponds to the risk of missclassification at that size of a decision

tree based on cross-validation.
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Reference
. Category 1 Category 2 Category 3
§ Category 1 1 2 3
Fqi Category 2 4 ) 6
A Category 3 7 8 Y

Table 2.3: Example confusion matrix comparing the known category of 45 data points
versus the predicted category of those data points.

2.4.3 Assessing Machine Learning Models

As supervised methods utilize known outputs in constructing the model and are then
compared against ‘new’ reference outputs, the metrics used to assess them are based on
this comparison. Metrics discussed are the confusion matrix, accuracy, positive predictive
value, negative predictive value, sensitivity, and specificity.

A confusion matrix is a visual representation of the reference versus predicted categories.
Table 2.3 shows the results from a multi-class (3 categories) prediction. The matrix displays
the Reference categories along each column and the model Predicted categories along
each row. Interpreting a confusion matrix is done column by column from left to right. The
first column shows the quantity of data points that are known to be in ‘Category 1°. The
top cell in the column represents the number of data points (1) known to be in ‘Category 1’
that were predicted to be in ‘Category 1. The cell below, shows that 4 data points were
known to be in ‘Category 1’ but were predicted to be in ‘Category 2’. The final cell in the
first column shows that 7 ‘Category 1’ data points wrongly predicted as ‘Category 3’ This
trend continues with the remaining columns. The summation of values in a column gives
the total number of data points known to be in that category. The summation of a row
gives the total number of data points predicted to be in that category.

The grey boxes that run diagonally from top-left to bottom-right show the data points
that were correctly predicted, these values are known as true positives (TP). The related
terms: true negative (TN), false negative (FN) and false postive (FP) describe variations
of correctly/incorrectly predicted positive or negative results. Because these values are
dependent on a reference category, they will be addressed in reference to ‘Category 2. The
TP result for ‘Category 2’ is the center cell containing the number 5. The cells above (2) and

below (8) are FN results, they are known to be in ‘Category 2’ but were falsely predicted
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to be in ‘Category 1’ for the cell containing 2 and ‘Category 3’ for the cell containing 8.
The cells left (4) and right (6) of the TP cell are the FP results. FP results are predictions
that incorrectly placed 4 data points into ‘Category 2’ which should have been in ‘Category
1’ and 6 data points into ‘Category 2’ which should have been in ‘Category 3. TN results
are all cell not orthogonal to the TP results, these are correct negative predictions.

The terms TP, TN, FP and FN are used to define the remaining metrics, listed below
with their equation and a brief description.

Accuracy is the most commonly used metric; it describes the total number of correct
predictions over the total number of predictions. Accuracy is the only metric described

that is calculated for the model as a whole as opposed to on a per category basis.

TP+ TN
TP+TN+ FP+ FN

Positive Predictive Value (PPV), also known as precision, gives the probability that a

prediction into a given category is correct.

TP
TP+ FP

Negative Predictive Value (NPV) gives the probability that a negative prediction for a

category (that a result is NOT in that category) is correct. NPV gives no information on

the correct category, only that it is not in that category.

TN
TN+ FN

Sensitivity, also known as recall, gives the probability that all of data points of a given

category are correctly predicted.
TP

TP+ FN
Specificity gives the probability that all of data points NOT in a given category are
NOT predicted into that given category. Specificity does not say if the data points are
predicted into their own correct category, just that they are not falsely predicted into the

reference category.

TN
TN+ FP

Macro-average, henceforth referred to as average, gives the mean value of a class specific
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metric across all instances of that metric. Below gives the macro-average PPV for a

multi-class (3 categories) model.

PPV + PPVy+ PPV3
3
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Chapter 3: Methods

Described in this chapter is a reference of functional modeling language followed by the
four major phases of this research. The methods used to mine the relevant maintenance
data are presented first. Then the functional modeling process used to derive functions
from the mined maintenance data is described. This is followed by the machine learning
techniques used to build the function-maintenance model. Lastly, the three methods used

to evaluate the constructed model are discussed.

3.1 Functional Modeling Jargon

Functional modeling relies heavily on semantics in order to convey complex physical processes
as abstract concepts; this means that the clear and consistent use of functional language is
required to perform — and to convey — this research. In support of this, common terms and
clarifications on functional information are provided below along with an example of it’s
usage.

Function is used in two manners: as the general description of WHAT a part does
and as a technical description of the part using the functional language of Hirtz et al. [40]
comprising the verb portion of the verb-object format.

Function (technical descriptor) is a capitalized verb(s), written in italics. “[The impact

bar] Distributes the force of a crash...”

Flow is the object portion of the verb-object format and is a capitalized noun(s), written
in italics. “All of these parts serve to restrict the flow of some Material, whether it be
Particulate for filters...”

Function-flow pair is a unique combination of a function (technical descriptor) and a

flow, written in italics following the verb-object format. “the function of the pitot-static
system is to Sense Pneumatic Energy.” Sense is the function (technical descriptor) and
Pneumatic Energy is the flow, together they make the function-flow pair.

Level-1, Level-2, and Level-3 are the levels of increasing detail that all functions and

flows can be described at. Referencing Table 2.2, the level-1 function of Control Magnitude
can be further described by the level-2 functions of Change or Stop. Similarly, the level-
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2 function of Change can be further described by the level-3 functions of Increment or
Decrement. A part can be described at all three levels using the following convention
“the part’s function is Control Magnitude/Change/Increment.” In the same manner, a
part’s flow can be described at all three levels by “the part’s flow is Energy/Hydraulic
Energy/Hydraulic Pressure” Not all functions/flows have corresponding verbiage for all
three levels. In these cases the more detailed descriptor is repeated follow by the number of
the next level. For example, the function Convert does not have a corresponding level-2 or
level-3 verb. Written in the form described previously, the three levels of this function are
Convert/Convert2/Convert5.

The three levels of a part’s function and flow are often combined to fully describe a
its function and flow pair, “..the rudder assembly that performs the function and flow
Control Magnitude/Change/Condition and Energy/Mechanical Energy/Rotational Energy.”
For the sake of brevity, often a single level of both function and flow are described rather
than all three levels of both function and flow. The previous sentence about the rudder
assembly could be rewritten as “..the rudder assembly performs the function-flow pair of
Change Mechanical Energy” Though three function-flow pairs could be created based on
each level of function and flow (i.e. level-1 = Control Magnitude Energy, level-2 = Change
Mechanical Energy, and level-3 = Condition Rotational Energy), this is still considered to
be one function-flow pair as they describe the same thing, just at different levels of detail.

Signal(Function) and Signal(Flow) are a function and flow that both use the word

“Signal.” Signal, the function, is the act of conveying information where Signal, the flow, is
the information that is conveyed. To differentiate between the two SignalFen is used to
indicate the function and SignalFlow is used to indicate the flow.

FenL3 Decrement, FlowL2ME, and FFL1CMM are example, short form descriptors that

are primarily used while discussing the machine learning model produced in this work.

FenlLl3 Decrement can be expanded as “The level-3 function Decrement”, FlowL2MFE as
“The level-2 low Mechanical Energy, and FFL1CMM as “The level-1 function-flow pair
of Control Magnitude Material” This short form is used as it conveys three pieces of
information in a succinct way. Whether the information presented is a function, flow, or
function-flow pair; the level of detail used; and the actual function, flow, or function-flow
pair information.

Abbreviations are used mostly in tables or in the short form descriptor, described above.
Common abbreviations are listed here for ease of reference.

e Change Magnitude = Change Mag. = CM
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o FEnergy =F

o Mechanical Energy = Mech. Energy = ME

o Translational Energy = Transl. Energy = TE
o Rotational Energy = Rot. Energy = RE

e Hydraulic Energy = Hyd. Energy = HydFE

o Material = M

3.2 Data Mining

In order to identify any function-maintenance relationships and build a model to describe
it, high-quality maintenance data was required. It needed to be thorough and contain
sufficient detail to extract the function and flow of the component or system of interest.
Additionally, the maintenance data needed to be validated and and come from a product
where maintenance and reliability was a key factor in the design and operation of the product.
One such long field-life product was the Learjet 25 series, a commercial business-jet. With
production ceasing in 1982, the newest 25 series Learjets have been in service for more than
40 years. Between the significant operational experience, strict regulatory requirements on
O&M and the need to balance maintainability versus performance, the civil aviation sector
serves as an exemplary wealth of knowledge and experience from which to draw upon for

this research.

3.2.1 Maintenance Documentation

The author had revision number 23 of the Gates Learjet 25b/c/d/f maintenance manual
(MM) [54] as well as the maintenance documentation for the CJ610 Turbojet Engine,
the standard engine on all Learjet 25 series. The standard engine is revision 11 of the
CJ610 Turbojet Engines MM [55] and the accompanying Illustrated Parts Catalog revision
number 22 [56]. Between these three documents, all maintenance tasks and requirements
necessary to comply with Federal Aviation Administration’s (FAA) safety and maintenance
regulations were available, including references and documentation required to develop a
robust understanding of the intent and impacts of said maintenance task or requirement.
Table 3.1 shows the primary chapters of the maintenance documents utilized in this research.
Other chapters, from both manuals, as well as the CJ610’s illustrated parts catalog were

used as references to contextualize component-system interactions and assess functions.
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Document Chapter Title Contents used

Learjet MM 4 Airworthiness Limi- “Life limited” items
tations

Learjet MM 5 Time Limits and General and special inspection, replace-
Maintenance Checks ment and overhaul schedule

Learjet MM 12 Servicing System and component services

CJ610 MM 72 Engine General Services, inspection, checks, cleaning and

preservation

Table 3.1: Chapters from which maintenance data was primarily mined

3.2.2 Data Collection

To establish a link between functionality and preventative maintenance considerations, the

essential data of function, flow, and maintenance interval were identified as the primary

target of this data mining effort.

The remaining data served to develop a complete

understanding of those three elements or for organizational purposes.

All mined and synthesized data were captured in a spreadsheet, an excerpt of which is

shown in Table 3.2 and Table 3.3. Data captured verbatim from the maintenance documents,

shown in Table 3.2, include:

e Part #: A number assigned to each data point, used for organizational purposes.

o Chapter, Section, and Subject: The Chapter, Section, and Subject of the maintenance

action.

o Additional Details: Any additional information provided by the MM. The Learjet

MM gives more refined location information, the major system addressed, the type of

inspection, or conditions required for the maintenance action. The CJ610 MM gives

the broader maintenance task.

e Maintenance Tagk: The maintenance task as described in the respective MM.

e Frequency: The interval and measure of frequency given for that maintenance action.
Written as Freq. in the table.

Synthesized data, shown in Table 3.3, consist of:

e Part #: A number assigned to each data point, used for organizational purposes.

e Part of Concern: The part that the maintenance task seeks to test, verify or maintain

the functionality of. A single maintenance task may spawn multiple parts of concern,
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each given a new part #.
o Part Type: An unofficial, broad classification of the part used primarily for quick-
reference.

e Component versus Assembly: Whether the part of concern is a component or an

assembly. Written as Comp. vs Assy. in the table.

o Function: The level-1, 2, and 3 function performed by the part of concern, identified
using the techniques described in Section 3.3.2. There are four function columns in
the master spreadsheet to accommodate parts that perform multiple functions, only
two function columns are shown in Table 3.3 for legibility.

e Flow: The level-1, 2, and 3 flow of material, energy, or signal through the part of
concern, identified using the techniques described in Section 3.3.2. There are four
flow columns in the master spreadsheet to accommodate parts with multiple flows,

only two flow columns are shown in Table 3.3 for legibility.

e Function-Flow Count: The total number of unique function-flow pairs embodied by
the part of concern. As each function and flow has three levels that are describing the
same function/flow, just at increasing levels of detail, the three levels of function-flow
pairs are considered one unique pair. Written as FF count in the table.

o Frequency (Hours): The maintenance frequency used to build the model after being

converted to flight hours, if it did not start in flight hours and if possible to do so.
Written as Freq. (Hours) in the table.

o Notes: Additional notes added to clarify information, used only as needed.

As a majority of maintenance actions fell under a regularly schedule inspection or
service (e.g. 200/400 hour inspection, 600 landing/12 year inspection, 24 month inspection,
life limit-cycles, etc.) that used a variety of measures of frequency, a common unit of
measurement was required. Flight hours was the most commonly used measure, it was
chosen as the standard unit for maintenance intervals. For maintenance actions that fell
into inspections that had both flight hours as well as another measure of frequency (e.g.
7200 hour/12 year inspection), the flight hours interval was used as the recorded frequency.
Maintenance actions that fell into inspections that did not use flight hours as a measure of
frequency (e.g. 3000 landing inspection, 6000 landing/12 year inspection, etc.) had to be
converted into hours.

Table 3.4 is an excerpt from the “Relative Aircraft Age and Utilization Table” from
the Special Inspection subject of the Time Limits and Maintenance Checks chapter of the
Learjet MM. Table 3.4 sorts aircraft into three groups based on age of the aircraft, which
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. Age ‘ Older Moderate Newer
# Inspection Parameter

Utilization ‘ Low Mid High Low Mid High Low Mid High

1 Present Aircraft Age (Years) 18 16 14 12 10 8 6 4 2
2 Present Total Time (Flt. Hrs.) 4320 7680 10080 2880 4800 5760 1440 1920 1440
3 Avg. Monthly Use (Flt. Hrs.) 20 40 60 20 40 60 20 40 60
4 Avg. Flight Length (Flt. Hrs.) 10 15 20 10 15 20 10 15 20
5  Present Total Landings (Approx.) 4320 5120 5040 2880 3200 2880 1440 1280 720

Table 3.4: Excerpt from the “Relative Aircraft Age and Utilization Table” found in
the Learjet MM. All maintenance frequency conversions were completed using expected
utilization of a moderate age, mid utilization aircraft.

are further subdivided by utilization. An age independent, mid-utilization aircraft was
selected as the standard case and all frequency measures were converted using this case.
The reason for choosing a mid-utilization aircraft was based on the assumption that the
utilization rates of these aircraft would follow a normal distribution, with the majority
of aircraft falling into the mid-utilization group, providing the most general depiction of
the maintenance requirements. The age of the aircraft did not need to be considered as
within each utilization level, the conversions between measures of frequency were consistent.
Table 3.5 shows a sample of all conversions in their original units of frequency and in flight
hours.

Maintenance actions that fell into inspections that didn’t use flight hours (e.g. 12 month
inspection, 3000 landing inspection, 6000 landing/12 year inspection, etc.), were converted
using Table 3.4. Whenever a maintenance interval was given with two different measures of
frequency (i.e. 6000 landing/12 year inspection) that when converted, did not yield the same
flight hours, the more frequent interval was used. This is in line with common maintenance
practices of “..or whichever comes first.” The only maintenance actions for the CJ610
measured in a frequency other than flight hours was measured in engine cycles. An engine

¢

cycle is defined as, “..a flight consisting of a start, takeoff, landing and shutdown” [55].
Based on Table 3.4, an engine cycle would most appropriately take on the value of an
average flight length, 1.5 flight hours.

Some maintenance actions were incident based as opposed to time based (e.g. “following
overweight landings” and “landings on non-paved runways”). As these incident based

maintenance actions could not be related back to a measure of time they were not utilized
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Original frequency Flight hours

Month 40

Year 480
Landing 1.5
Engine cycle 1.5

Table 3.5: Converted values of a month, year, landing and engine cycle into flight hours for
a standard case aircraft.

in the model.

3.3 Functional Modeling

3.3.1 Overview

As discussed in Section 2.3, functional modeling can suffer from subjective interpretation.
As the functional information derived in this section was to serve as the attributes that the
machine learning algorithm would learn on, a consistent functional decomposition method
was vital. For example, whenever a data point was described using the feature “the part
performs the function ‘Change Magnitude = Yes’ ”, it had to convey the same information
about the elementary functions of the part.

To improve consistency throughout the functional decomposition process, three guidelines
were established that were continuously reassessed to ensure they were consistently applicable
and captured the functions of the part of concern. Whenever the modeling techniques were
adjusted, the location in the master spreadsheet (Table 3.2 and Table 3.3) was noted and all
previous decompositions were reassessed using the adjusted technique. The three guidelines
consisted of: a set functional language, a clear definition of a function, and a consistent
decomposition process.

The functional basis was used as the modeling language. The two major reasons for
this choice were its common usage and clarity. The functional basis as described by Hirtz
et al. [40] is one of the most cited works in the field of functional modeling. This is not a
comment on the techniques or justifications used, but on the increased likelihood that any

particular design engineer would be familiar with the techniques and justifications of this
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particular functional language.

In regards to clarity, the functional basis is significant amongst functional languages
due to the authors’ reconciliation of multiple previous efforts and the reference material
included in their research. Two such references were “Appendix A: Flow Definitions” and
“Appendix B: Function Definitions” [40]. Table 2.2 shows a few sample functions/flows,
their level of specificity, their subfunctions/subflows, along with the accompanied text found
in their respective appendix. As each function and flow has a definition and example, I was
able to refer to the appendix to apply a consistent judgement.

Reiterating from Section 2.3.3, a part’s function can be described through two different
lenses. An action-function describes the physical operation executed by the part, whereas a
purpose-function describes the intention of the designer that the part is embodying. To
maintain a consistent approach to functional decomposition, I chose to decompose all parts
to their purpose-function.

Though mining data from detailed maintenance manuals allowed for the descriptive
action-function, the more abstract purpose-function better coincides with the intent of this
research: as a early design technique. During the design process, a designer will first identify
the purpose-functions that need to be performed. At a future point in the design process,
the designer will refine the abstract purpose-functions into more detailed action-functions (if
the early design process is skipped, as is often the case, there may not ever be a distinction

made between purpose- and action-functions).

3.3.2 Functional Decomposition

Functional decomposition began once the data from Table 3.2 had been documented.
Fig. 3.1 shows the decomposition process for two parts, the rudder trim tab and the
pitot-static system. The first row shows the text as it appears in the maintenance
manual. The second row shows the specific part of concern for the data point and
the portion of the overall maintenance task that pertains to the part of concern. The

Contextualize part of concern as needed row includes the text and image references found

in the manual that, along with the maintenance task, helped to develop a thorough under-
standing of the part as it is used in the specific context. Marks’ Standard Handbook for
Mechanical Engineers[57] was referenced as needed. Contextualizing the part was not a
formal process, once I felt confident in my understanding of the part, I continued. With

a clear picture of the part and the related maintenance task, I determined if the part



6,000 Landing/12-Year Inspection

Rudder trim tab
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24-Month Inspection

Pitot-Static System

Maintenance
task described
in manual

Identify part of
concern and
relevant
maintenance
action

Contextualize
part of concern
as needed

Assess
component vs.
assembly and

determine
action-function

Abstract
action-function
into the
purpose-
function

"Visually inspect all moveable surface assemblies for corrosion, fatigue cracks, wear,
evidence of interference and general condition. Inspect all balance weight locations for
evidence of vibration, fastener looseness and general security. On the aileron and ruder
assemblies, inspect the trim tab installations for general condition and security. Noting any
hinge or push rod looseness that may contribute to excessive tab 'free play.' "

"Perform pitot-static system leak check."

Rudder trim tab

"...inspect the [rudder] trim tab installations for general condition and security, noting any
hinge or push rod loosensess that may contribute to excessive tab 'free play.' "

Pitot-static system

"...pitot-static system leak check."

"Rudder trim tab provides yaw trim for the
airplane. Rudder trim is obtained through

the Yaw Trim Switch on the cockpit center

pedestal. A rudder trim indicator is located
on the cockpit center pedestal. A rudder

trim tab system is an integral part of the
rudder and further increases directional

stability of the aircraft."

Rudder Trim Tab

"The flight environment data system
consists of the pitot and static system
which senses and supplies air pressure
to the air data instruments.

Guide Gas
Component. The rudder
trim tab can't be
disassembled into
consituent parts.

As the trim tab is adjusted,
it Guides the flow of air (Gas) along
its surface.

Import Gas
Convert Pneumatic to Hydraulic Energy

Assembly. Individual Sense Hydraulic Energy

parts within the pitot-
static system can be

replaced. The pitot and static tubes Import dynamic and static air

(Gas) that each exert (Converts) pressure (Pneumatic
Energy) on a liquid. The pressure (Hydraulic Energy) of
the 2 liquids are measured (Sensed) relative to one
another to determine the air speed, elevation, etc.

Change Mechanical Energy

The purpose of Guiding Gas along the surface of the rudder trim
tab is to elecit a Change in the force (Mechancial Energy) exerted
on the flight control surface. This force causes the plane to yaw.

Sense Pneumatic Energy

The purpose of the pitot-static system as a whole is to measure
(Sense) air pressure (Pneumatic Energy).

Figure 3.1: Functional decomposition example of the Rudder Trim Tab and Pitot-Static
System that ends with the functional descriptions of Change Mechanical Energy and Sense
Pneumatic Energy, respectively.

was a component or an assembly. The simultaneous step, the Determine action-function

row, served as a thought exercise for the final step. “Appendix A: Flow Definitions” and

“Appendix B: Function Definitions” [40] were referenced and the function-flow pair was

determined using the action-function lense. Then I used the context acquired, the descrip-

tion of the physical operation of the part, and self-questioning to make a judgement on

the designer’s intent (purpose-function) behind the part. By posing the below questions

(regarding the pitot-static system), the purpose-function was more easily illuminated.

e Is Import Gas, Convert Pneumatic to Hydraulic Energy and Sense Hydraulic Energy
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a means to an end? Or is it the end goal?

o If these functions are a means to an end, what is the end goal?

e What is the design problem that these functions solve?

e Can that problem be generalized or solved in another manner?

In answering these questions, I determined the purpose-function of the pitot-static system
to be Sense Pneumatic Energy. By first confirming to myself what the physical operation
of the part was, I was more easily able to make and justify the distinction between the
action- and purpose-function.

This process was performed until the purpose-functions of all parts were identified. For
approximately 20% of parts that served multiple uses, the functions and flows were recorded
and the multiple embodied functions were taken into account through the FF count column
in Table 3.3. This column served to capture the possibility that the quantity or combination

of functions/flows embodied in a part influences its maintenance intervals.

3.4 Machine Learning

3.4.1 Overview

The first step in constructing a function-maintenance model was the choice to use a
supervised or an unsupervised algorithm. After considering the strengths and use cases of
each, I determined that a supervised algorithm was the appropriate choice for the following
reasons:

o A supervised model can be trained using the known output values. Unsupervised
models are not trained using known output values, loosing a major benefit of this
data set as models incorporating known output values are consistently more accurate.

o The data set can be partitioned into a training and testing set to evaluate the quality
of a supervised learning model, unsupervised models have no such evaluation method.

¢ Due to the nature of the mined data, the features were already known and labelled.
This bypassed the burdensome requirement of identifying and labelling the data that
are necessary to use a supervised algorithm.

After deciding to use a supervised algorithm, further down-selecting by type of output

was still necessary. Supervised algorithms are either regression — outputs are continuous
values — or categorical — outputs are categories. A regression model would output a

continuous range of MTBM values based on the range of values from the training data.
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Any future predictions would result in outputs within the 1 to 30,000 hours range, making
the model useless for systems with possible MTBM intervals either measured in a different
unit (i.e. cycles) or with a different range of values. Additionally, considering the early
design intent of the model, a prediction specified down to a single digit is unlikely to be
accurate to that level and would make comparing prediction results more cumbersome. A
categorical model was selected as predictions given within a bucket (category) are more
appropriate for the uncertain nature of early design and as well as easier to comprehend
the differences in maintenance demands of a large set of predictions.

Lastly, prior to implementing any type of algorithm, the mined/synthesized data needed
to be prepared by establishing a consistent set of features that all parts were to be assessed

on.

3.4.2 Data Preparation

The MTBM values needed to be sorted in buckets to allow for categorical predictions. The
buckets needed to be generalizable so as to accommodate any possible measure and value
of maintenance frequency. A caveat was that the buckets needed to be grounded in a
comprehensible manner so as to not seem arbitrary and difficult to grasp for a designer.
Different techniques were used to categorize the MTBM intervals into coherent groups,
including: k-means clustering, jenks natural breaks optimization, and various mathematical
transformations. K-means clustering (an unsupervised machine learning algorithm) seeks to
find k number of clusters such that inter-cluster variance is maximized while intra-cluster
variance is minimized. As k-means clustering performance suffers in lower dimensions, the
1D array of MTBM values was not appropriate for this method. Jenks natural breaks
optimization attempts to identify the optimal number of breaks, and their location, in order
to reduce intra-class variation. Though the jenks natural breaks method was successful in
determining the optimal number of breaks (categories) and their location, these categories
were only optimal for the particular distribution of MTBM values of the training data.
Any mathematical transformations used to identify optimal categories as well as the
two methods listed above resulted in buckets that were non-generalizable or arbitrary.
Non-generalizable because the resultant categories were fit to the particular distribution of
MTBM values of the Learjet. No guarantee could be given that the maintenance intervals
of another system would fit into the buckets created around a specific distribution of values.

Arbitrary because ‘Bucket 1’ to ‘Bucket 2’ versus ‘Bucket 3’ to ‘Bucket 4’ had no consistent
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relationship or real world meaning. If two parts were predicted to have a difference in
maintenance frequency of one bucket, no information could be gained from that other than
‘a difference of one bucket’. How far apart are the centers of those particular buckets? What
is the range of those two particular buckets?

In the pursuit of a generalizable category system, the buckets were constructed to be
relative to one another. While this removed the possibility of any absolute assessment of a
single component or assembly, it allowed assessments to be made between parts within the
same system, regardless of the particular distribution of that system’s maintence intervals.
This addressed the issue of the wide range and measurements of possible maintenance
intervals. The training data contained MTBM values ranging from 1 to 30,000 flight hours,
whereas another possible system may measure maintenance intervals in cycles and have
a range in the hundreds of thousands, if not millions of cycles. By creating buckets that
are measured relative to each other, maintenance predictions are given in dimensionless
terms that maintain the integrity of predictions regardless of the measurement and range
of a system’s maintenance interval. If two parts had a relative difference in maintenance
frequency of one bucket, that difference remains consistent regardless of which two buckets
or the range and measurement of MTBM for that system.

The basis chosen to organize relative maintenance demand was orders of magnitude
(OOM), specifically half-orders of magnitude. OOMs are defined by the equation

nNN:a*lOb,

where b is a value, known as the OOM, that along with a — the initial value — results in an
N that that is closest to the true value, n. Traditionally, the OOM of a value is restricted to
integers. Half-OOMs allow the value of b to include multiples of 0.5. As exponent multiples
of 0.5 equate to taking the square root of a number — in this case always 10 raised to some

exponent — a half-OOM gives the equation
n~N=ax10% = ax (vV10)® = a * 3.16°,

or approximately a three-fold increase. Half-OOMs provide a convenient way to break down
the significant range possible in a full OOM difference. Additionally, they are intuitive to
understand and apply to the real world [58]. When looking at maintenance intervals, once

a month and once a year are about an OOM difference, but there is clearly a wide range of
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OOM Bucket Range # of Parts
Bucket in Bucket
Lower Center Upper
0 0 1 6 15
10 55 7
2 56 100 208 172
2.5 209 316 658 405
3 659 1,000 2,081 193
3.5 2,082 3,162 6,581 591
4 6,582 10,000 20,811 610
4.5 20,812 31,623 65,811 2

Table 3.6: Half order of magnitude buckets used for the training data. The three columns
under the heading Bucket Range are maintenance intervals, measured in flight hours. All
flight hour values are rounded to the nearest integer.

possible intervals that are not appropriately described by monthly or annually. By applying
half~-OOMs to familiar measures of time, we can capture the trend of: weekly to monthly,
monthly to quarterly, and quarterly to annually; with each being ~3.16 times more frequent
than the previous. As all predictions from the model will give results that are relative to
one another, this breakdown lends itself well to contextualizing maintenance intervals into
familiar units of time. Using buckets that are easy to grasp and mentally manipulate comes
with the bonus of a reduced mental load on the designer, a known problem with design
aids that can limit or prevent their usage.

Table 3.6 shows the breakdown of OOM buckets, the range and center of each bucket as
well as the total number of parts sorted into each bucket. The 0.5 and 1.5 OOM buckets
were not used as they over-crowded the sparsely populated 0 to 50 hours intervals and
led to extremely restrictive ranges. As discussed in Section 2.4.2, supervised classification
models base their predictions on their exposure to a sufficiently large and diverse training
data set. Table 3.6 shows that of the 1995 unique data points, a total of 24 parts required
maintenance in the 0, 1, and 4.5 OOM buckets. As the model has minimal training on parts
in these buckets — therefore minimal exposure to the features that indicate a part should

be in these buckets — it is expected that the model would rarely, if ever, make a prediction
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Part OOM CO‘:"‘ FF Fenll  FenLl  FenLl  FlowLl FlowLl FlowLl g:];;nel ?;Z}er . giiec ;
#  Bucket Assy. Count Channel Connect Convert Material Energy SignalFlow Material Energy Material

86 2.5 Comp. 3 1 0 2 1 2 0 1 2 0

376 4 Comp. 2 1 1 0 2 0 0 1 0 1

566 4 Assy. 2 0 0 2 0 2 0 0 2 0

Table 3.7: Data formatted to train the model. As there are 357 unique features, only 11 are
shown. Component or assembly, function-flow count, three level-1 functions, three level-1
flows, and three level-1 function-flow pairs.

into them. This leaves five buckets with sufficient training data to potentially allow for
predictions. These buckets span two OOMs, for the training data this covers maintenance
intervals from 56 to 20,811 flight hours.

After all MTBM values were converted into one of 8 buckets, the remaining data — as
formatted in Table 3.3 — was addressed. While mining data, I recorded a part’s function in
the Function 1 column then in ascending column order for parts with multiple functions.
As most parts had only one function, the latter function columns had few entries. 14
parts served four functions, as a result the Function 4 column only has 14 entries. Each
column is considered a unique feature, therefore the contents of feature Function 4 would
be disregarded when building the model as it doesn’t contain enough information for any

predictive value. The algorithm does not capture that the Function 1, Function 2, etc.

features are the same feature and should be judged the same. The same applies for all
flow and function-flow pair features. To address this, each possible function, flow, and
function-flow pair was converted from the value of a feature to the feature itself.

Table 3.7 shows an excerpt of the converted data, where each possible function, flow,
or function-flow pair is a feature. The value of the feature represents the number of
occurrences of that function, flow, or function-flow pair in that part. Table 3.7 shows Part
86, a component in the 2.5 OOM Bucket (209 to 658 flight hours) that performs three
functions. The level-1 function of Channel once and Conwvert twice on the flows Material
once and FEnergy twice; resulting in one occurrence of the function-flow pair of Channel
Material and two occurrences of Convert Energy. Table 3.7 only shows level-1 functions,
flows, and function-flow pairs but each of these has a corresponding level-2 and level-3
counterpart that is not shown for legibility.

Every data point has 357 features, that inform the algorithm and are the basis of the

model’s predictions. Of those features, only the component or assembly feature is categorical,
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with the two possible responses found in the name of the feature. The continuous features,
with values ranging from 0 to 4 based on the number of occurrences in the part, are:

1 function-flow count

8 level-1 functions

e 19 level-2 functions

e 29 level-3 functions

e 3 level-1 flows

e 14 level-2 flows

e 26 level-2 flows

e 20 level-1 function-flow pairs
e 102 level-2 function-flow pairs

e 134 level-3 function-flow pairs

3.4.3 Training the Model

Various statistical and machine learning methods were investigated for their potential to
illuminate insights into possible function-maintenance relationships. Techniques included
whisker plots, k-nearest neighbors, and neural networks. Exploration of whisker plots was
halted as they provided a distribution of maintenance intervals by feature but had no
predictive capability or externally valid insights. K-nearest neighbors proved to be an
accessible machine learning algorithm but struggles computationally and with over-fitting
when presented with a large numbers of features. Other supervised classification methods
proved equally accessible while allowing easier testing with resultant models that were less
prone to over-fitting. Though neural networks could perform well given the data set, their
black-box nature runs against the intent of the model, to inform and aid designers. A
designer is unlikely to place confidence in the model if they are unable to investigate the
inner workings and processes of the model itself.

The two machine learning models that were explored extensively using R, a programming
language commonly used for statistical analysis, were decision trees and random forests.
Random forest modeling was performed using the randomForest package[59] and the decision
tree modeling utilized the rpart [60] and rpart.plot [61] packages.

As random forests are the aggregation of a large number of decision trees (the random-
Forest default is 500), each trained on different subsets of the total feature list, they are

generally more accurate than an individual decision tree. After calibrating and predicting
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against the known maintenance intervals, the random forest models did not prove to be
significantly more accurate than a decision tree; compounded with their lack of human
intelligibility, I discontinued their exploration.

To create the decision tree model, the data was randomly split into training and testing
sets, containing 70% and 30% of the data points, respectively. The model was then built,
or trained, on the training data set and calibrated on the testing data set, described in
Section 3.5.1. A ‘full’ decision tree was made utilizing all available features. Additionally,
more focused decision trees were made as well. The focused decision trees were trained by
excluding various groups of features as a psuedo-dimensionality reduction experiment. The
purpose of these decision trees was twofold: to assess if any retained a reasonable level of
predictive power using fewer features and if so, which ones. Additionally, decision trees with
fewer types of features or excluding the more descriptive levels of functional information

simulate a design environment with limited clarity on the necessary functionality of a design.

3.5 Evaluating the Model

In order to evaluate the model, three evaluation methods were used. First, the model was
calibrated using classical machine learning techniques. Then, the model was grounded by
predicting against unseen data and assessing if the results correspond with a reasonable
assessment. Finally, the model was evaluated for external validity by comparing its
prediction results on the maintenance intervals of a novel engineered system against an

expert designer’s analysis.

3.5.1 Calibration: Performance Metrics

To calibrate the model towards the best balance of predictive capability while avoiding
overfitting, an appropriate complexity parameter had to be determined. First, the printcp
function of the rpart package was used to generate a table containing decreasing complexity
parameters values and their corresponding number of splits, relative error, cross-validation
error (called xerror by the function), and x-standard deviation. Table 3.8 shows a sample
output of the printcp function. This table show all possible complexity parameter values
down to —1, which represents a maximally overfit decision tree. In order to avoid overfitting,
the largest possible complexity parameter was selected whose cross-validation error was

within one standard deviation of the minimum cross-validation error. That is to say. All
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Cross-

Complexit of e L. Standard
# Parafnetery gkplits g:itiatlon Deviation
1 0.06570397 0 1.01444 0.014718
2 0.01046931 1 0.93430 0.015396
3 0.00938628 4 0.92202 0.015479
4 0.00722022 5 0.90542 0.015582
5 0.00433213 6 0.89892 0.015620
6 0.00288809 7 0.90397 0.015591
7 0.00216606 9 0.90108 0.015608
8 0.00072202 10 0.91552 0.015520
9 0.00036101 12 0.91986 0.015493
10  0.00000000 16 0.91697 0.015511
11 —1.00000000 34 0.91697 0.015511

Table 3.8: Table of decreasing complexity parameter values and their corresponding calibra-
tion metrics.

values within one standard deviation of the minimum cross-validation error are considered
to be at the minimum. By selecting the largest complexity parameter that corresponds to a
minimum cross validation error, the decision tree will result in the fewest number of splits
that still yields the minimum cross-validation error. This is due to the definition of the
complexity parameter as used in the rpart package. Complexity parameter is the minimum
decrease in relative error required for a split to occur. A larger complexity parameter
equates to a higher threshold required for a split to be allowed, it therefore mitigates a
decision tree’s inclination towards overfitting. If a split is allowed to propagate, it can
be said with confidence that the split improved the performance of the model. As the
complexity parameter and the trained features were adjusted, accuracy and PPV were the
primary metrics used to assess the quality of the model. Results of this calibration are
presented in Section 4.2.1.

Using Table 3.8 as an example; the global minimum cross-validation error is 0.89892,
in row #5. By adding the x-standard deviation of each row to 0.89892, the largest cross-

validation error that is said to be at the minimum can be found, 0.87220, in row #4. In
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this example, the decision tree with the best predictive capability while minimizing the risk

of overfitting has a complexity parameter of 0.00722022 and will result in five splits.

3.5.2 Grounding: Design Repository

The Oregon State Design Repository is database of products compiled over the course
of multiple efforts [62-66]. The primary ‘part’ table connects to various design-related
tables, including: failure data, material, manufacturing process, etc. The part table was
the only table queried for the grounding effort. The attributes queried from the table, a
brief description of their content and an example part are listed below:

o Part ID: Unique ID number assigned to each part in the repository

e 12,194
Name: Part (this corresponds to the term ‘part of concern’)

o Gasket

Description: Description of the part

e Gasket for sealing the manifold and the engine connection
Child of Part: Points to the Part ID of the ‘parent’ part

o 12,177 (exhaust assembly)
System: Points to the System ID

e 319 (Datsun Truck)

After reviewing all systems included in the repository, system 319 — a 1979 Nissan

Datsun 620 truck — met all three criteria necessary to use the system for grounding the
model. The criteria were:

1. A long field-life system

2. A sufficient number and variety of parts

3. Readily available information on the parts in the system
A majority of the design repository failed the first criterion as most system were household
or consumer products that were not designed to be maintained. Of the long field-life
systems, the Datsun had the most unique parts at 131. Additionally, due to the common
nature of the system (an internal combustion engine truck), information about each part
and their operation was readily available.

Though the repository included tables on functions and flows, I chose not to query those
tables as I could not guarantee the same functional decomposition process was followed.

The same concern excluded the use of the Assembly attribute in the part table.
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After querying the repository for all of the Datsun’s parts, the process described in
Section 3.3.2 and Fig. 3.1 was repeated to identify the functions, flows, function-flow pairs,
function-flow count, and component versus assembly for each part in the system. The
data preparation techniques described in Section 3.4.2 were conducted prior to feeding the
Datsun’s data into the function-maintenance model.

A codified process was necessary in order to apply a consistent assessment of a vague
term like “reasonable” onto predictions intended for use in early design situations with a
large degree of uncertainty. In addition, the assessment needed to align with the buckets
predicted by the model (the model used is found in Fig. 4.1, described in Section 4.1.1).
The assessment process was as follows:

1. Does this part need to be maintained, in any capacity, more often than the average

part on the truck?
o If yes, the part should reasonably be in the 2 or 2.5 OOM bucket
e If no, the part should reasonably be in the 3.5 or 4 OOM bucket
2. Within the above average frequency buckets (2 and 2.5) or below average frequency
buckets (3.5 and 4), does a more conservative frequency seem necessary or does a
more conservative frequency seem excessive?
o If a more conservative frequency seems necessary, the part should reasonably be
in the 2 or 3.5 OOM bucket
o If a more conservative frequency seems excessive, the part should reasonably be
in the 2.5 or 4 OOM bucket
o If there was no clear answer, either bucket was deemed reasonable

The face validity assessment and commentary are described in Section 4.2.2.

3.5.3 Verification: Laboratory Upgrade Point Absorber Application

To investigate the external validity of the model (the model used is found in Fig. 4.1,
described in Section 4.1.1), evaluation of the model’s predictions against “real” prediction
values was required [67]. As stated throughout this research, a major problem in novel fields
is the lack of “real” data to verify against. In place of “real” data, I verified the model against
the best case scenario available to a potential developer in a novel field, an expert designer
with experience in the field. Dr. Paasch is a Professor Emeritus of Mechanical Engineering
at Oregon State University in the Design Engineering Lab. His research background is in

design theory, applied design processes, reliability and survivability in the marine renewable



45

energy field, and automotive engineering fields. Additionally, Dr. Paasch previously served
as the director of the Northwest National Marine Renewable Energy Center, now known as
the Pacific Marine Energy Center.With experience in design processes, maintainability, and
marine renewable energy systems, Dr. Paasch’s assessment represent the best case scenario
for predicting the maintenance intervals for this work’s case study, a wave energy converter.

The system chosen to verify the model on was the Laboratory Upgrade Point Absorber
(LUPA) developed at Oregon State University [68]. LUPA is a tank-scale, open-source
wave energy converter meant for researchers and developers to help offset the high costs of
tank-scale testing and to encourage the open sharing of data and lessons learned. Specifically
designed as an open-source platform, LUPA is the only fully designed and manufactured
wave energy converter with publicly available design documentation — highlighting the
difficulty of accessing detailed maintenance information in novel sectors. I reviewed the
3D models, bill of materials, and device documentation to determine the functions of the
162 unique parts in LUPA. All features used to train the full model were documented. The
features were then formatted, input into the model, and the predicted maintenance intervals
were returned.

Of the 162 parts in LUPA, 30 unique parts and their corresponding predictions were
selected for verification. The model predicted ~23.3% of parts into the 2 and 3.5 OOM
buckets, 40% of parts into the 2.5 OOM bucket and ~13.3% of parts into the 4 OOM
bucket. Following this same breakdown, 7 parts from the 2 and 3.5 OOM buckets, 12 from
the 2.5 OOM bucket and 4 parts from the 4 OOM bucket were randomly selected from
their respective buckets. All 3D models, bill of materials, and design documents used to

assess the system were provided to Dr. Paasch along with the following prompt:

A list of 30 unique mechanical parts is included along with all 3D modeled
parts and assemblies, the bill of materials, and all available design documents.
Please review these parts and assess the relative maintenance demand of the
parts. For the purposes of this work, “maintenance” is defined as any time
an operator or maintenance personnel must inspect, repair, replace or service
a component or assembly. “Maintenance” includes all types of preventative
maintenance — time, failure finding, risk, condition, and predictive. Please assign
all parts to the 4 relative maintenance buckets; the buckets are based on order
of magnitude (OOM) relative differences. The 4 buckets are listed below with a

brief description.
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e 2 OOM bucket - parts in this bucket require the most frequent maintenance

e 2.5 OOM bucket - parts in this bucket require maintenance approximately
3.16 times, a half OOM, less frequently than parts in the 2 OOM bucket

e 3.5 OOM bucket - parts in this bucket require maintenance approximately
10 times, 1 OOM, less frequently than parts in the 2.5 OOM bucket and
13.16 times, 1.5 OOMs, less frequently than parts in the 2 OOM bucket

e 4 OOM bucket - parts in this bucket require the least frequent maintenance;
2 OOMs, 1.5 OOMs and a half OOM less frequent maintenance than the 2
OOM bucket, 2.5 OOM bucket and 3.5 OOM bucket, respectively

The model’s predictions and Dr Passch’s assessments were then compared using a

confusion matrix, presented in Section 4.2.3.



47

All models are wrong, but some are useful.

George Box

Chapter 4: Results

This chapter summarizes the results of, and discusses the model generated. First, two
different models generated in this work are examined and explored through sample parts.
Then, an evaluation of the model is presented through the calibration, grounding, and
verification efforts. An application of the model used during redesign is then presented.

Finally, a discussion on the results and limitations of this research concludes the chapter.

4.1 Function-Maintenance Model

4.1.1 Overview

Fig. 4.1 and Fig. 4.2 are two decision trees generated during this work. Each tree was
trained on different subsets of features. The complete list of features, described below,
was used to train Fig. 4.1 whereas the features in bold comprise the subset used to train
Fig. 4.2. The features, organized by type are:

¢ 1 Component or assembly feature

¢ 1 Function-flow count feature

e 8 Level-1 function features

e 19 Level-2 function features

e 3 Level-1 flow features

e 14 Level-2 flow features

e 20 Level-1 function-flow pair features

e 102 Level-2 function-flow pair features

In the interest of clarity, Fig. 4.1 will be referred to as the “Full Model” and Fig. 4.2
as the “Flow Model.” The Full Model contains the full range of available features, with
the exception of the level-3 features. Level-3 features were excluded from the model as
their level of detail is unlikely to be known during early design. The Flow Model excludes
functions and instead, the flows are the focus of this model. The same reason given above
applies for the exclusion of level-3 flows.

In total, the Full Model was trained using 168 features and resulted in a decision tree
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0_OOM (unused)
1_OOM (unused)
= 2.0_0OM
2.5_00M
3.0_OOM (unused)
3.5_00M
4.0_O0OM
4.5_OO0M (unused)

FlowL2Solid < 1

4.0_00M
.01 .00 09 .19
.09 .31 31 .00

FFL2GuideGas = 0 FFLICMM >= 1

25_00M
.02 .01 15 29
09 .22 22 .00

4.0_00M
00 .00 .05 .12
09 .37 .37 .00

FenL2indicate = 1 FenL1Provision >= 1 FenL1Provision >= 1

25 0OM 3.5 00M 4.0_00M
.02 .01 .16 .33 .02 .00 .07 .11 .00 .00 .04 .09
.10 .19 .19 .00 .07 .37 .36 .00 .09 .39 .39 .00
Component_or_Assembly = C FF_Count >= 2
2.5_00M 3.5_00M 2.5_00M
.10 .00 .00 .50 .01 .00 .08 .07 05 .00 .14 .38
22 00K [ 30 .00 .10 .00 ] [ 05 .41 .39 .00 j [ 33 .10 .00 .00 J EOOM
02 .01 .14 .33 .00 .00 .04 .08
10 .20 .20 .00 .08 .39 .40 .00
Fenl2Stop < 1 FenL2Secure = 1
4.0_00M 4.0_00M
.00 .00 .09 .05 .01 .00 .07 .17
05 .40 .42 00 15 23 36 01
FFL2Convert2HydE = 0 FlowL1M < 1 FenL2Position = 1

100 .00 16 .37

25_00M 4.0_00M 100 .26 21 00
.02 .01 .15 .40 .00 .03 .09 20
11 .15 15 .00 .06 .30 .31 .00

FenL1Connect >= 1

35_00M
.00 .00 .03 .06
.07 .43 .41 .00

25_00M 4.0_00M 25_00M 35_00M
.02 .01 16 .41 .00 .00 .00 .00 .00 .00 05 .41 .00 .05 12 .10
A1 .14 14 00 13 .33 47 07 .05 .18 .32 .00 .07 .36 .31 .00

Figure 4.1: Decision tree generated using level-1 and level-2 functions, flows and function-
flow pairs. As well as component or assembly and function-flow count.

8 layers deep with 15 possible leaf nodes. The Flow Model was trained using 19 features
and resulted in five layers of 8 possible leaf nodes. Across both models, all nodes predict
parts into one of the four following OOM buckets: 2, 2.5, 3.5, and 4. This is in line with
expectations based on the number of data points in those buckets. Due to the depth of each
tree and the features used to train each model, the amount and type of information required
to most effectively use each model is different. The Full Model requires an understanding of
the flows of energy, material and signal as well as the functions acting on them. In contrast,
the Flow Model only requires information on the system’s proposed flows. Flow information
may be known earlier in the process, allowing the Flow Model to be used earlier; this could

be related to regulations restricting the use of pressurized gases or customer requirements
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0_OOM (unused;
1_OOM (unused;

= 20_OOM
FlowL2Solid <1 2.5 OOM
4.0_00M 3.0_OOM (unuse
.01 .00 .09 .19 = 3.5 OOM
.09 .31 .31 .00 4.0_00M
4.5_OOM (unuse
FlowL2Status >= 1 FlowL2Gas >= 1
25_O0OM 4.0_0OM
02 .01 .15 29 .00 .00 .05 .12
.09 .22 22 .00 .09 .37 37 .00
25_00M FF_Count>=2
25_00M -05 .00 .05 .47 4.0_00M
02 .01 .13 29 -32 .06 .05 .00 .00 .00 .05 .11
.09 .23 .23 .00 .08 .37 .38 .00
FlowL2Gas <1 35_00M 4.0_00OM 35_00M
25.00M .00 .00 .09 .05 .01 .00 12 15 .00 .00 .04 .11
02 .01 143 31 .05 .41 .41 .00 15 .23 34 01 .07 .39 .38 .00

.10 21 21 .00

25 OOM FF_Count >= 2
01 .02 .15 38

.10 .16 .18 .00

3.5_0OM
.03 .00 .10 .20
.10 .30 .27 .00

25_0OM 5_(
.02 .00 .04 .38 03 .00 .12 14
15 .23 .19 .00 .09 .32 29 .00

Figure 4.2: Decision tree generated using level-1 and level-2 flows, component or assembly,
and function-flow count.

of high force output only possible through hydraulic energy, etc. If the information needed
to respond to a prompt is not available, the prediction at that node can be taken and the
implication of possible responses can be explored.

The use of the Flow Model is intended to demonstrate the different manners of utilizing
the explored function-maintenance relationship. The variety of realizations must each be
evaluated to understand their uses and limitations, this is explored in Section 4.2.

The prediction, whether at a leaf or non-leaf node, is given by the value in the top-center,
inside the node. The percentage of parts predicted into each bucket is given by the 2x4 grid
below the prediction. When used to predict maintenance intervals, this can be taken as the
probability of a part to be in each maintenance interval. Examining the top node of either
tree (the top node is the same as it represents the distribution of all the training data),
from top left towards bottom right, the values refer to each bucket in ascending order. The
top left value of 0.01 (1%) is the probability that a part in this node will be in the 0 OOM
bucket. Following this pattern, the probability per bucket at this node is: 0 OOM = 1%, 1
OOM = 0%, 2 OOM = 9%, 2.5 OOM = 19%, 3 OOM = 9%, 3.5 OOM = 31%, 4 OOM =
31%, and 4.5 OOM = 0%. From this grid, the final prediction of each node is the bucket
with the highest probability. Due to rounding, the 3.5 and 4 OOM bucket appear the same,
but the 4 OOM bucket has a higher probability of containing a part in that node, so it is
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the final prediction.

By comparing the two models, some consistencies become apparent. The top node
— which can be read as “Does the level-2 flow of Solid occur less than one time in this
part?” — is the same in both models. Recall that decision trees test all available features
to determine which one reduces informational entropy the most, the feature that does is
then used as the prompt for that node. As both trees share the same top node, this tells
us that the occurrence of the level-2 flow of Solid, is the most informative single question
that can be asked about a part. By responding “Yes, the part has less than one occurrence
(zero occurrences) of the level-2 flow of Solid”, both models predict that the new part’s
maintenance interval is likely in the 2.5 OOM bucket. If no answer is available or the
response is in the negative, then the predicted maintenance interval remains in the 4 OOM
bucket. By answering a single question about a part, a 1.5 OOM difference in maintenance
frequency is assessed. Using the maintenance intervals of the training data, this is the
difference between a part with a maintenance interval of 209 to 658 flight hours (2.5 OOM
bucket) compared to 6,582 to 20,811 flight hours (4 OOM bucket); in general terms this is
a difference of 31.6 times more/less frequent. When applied to familiar measures of time,
a part with a ‘yes’ response requires weekly maintenance and a part with a ‘no’ response
requires annual maintenance.

Another similarity is the second layer nodes of “FFL2GuideGas = 0” from the Full
Model and “FlowL.2Gas>1” from the Flow Model. Though they are not asking the same
question, the level-2 flow Gas comprises half of the function-flow pair of Guide Gas. The
repeat appearance of the feature (or of features related to) Gas indicates that the knowledge

regarding its use in a design is highly informative, this further explored in Section 4.1.2.4.

4.1.2 Using the Model

Five parts have been selected from the training data to be manually passed through each
model to facilitate the exploration and understanding of the models. The five selected
parts are shown in Table 4.1 along with contextual information and features pertinent
to their maintenance prediction. First, each part will be passed through both models
and the resultant prediction will be given and compared to the known prediction, found
in the MTBM Bucket column of Table 4.1. Then the features that inform and impact

the outcome of each prediction are explored. Finally, the insights uncovered through the

exploration of the models from the perspective of that part and the other parts that share
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Full Flow Comp.

I#’Eart g:;;;:slonal Part of Part type g/flzlilzd Model Model vs Function 1  Flow 1 Function 2 Flow 2 léf:unt
concern Pred. Pred. Assy.
Electrical Visual SignalFen SignalFlow
42 functional warning Part type 2 2 2 Assy. Indicate Status N/A N/A 1
checks system Display Visual
Piston. rod Change Mag.  Material
6 Nose gear X Wiper seal 2.5 2.5 3.5 Comp. Stop Solid N/A N/A 1
felt wiper .
Prevent Particulate
Flight  con-
trols - rudder e . Change Mag.  Energy
1,236 (removed i:l};llpl as ilclfl{t;r;‘:cl: 3.5 4 3.5 Assy. Change Mech. Energy N/A N/A 1
from vertical Y ° Condition Rot. Energy
stabilizer)
)b(‘-lglfmryanoci E/llrzz:rllfqelzn Exterior Channel Material
300 Y et X 3.5 35 3.5 Comp.  Guide Guas N/A N/A 1
eddy current ential splice surface o .
. R Translate Gas3
inspection at frame 19
Combustion Inner com- Combustion Provision Material Channel Material
1,826 section (‘ilé(‘k bustion chamber 3 2.5 2.5 Comp.  Store Gas Guide Gas 2
o o liner shell shell Contain Gas3 Translate Gas3

Table 4.1: Five sample parts chosen to highlight the process through which maintenance
predictions are made. Only two function and flow features are shown as none of the sample
parts perform more than two functions.

its maintenance bucket are explored. Insights into the nature and understanding of the
hypothesized function-maintenance relationship are examined. Additionally, insights into

how this relationship can be captured and modeled, as well as their impacts are examined.

4.1.2.1 Sample Part #42

The first part to be passed through the models is part #42, the Visual Warning System,
which provides visual alerts in the cockpit for a variety of safety and aviation information.
The part’s function and flow are SignalFen/Indicate/Display and SignalFlow/Status/Display.
Starting with the Full Model, the part’s path down the decision tree is (a description of
each prompt and the path taken is provided for the first example):
1. FlowL2Solid < 1 or “Does the level-2 flow of Solid occur less than one time in this
part?” — Yes, the left branch is taken
2. FFL2GuideGas = 0 or “Does the level-2 function-flow pair of Guide Gas occur 0
times in this part?” — Yes, the left branch is taken
3. Fenl.2Indicate = 1 or “Does the level-2 function of Indicate occur 1 time in this part?”
— Yes, the left branch is taken
4. Part #42 is predicted to be in the 2 OOM bucket with a probability of 72%
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Using the Flow Model:

1. FlowL2Solid < 1 — Yes
2. FlowL2Status > 1 — Yes
3. Part #42 is predicted to be in the 2 OOM bucket with a probability of 68%

Both models correctly predicted this part to be in the same bucket. The final prompt on
each path, the level-2 function Indicate (Full Model) and the level-2 flow Status (Flow Model)
are the prompts that provide the highest fidelity information on the part’s bucket. The
definitions of each term provides the context that explains this, Indicate: “to make something
known to the user about a flow” and Status: “a condition of some system, as in information
about the state of the system.” The predictions in the most frequent maintenance bucket
correspond to the reasonable assumption that, if information is important enough to be

collected and displayed to a user, it is important enough to demand frequent maintenance.

4.1.2.2 Sample Part #6

Part #6 is a piston rod felt wiper found on the shock strut of the nose landing gear. The part’s
function and flow are Change Magnitude/Stop/Prevent and Material/Solid/Particulate.
Using the Full Model:

1. FlowL2Solid < 1 — No

2. FFL1CMM > 1 — Yes

3. Part #6 is predicted to be in the 2.5 OOM bucket with a probability of 65%
Using the Flow Model:

1. FlowL2Solid < 1 — No

2. FlowL2Gas > 1 — No

3. FF_ Count > 2 — No

4. Part #6 is predicted to be in the 3.5 OOM bucket with a probability of 39%
The Full Model correctly predicted the maintenance bucket and the Flow Model was off by
an order of magnitude. Upon examining the other parts sorted into the same leaf node by
the Full Model, it is clear that the features containing function information were vital in
classifying this part. Of the 58 parts in the leaf node, 47 of them were either a wiper seal,
filter, or boot. All of these parts serve to restrict (Change Magnitude) the flow of some
Material, whether it be Particulate for filters and wiper seals or ice (Object) build up in the
case of boots.

The parts sorted into the leaf node by the Flow Model are not nearly as homogeneous
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as they vary from wiper seals to structural members. Considering the only requirement of
parts in this leaf node is that they have only one flow and it must be the level-2 flow of
Solid, very little information about these parts is actually captured by the model. The final
prompt of FF__Count > 2 says that this part has only one flow which makes the second
prompt (FlowL2Gas > 1) void of information because the part can only have one flow and
it was already determined by the first prompt. If the top node — recall, contains all parts
and therefore matches the distribution of the entire data set — is referenced, this leaf node
appears to closely match the distribution of the entire data set. The resemblance between
this node and the top node indicates that this leaf node serves as a ‘catch-all’ for parts
that the model has insufficient data to make a prediction more meaningful than a null

hypothesis.

4.1.2.3 Sample Part #1,236

Part #1,236 is the rudder assembly that performs the function and flow Change Magni-
tude/Change/Condition and Energy/Mechanical Energy/Rotational Energy. Using the Full
Model:
FlowL2Solid < 1 — Yes
FFL2GuideGas = 0 — Yes
FenlL2Indicate = 1 — No
Component_ or_ Assembly = Component — No
5. Part #1,236 is predicted to be in the 4 OOM bucket with a probability of 42%
Using the Flow Model:
1. FlowL2Solid < 1 — Yes
2. FlowL2Status > 1 — No
3. Component_ or__Assembly = Component — No
4. Part #1,236 is predicted to be in the 3.5 OOM bucket with a probability of 41%
The Flow Model correctly predicted the rudder assembly whereas the Full Model’s

prediction was 0.5 OOMs less frequent. Upon closer inspection of the leaf nodes from each

Ll O

model, the differences are realized to be negligible. The leaf node in the Full Model has a
probability of 40% for the 3.5 bucket and 42% for the 4 bucket. The leaf node in the Flow
Model has a probability of 41% for both the 3.5 and 4 bucket. Despite the final predictions
being different, a superior interpretation of the results would be that the rudder assembly
has a probability of 82% to be in the 3.5 or 4 bucket.
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Relevant to understanding this prediction is clarifying what maintenance of an assembly
entails. For this example, the rudder assembly as a whole requires maintenance, on average,
in the 3.5/4 OOM frequency. The components that comprise the rudder assembly may,
and certainly do, require more frequent maintenance though. The maintenance frequency
of an assembly is determined by the frequency of the maintenance tasks that refer to the
assembly as a whole, and is not influenced by the maintenance frequency of its individual
components.

With this distinction in mind, the component or assembly feature may be thought of
as informing the possible intensity or type of maintenance action to be expected. The
maintenance action related to part #1,236 is “Conduct a general visual inspection of the
rudder assembly for permanent deformation, corrosion, fatigue cracks, wear or chafing, and
general condition.” Another assembly (selected at random) is part #577, the nose landing
gear subsystem. Its related maintenance task is “Completely disassemble nose landing gear.
Conduct visual, dye penetrant, and Magnaflux inspection of all components as appropriate.
Determine extent of wear by making dimensional checks.” The maintenance tasks required
for these two assemblies can serve to better educate the designer’s understanding of the
maintenance prediction of an assembly. A maintenance task for an assembly, as opposed to
the individual components that comprise it, is more likely to involve a broad inspection
of concerns not addressed during individual component maintenance or entail a complete

overhaul of the assembly.

4.1.2.4 Sample Part #300

Part #300 is crown skin circumferential splice at frame 19, a section of the exterior skin
of the aircraft. Part #300 performs the function and flow Channel/Guide/Translate and
Material/Gas/Gas3. Using the Full Model:

1. FlowL2Solid < 1 — Yes

2. FFL2GuideGas = 0 — No

3. Fenl1 Provision > 1 — No

4. Part #300 is predicted to be in the 3.5 OOM bucket with a probability of 41%

Using the Flow Model:

1. FlowL2Solid < 1 — Yes

2. FlowL2Status > 1 — No

3. Component_ or_Assembly = Component — Yes
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4. FlowL2Gas < 1 — No
5. FF_ Count > 2 — No
6. Part #300 is predicted to be in the 3.5 OOM bucket with a probability of 32%

Part #300 is a good example of a part that pertains to the two most informative features
for both models (discussed above in Section 4.1.1), the second layer node of FFL2 GuideGas
= 0 from the Full Model and FlowL2Gas > 1 from the Flow Model. Exploring this part —
and the large number of parts it represents — is essential to understand any model developed
from this work. Similar to any engineering tool, an informed understanding of the inputs,
processes, and outputs of this model must be applied to understand its capabilities and
limitations.

The models generated in this work were all trained on maintenance data mined from
a civilian aircraft and its engines. Despite attempts to generalize all concepts applied,
artifacts from the mined data undoubtedly exist. One such artifact explains the prominence
of the two previously described features. Apart from the flight control surfaces and wings
(that induce/adjust movement in all 6 degrees of freedom), the very form of the components
that make up all external surfaces of the aircraft serve a singular purpose: to perform the
function and flow of Channel/Guide/Gas and Material/Gas/Gas3. More simply, all external
surfaces are aerodynamic. This function is not embodied by an operation of the component,
but by an intrinsic property of the component. Since drag caused by poor aerodynamics
represents a potential performance loss — and therefore revenue loss — maintenance of the
aircraft’s external surface components is of significant concern.

An additional group of parts, the so-called “structural members” similarly explain why
the first node of both models is FlowL2Solid < 1. Structural members were described with
the function and flow Support/Stabilize/Stabilize3 and Material/Solid/Object and includes
parts such as: keel beam, brackets, tires, support structures, wing spars, wing spar caps,
etc. Between the large number of structural members and the exhaustive maintenance
that requires an inspection of each structural part individually, they represent a large
portion of the parts that fit their functional description. This is the same case for external
aerodynamic parts.

The structural members are examined further but the same concept applies to the
external surfaces. Of the 1,995 data points used to build this family of decision trees,
1,169 respond “No” to the top node of FlowL2Solid < 1. Of that portion, 416 of the parts
match the functional description of structural members (Support/Stabilize/Stabilize3 and
Material/Solid/Object), most of which are in fact structural members. 77% of the 416 parts
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that are functionally similar to structural members fall into the maintenance frequency
buckets that align with inspections that occur at the following frequencies: 6,000, 7,200,
and 12,000 hour; 3,000 and 6,000 landing; and 12 year. The inspections at those intervals
include the exhaustive inspection required of all structural members in the aircraft. The
awareness of this information regarding the input data explains the significant difference in
prediction (2.5 versus 4 OOM bucket) capable after responding to top node of the each
model. These artifacts and their implications concerning functional design and the models
external validity are discussed throughout Chapter 5. For the current exploration of these
models, an understanding of these artifacts facilitates a more useful understanding of the
models’ results. For example, if a concept is generated that includes the requirement to
Stabilize a Solid, the model will make a prediction that aligns with a structural member,
i.e. a beam, that on average does not require frequent maintenance. If the designer’s
intent is more akin to a tire or a wheel — which may share functional similarities — the
maintenance considerations attributed to that function may be grossly underestimated.
The model would still be useful, but additional consideration with an understanding of

these artifacts would need to be applied.

4.1.2.5 Sample Part #1,826

Part #1,826 is an inner combustion liner shell, found near the combustion chamber in
the engines. It performs the functions and flows Provision/Store/Contain and Material/-
Gas/Gas3 as well as Channel/Guide/Translate and Material/Gas/Gas3. Using the Full
Model:
1. FlowL2Solid < 1 — Yes
2. FFL2GuideGas = 0 — No
3. FenL1Provision > 1 — Yes
4. Part #1,826 is predicted to be in the 2.5 OOM bucket with a probability of 50%
Using the Flow Model:
FlowL2Solid < 1 — Yes
FlowL2Status > 1 — No
Component_or_Assembly = Component — Yes
FlowL2Gas < 1 — No
FF Count > 2 — Yes
Part #1,826 is predicted to be in the 2.5 OOM bucket with a probability of 38%

A A
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Part #1,826 is functionally similar to part #300 but shows how the models are able to
differentiate between the two. The Full Model made the distinction through the prompt
FenLl1 Provision > 1, whereas the distinction was captured with FF__Count > 2 by the
Flow Model. Both models predicted a maintenance 0.5 OOMs more frequent than the
actual frequency; however, for a part experiencing frequent cycles of high temperature and
pressure, a more conservative prediction is appropriate. In fact, this part has another data
point that entails a maintenance task that does fall into the 2.5 OOM bucket.

4.2 Model Evaluation

This section describes the evaluation techniques explored and the results of those explorations.
First, the calibration results of the Full and Flow Models are described. Then the grounding
of the Full Model against unseen data to assess a qualitative degree of “reasonableness” is
reported. Lastly, “verification” results are described. The model was applied to a prototype
wave energy converter and the results were “verified” against the predictions of the best
case scenario for maintenance prediction, an expert designer engineer with experience in

maintenance as well as wave energy converter design.

4.2.1 Calibration: Performance Metrics

After using the printcp function of the rpart package to calculate the cross-validation error
at all levels, from a single layer tree to a maximally overfit tree, the optimal complexity
parameter was determined. The relevant portions of the printcp output for the Full Model
are shown in Table 4.2. Row #11 gives the complexity parameter (0.00144404) that
corresponds to the minimum cross-validation error (0.87220). This complexity parameter
equates to the decision tree with the smallest cross-validation error as determined by
resampling 10 random subsets of the training data. Though row #11 gives the most
accurate model, any row within one standard deviation of row #11’s cross-validation error
is also said to be at the minimum and therefore just as accurate. The highest row within
one standard deviation is the optimal choice, as the larger complexity parameter results in
a more general model. Row #9 is the highest minimum row and equates to a complexity
parameter of 0.00361011 for the Full Model.

The same process was followed for the Flow Model using Table 4.3. Row #5 corresponds

to the smallest cross-validation and row #4 contains the optimal complexity parameter,
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Cross-

Complexit of e L. Standard
# Parafnetery gkplits g:itiatlon Deviation
1 0.06570397 0 1.00000 0.014858
2 0.02671480 1 0.93430 0.015396
3 0.02238267 2 0.91336 0.015534
4 0.00866426 3 0.89675 0.015633
5 0.00758123 4 0.90108 0.015608
6 0.00722022 6 0.90830 0.015565
7 0.00649819 7 0.90253 0.015600
8 0.00433213 10 0.89170 0.015661
9 0.00361011 11 0.88520 0.015696
10 0.00216606 12 0.87437 0.015751
11 0.00144404 14 0.87220 0.015762
16 —1.00000000 56 0.89386 0.015649

Table 4.2: Complexity parameter table calculated using the Full Model decision tree using
decreasing complexity parameter values.

0.00722022. As the optimal complexity parameter is determined by minimizing cross-
validation error then using the largest complexity parameter at that minimum, there is
no correct value. Assuming best practices have been followed to determine the optimal
value, the litmus test of a “good” complexity parameter are the external evaluations. If the
predictions aren’t externally valid or reasonable, the model may be overfit to the training
data and aren’t generalizable. If the predictions don’t provide any useful information (e.g.
predicting every single part into the 3.5 or 4 OOM bucket would be correct 62% of the
time but that doesn’t provide any useful insights), the complexity parameter may be too
large and over-simplifying the model. Section 4.2.2 explores this topic by evaluating the
reasonableness of predictions and the usefulness of prediction were previously explored in
Section 4.1.2.

The new complexity parameters were then used to build the Full and Flow Model

(Fig. 4.1 and Fig. 4.2) using the training data set. This resulted in variations of their
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Cross-

& Complexity # (?f Validation Stan.da.rd

Parameter Splits Deviation
Error

1 0.06570397 0 1.01444 0.014718

2 0.01046931 1 0.93430 0.015396

3 0.00938628 4 0.92202 0.015479

4 0.00722022 5 0.90542 0.015582

5 0.00433213 6 0.89892 0.015620

11 —1.00000000 34 0.91697 0.015511

Table 4.3: Complexity parameter table calculated using the Flow Model decision tree using
decreasing complexity parameter values.

first iteration that were pruned to reduce overfitting while conserving as much predictive
capability as possible. The testing data was then predicted on and compared to their known
buckets.

The confusion matrices of the known versus predicted buckets are shown in Table 4.4
and Table 4.5. The columns of the confusion matrices are the known maintenance buckets
from the test data, while the rows are the predicted maintenance buckets for the same
test data. Diagonally from the top left to bottom right are correctly predicted data points
(highlighted in gray). Because the buckets sequentially increase in value, the location of a
cell within the matrix allows for additional insights. Values above the grey diagonal were
predicted to require more frequent maintenance than the actual maintenance frequency.
Values below the diagonal were predicted to require less frequent maintenance than the
actual maintenance frequency. The farther from the grey diagonal that a cell is, the larger
the difference between known and predicted value. The top right and bottom left cells
represent these extremes. The top right cell contains parts that were predicted to be in
the 0 OOM bucket but were actually in the 4.5 OOM bucket. This would be the most
conservative prediction possible. The bottom left cell represents parts predicted to be in
the 4.5 OOM bucket but are known to be in the 0 OOM bucket, this would be the most
optimistic prediction possible.

Comparing the two matrices, the Full Model made more correct predictions into the
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Known Bucket
000OM 100M 200M 2500M 300M 3500M 400M 4.500M

. 000M 0 0 0 0 0 0 0 0
_ % 1 OOM 0 0 0 0 0 0 0 0
TA@ 200M 0 0 3 3 0 0 0 0
5% 2500M 0 1 30 108 38 31 31 0
E E 3 00M 0 0 0 0 0 0 0 0
E 3.5 OOM 0 0 8 22 21 94 106 0

4 00M 2 0 5 14 10 35 40 0

4.5 OOM 0 0 0 0 0 0 0 0

Table 4.4: Confusion matrix relating the known maintenance frequency with the Full
Model’s predictions.

Known Bucket

00OM 100M 200M 2500M 300M 3500M 400M 4.500M

. 0ooMm 0 0 0 0 0 0 0 0
= 2 100M 0 0 0 0 0 0 0 0
T4 200M 0 0 4 2 0 0 0 0
29 2500M 0 1 24 85 29 32 25 0
é £ soom 0 0 0 0 0 0 0 0
£ 3500M 2 0 16 48 35 118 135 0

4 00M 0 0 2 7 5 10 17 0

4.5 00M 0 0 0 0 0 0 0 0

Table 4.5: Confusion matrix relating the known maintenance frequency with the Flow
Model’s predictions.

2.5 and 4 OOM buckets, with 23 correct predictions more for each bucket compared to the
Flow Model. The Flow Model made one correct prediction more than the Full Model in
the 2 OOM bucket and 24 more in the 3.5 OOM bucket. Beyond looking solely at correct
predictions, the location and distribution of values across the matrices brings us to other
insights. Assuming a more conservative prediction is preferred to an optimistic prediction,
we can inspect the columns (skipping the 0, 1, and 4.5 buckets due to lack of data) from
left-to-right and compare the prediction distribution.
e 2 OOM - Though the Flow Model makes one additional correct prediction, the
remaining known 2 OOM parts are not equally close to the grey “correct” cell. The
Full Model has a smaller standard deviation from the known value.
¢ 2.5 OOM - The Full Models performs significantly better than the Flow Model for
this bucket.
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OoOOM Full Model Flow Model
Bucket
PPV Expanded PPV PPV Expanded PPV
2 50.0% 100% 66.7% 100%
2.5 44.0% 73.6% 43.3% 70.4%
3.5 37.5% 88.0% 33.3% 81.4%
4 37.7% 70.8% 41.5% 65.9%

Table 4.6: Per class metrics for the Full and Flow Model, given by class.

¢ 3 OOM - As neither model included predictions into this bucket, only the distribution
of incorrect predictions can be examined. The standard deviation of both models
from the known value are similar, but the Full Model is more conservative.

¢ 3.5 OOM - This is the first column where the Flow Model made significantly more

correct predictions. Not only that, but the difference in correct predictions are
accounted for by the Full Model’s higher number of overly optimistic predictions.

e 4 OOM - The Full Model made more correct predictions but this is at least partially

offset by the Flow Model’s lower standard deviation from the known value.

From the confusion matrices, the other metrics used to evaluate supervised classification
models were calculated. All per class metrics are shown in Table 4.6. The two metrics that
apply to the model overall are the accuracy and the average PPV (seen in Table 4.7). The
Full Model had an accuracy of 40.2% and the Flow Model had an accuracy of 37.5%. As
accuracy is the total number of correct predictions over the total number of predictions, it
gives a general sense of the models’ performance. The other model level metric used, average
PPV, gives the probability that any given prediction, regardless of class, is correct. When
evaluating a machine learning model, there are no target values for metrics. Acceptable
values are entirely context and judgement dependent. The only “true” judgement possible
is in comparison to verified information, this is explored in Section 4.2.3 where the model’s
results are judged against the best proxy for “verified” data possible in a novel field.

Traditionally, the classes of a multi-classification model are not sequential (i.e. Colors:
Red, Blue, etc.) so a prediction is black or white, either correct or incorrect, with no shades
of gray. This work is not intended to provide designers with “hard” and exact values of

maintenance intervals (this research wouldn’t be need if that was possible), but instead to
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Expanded Expanded

Model Accuracy Average PPV Accuracy Average PPV

Full 40.2% 42.3% 79.4% 76.9%
Flow 37.5% 46.2% 83.1% 79.4%

Table 4.7: Per model metrics for the Full and Flow Model.

inform early maintainability considerations.

In pursuit of metrics that capture the shades of grey that still allow for more informed
design choices, PPV, accuracy, and average PPV were modified to create what will be called
“Expanded PPV” “Expanded Accuracy”, and “Expanded Average PPV.” Expanded PPV
is seen in Table 4.6 alongside PPV. Recall, PPV is calculated on a per class basis and is
defined as the number of correct prediction for a class over the total number of predictions
for that class. Phrased another way, PPV gives the probability that any given prediction
into a class is accurate. To account for the “gray” area of correctness, the definition of a
“correct prediction” is expanded to include predictions +0.5 OOMs from the true value.
With this change, if a part is known to be in the 2.5 OOM bucket but is predicted to be
in the 2 OOM bucket, this prediction would be deemed correct. Expanded accuracy and
expanded average PPV follow the same logic and are seen in Table 4.7. The expanded
PPV, accuracy, and expanded PPV for both models increased significantly, approximately

doubling all values.

4.2.2 Grounding: Design Repository Application

The first foray into external validation was by grounding the model. The intent of grounding
is to evaluate if the model results in reasonable predictions when exposed to unseen data.
The 131 data points of the 1979 Nissan Datsun 620 truck were predicted using the Full
Model. My personal judgement was applied following the process described in Section 3.5.1
for a “Yes” or “No” answer if I found the prediction to be reasonable. To better convey the
results of this endeavor, 9 parts are shown in Table 4.8 along with their necessary feature for
prediction. Also shown are the predicted maintenance bucket, the “Yes” or “No” assessment

of reasonableness, and commentary on the prediction or assessment. Of the 131 predicted
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parts, 81 were assessed to be reasonable. Three recurring themes arose from unreasonable

predictions.

4.2.2.1 Theme #1: Mechanical Simplicity

Part #12,127, the impact bar shows the first theme. The model fails to capture the relative
maintenance requirement of functions that are essential, but are performed by a part that is
mechanically simple (e.g. does not move) and as a result, is more likely to require condition
based preventative maintenance as opposed to time, failure, or risk based preventative
maintenance. This is likely caused by a distinction not captured in the functional modeling
process or as a feature: is the function performed by an action of the part or by an inherent
characteristic of the part? A clear distinction may be difficult to make, but the impact bar
of the car exemplifies the difference. Does the impact bar Distribute Mechanical Energy by
an action it performs? Or by an inherent characteristic? It Distributes the force (Mechanical
Energy) of a crash by its nature of being connected to the frame of the car. A part that
inherently performs a function may be more likely to require condition based maintenance
which, by definition, does not lend itself well to a consistent maintenance interval. The
impact bar is likely to fail due to one of two reasons, a crash or rust. A car crash, which
would entail unscheduled maintenance is outside of the scope of this research. Rust is
a prime example of the difficulty in assigning a maintenance interval to a mechanically
simple part. The context and usage of the part heavily influence the impact of rust, two

considerations that novel systems are not able to account for without historical precedent.

4.2.2.2 Theme #2: Broad Design Space

Part #12,041, the muffler, embodies the second theme. It relates to the abstract nature of
functional modeling and the wide design space possible within the execution of a particular
function. The muffler’s function and flow are Change Magnitude/Change/Decrement and
Energy/Acoustic Energy/Velocity. The function-flow pair of Change Magnitude Energy
could describe a wide variety of maintenance intensive parts, like a gear box, a transformer,

or the hydraulic shocks of the Learjet.
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4.2.2.3 Theme #3: Inappropriate Data

Part #12,038 exemplifies the last theme. This part is a cup holder, obviously not something
that would be considered in a maintenance analysis. In the interest of thoroughness, all
parts in the Datsun truck recorded in the design repository were passed through both
models regardless if they fell into this theme. 13 parts fell into this theme including the ash

tray, floor mats, speaker covers, etc.

4.2.3 Verification: LUPA Application

The verification results of the Full Model as measured against the expert designer’s assess-
ment are shown in Table 4.9. The grey diagonal indicates the model and expert assessing a
part into the same maintenance bucket. Above the diagonal represents the model assessing
a part requiring more frequent maintenance than the expert assessed and vice versa for
below the diagonal.

From Table 4.9, the model predicted the same relative maintenance bucket as the
expert design engineer 6 times, more conservatively 17 times, and less conservatively the
remaining 7 times. The model’s inaccuracy at higher OOM buckets is not surprising due
to the nature of functional decomposition. The cell found in the 4 OOM column and 2
OOM row can be examined to understand this issue better. The damper plate is one of
the three parts referred to by this cell. The damper plate is a solid circular piece of 6061
aluminum at the bottom of the spar that has lead ballast secured to it. When viewed in
terms of function, the damper plate performs two function-flow pairs (listed at the 2nd
level), Change Mechanical Energy and Stabilize Solid. These function-flow pairs describe the
plate as Stabilizing the weights (Solid) secured to it and increasing (Change) the force of
hydrodynamic drag (Mechanical Energy) of the spar. Both of these functions maximize the
hull’s relative motion to the spar and are essential to the operation of the device. Despite
its importance, the damper plate is just a solid piece of metal with no moving parts and
should not warrant maintenance actions at the highest frequency level, this result falls in
line with Theme #1: Mechanical Simplicity, found during the Grounding Evaluation in
the previous section. Similar to any tool or software used in engineering, this model still
requires an engineer to review the results and assert their judgment, but the model can

reduce the number of parts an engineer needs to assess.
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Table 4.9: Confusion matrix of model predicted versus expert design engineer assessed
maintenance values for 30 LUPA parts

4.3 Applying the Model

This section describes an application of the model to redesign LUPA, a wave energy
converter, to reduce its required maintenance frequency. LUPA is a piece of laboratory
equipment. It was not designed or intended for the activities and environmental conditions
that a commercial wave energy converter will be expected to withstand. As such, design
considerations that would be paramount to a commercial wave energy converter, like
maintainability, took a lower priority than design considerations related to LUPA’s role as
an open-source platform for analyzing concepts, validating numerical models, and innovating
control schemes.

The results from the LUPA application come from a possible physical or functional
redesign. The redesign is given from a maintenance-centric point of view and will not
account for other possible design considerations. The redesign presented is intended as an
example of a modification to the physical or functional architecture of the device that could
be stimulated by examining the functional drivers of maintenance more closely and from an

earlier stage in development.

4.3.1 Carriage Rail Securement

The redesign considered is in regard to the system that allows for vertical translation of the
hull along the spar. Fig. 4.3 shows a simplified version of the system. The carriage rail is
secured to the spar via 10 screws extending through the carriage rail into the spar, three of

the holes for those screws are visible in Fig. 4.3. The carriage at the top of Fig. 4.3 is the
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Figure 4.3: 3D model of LUPA showing the carriage, carriage rail, and spar. The model
has been simplified to improve visibility. Note the three visible screw holes that secure the
carriage rail to the spar.

top carriage rail that the hull is secured to.
Upon analysis, it was found that the screws perform the function and flow of Support-
/Secure/Secure3 and Material/Solid/Object. Referencing the Full Model:
1. FlowL2Solid < 1 — No
FFL1CMM > 1 — No
FenL1 Provision > 1 — No
FF Count > 2 — No
FenlL2Secure = 1 — Yes

S P N

The carriage rail screws are predicted to be in the 2.5 OOM bucket with a probability
of 37%
Regarding the physical configuration, two considerations related to maintenance are

concerning, inspection and access. The screws are set into a hole, meaning they need to be
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viewed straight on where the carriage, and therefore the entire hull, is located and moving.
To safely perform one possible maintenance task, say, verifying that the torque of the screws
are within an acceptable range, the carriage and hull would need to be locked in place
to allow maintenance personnel to access the screws. Suppose this is deemed unsafe to
perform during in situ maintenance; in that case, the device will need to be removed from
the water onto a maintenance vessel or towed to shore, increasing the operations cost to
perform this relatively frequent maintenance task. If the engineers decide the maintenance
task is to perform a visual inspection of the screws, possibly to verify a mark that indicates
rotation of the screw, the hull would still need to be locked into place in multiple positions
to allow for visual inspection of all screws.

Noting the potential maintenance difficulties, possible options to explore include: repo-
sitioning the screw to a more accessible location, removing the need for the carriage rail
system — and therefore the screws — by changing how the spar and hull move relative to one
another, or securing the rail to the spar through other means. Expanding on the last two
options, is there an alternative way to secure the spar to the hull that doesn’t necessitate
screws and are there better options than screws if the rail design is kept?

The carriage rail itself is described by the function Channel/Guide/Translate and the
flow Energy/Mechanical Energy/Translational Energy, and is predicted by the Full Model
to be:

1. FlowL2Solid < 1 — Yes
FFL2GuideGas = 0 — Yes
FenlL2Indicate = 1 — No
Component_or_ Assembly = Component — Yes
Fenll2Stop < 1 — Yes
FFL2 Convert2HydE = 0 — Yes
7. The carriage rail is predicted to be in the 2.5 OOM bucket with a probability of 41%

If the rail is removed entirely and a linear sleeve bushing or rollers directly onto the spar

A

itself are used instead, what would be the impact? Unfortunately, both of these options are
functionally the same as the original method so the model gives no indication that there
would be any difference.

The second option could lead to stitch welding the rail to the spar. This would be
functionally described by Connect/Couple/Link and Material/Solid/Object. When passed
through the Full Model this would result in:

1. FlowL2Solid < 1 — No
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FFL1CMM > 1 — No
Fenl1 Provision > 1 — No
FF Count > 2 — No
FenL2Secure = 1 — No
FenlL2 Position = 1 — No
FenL1 Connect > 1 — Yes
8. The stitch welding is predicted to be in the 4 OOM bucket with a probability of 40%
This redesign exploration using the Full Model highlights two insights into the system as

NS otk W

designed. First, the design decision to use the spar (via the rail, bushing, etc.) to guide
the movement of the hull has locked in some maintenance requirements. An explanation of
this function-maintenance relationship may be that the function Guide Mechanical Energy,
regardless of how its implemented, often requires maintenance in the 2.5 OOM bucket. This
maintenance is likely to be related to the greasing of bearings or condition inspections for
early signs of wear. The second insight allowed for design effort to be focused on the aspects
that could easily be improved. Screws versus stitch welding are functionally different and
this difference results in a 1.5 OOM difference in preventative maintenance frequency. Not
only is the frequency different, the maintenance action itself is likely to be different. A
series of stitch welds are easier to inspect for signs of failure, as once one stitch fails it is

easily recognizable but still gives time before the adjacent welds fail.

4.4 Discussion

This section includes a discussion of the results, broken down into three sections, each
concerning one of the key findings. First, the existence of function-maintenance relationships
are discussed. Then the modeling and generalization of those relationships is addressed.
Lastly, the usefulness derived from modeling and understanding function-maintenance

relationships is discussed.

4.4.1 Function-Maintenance Relationships

Through the data mining and modeling effort, it was evident that certain functional in-
formation had significant and consistent implications in the preventative maintenance
demands of the physical parts embodying that functional description. Sample part #42

explored in Section 4.1.2.1, shows one such significant and consistent relationship. The
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Visual Warning System assembly and the functional information used to describe it (Sig-
nalFen/Indicate/Display and SignalFlow/Status/Display), was consistently predicted to
require preventative maintenance in the most frequent maintenance bucket (2 OOM) by
both the Full and Flow Models. The level-2 function Indicate led to a 72% chance (in the
Full Model) and the level-2 flow Status led to a 68% chance (in the Flow Model) of accuracy
in the 2 OOM prediction.

Similarly, sample part #1,826 from Section 4.1.2.5 was predicted by both models to
be in the 2.5 OOM bucket. While the actual maintenance interval for this data point was
in the 3 OOM bucket, a consistent and reasonable prediction is shown. Additionally, it’s
worth noting that part #1,826 has a second maintenance task that IS performed with a
frequency that falls into the 2.5 OOM bucket. As for significance, the Full Model provides
a probability of 50% that the part is in the 2.5 OOM bucket and a 30% chance that the
part is in the 3 OOM bucket.

Though some function-maintenance relationships are captured by this model, many
functions are not represented in the model. The unrepresented function-maintenance
relationships may or may not be captured in future work. It may be the case that only
some functions have a consistent and significant maintenance relationship, whereas the
rest may have large uncertainty bands. Despite this possibility, knowledge of the captured
function-maintenance relationships is still useful. As uncertainty reduction is a major goal
during early design, understanding which functions carry large ranges of uncertainty versus
those whose function-maintenance relationships are better understood can guide design

decisions.

4.4.2 Function-Maintenance Model

The choice to utilize a decision tree model should not obscure that a whole family of super-
vised classification algorithms could be implemented to illuminate the function-maintenance
relationships. Functional analysis has proven capable of capturing and distilling design
information that can then be utilized as features to inform a model. Combined with the
consistent and significant relationships uncovered, this points to the validity of supervised
classification algorithms in the modeling of these relationships. Through the grounding
effort using a Datsun truck as well as through the verification effort using LUPA, the
model was shown to contain a degree of external validity. The model produced reasonable

predictions over 60% of the time on the Datsun truck, and over 50% of the predictions
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made on the LUPA data was within £0.5 OOMs of the expert designer’s predictions.
With more diverse training data incorporated into the model, discussed in Section 4.5.1,

a updated supervised classification model is likely to improve on this model’s external

validity. However, this model has shown that some relationships captured are externally

valid and can be leveraged outside the training data’s sector.

4.4.3 Applying the Function-Maintenance Model

By passing sample parts through the Full and Flow Model and evaluating the results,
we come to the aspect that makes this work useful for design engineers of novel systems.
The function-maintenance relationships identified and modeled using decision trees, are
comprehensible and can be used with a sufficient degree of confidence so as to support
and inform early design decisions. This cumulative finding is described by a few key
understandings developed thus far:

e The structure of the decision tree model and how predictions are made.

e The factors that influence a prediction.

e How to assess consistency and significance of a relationship.

e The limitations of the model, when they arise, and how they influence predictions.

An understanding of the structure of a decision tree and the series of prompts that
result in a prediction are necessary for any usage of the model. The factors that influence a
prediction provide the designer with insight into the “thought process” of the model. If the
designer knows that some aspect of a functional requirement is relevant to its maintenance
demand, but they can see that the model doesn’t account for it, they know to regard
that prediction more cautiously. Sample part #42 (Section 4.1.2.1) exemplifies the value
in understanding consistency; the Full and Flow Model predict the part to be in the 2
OOM bucket with a probability of 72% and 68%. This should tell the designer that this
prediction is likely to be accurate. Sample part #300 (Section 4.1.2.4) shows the value in
understanding significance of the function-maintenance relationships. Following the Full
Model, the part comes to its third prompt, “Does the level-1 function of Provision occur
greater than or equal to one time?” The negative response gives a prediction of 3.5 OOM
with a probability of 41% and a probability of 39% for the 4 OOM bucket. If the response
was instead in the affirmative — as is the case for part #300 — then the prediction if 2.5 OOM
with a probability of 50%. Understanding this can inform the designer on the implications

of various functional alternatives. The final understanding required to effectively utilize this
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model is knowing when not to use this model. Sample part #6’s Flow Model prediction
is one such case (Section 4.1.2.2). The series of prompts from the Flow Model captured
very little positive information about the part and the predicted leaf node is a “catch-all”
node that is equivalent to a null hypothesis. Theme #1 and #2, discussed in Section 4.2.2,
and the artifacts discussed in more detail in Section 4.5.2 provide other examples of the
importance of understanding the model’s limitations.

There are three primary drivers of uncertainty and unknowns that exist in the environ-
ment that this model seeks to operate within. First, this research is in the initial stages
of identifying and modeling function-maintenance relationships. The extent and depth of
function-maintenance relationships are not fully captured, modeled, or understood in this
research and more work is required. Second, the early design phase of the engineering
design process is notable for its high degree of uncertainty. Third, compounding with the
general lack of information in early design, novel technologies have an even higher degree
of uncertainty as they lack comparisons and design convergence. As a result, a robust

understanding of the model is essential for its practical application.

4.5 Limitations

4.5.1 Training Data

The first and most obvious limitation that I believe has the greatest potential to improve
the model is a lack of training data. The model has insufficient data at the extreme
ranges of maintenance frequency. This could be indicative of the nature of long field-life
systems and the ranges of maintenance intervals that they occupy. It is possible that
scheduled maintenance intervals rarely extend past a 2 OOM range. The “missing” parts
could be sufficiently reliable so as to not need maintenance within the service life of the
system. The remaining parts may also be hard to access or technically difficult to assess
the degradation of and are not worth the reduced operational availability of scheduled
maintenance. Operational availability or service costs may necessitate a run-to-failure
strategy with corrective maintenance performed as needed, if this is the case for parts
outside of the 2 OOM range, this model would not capture them.

Though the lack of training data above the bulk 2 OOM range is interesting, the extreme
infrequency of maintenance makes them of lower concern than the data points, or lack

thereof, below the majority of the data. Using the training data for reference, the 0 and 1
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OOM buckets represent the 0 to 6 and 7 to 55 flight hour maintenance intervals. Generally,
accepted logic would tell us that we should design systems to require maintenance as
infrequently as possible whilst ensuring the system remains in the required operational state.
Assuming the designers of the aircraft and its engines followed this logic during design, we
may conclude that the items in the highest frequency buckets perform functions that are
so essential to the operation of the system, that they must be assessed at that frequency.
If this is the case, the lack of data points in the most frequent buckets constitute cause
for concern. The model produced may not be capturing the functions that experienced
and validated designers have deemed so vital to continued operation that they must be
inspected as frequently as every 1.5 flight hours.

Conversely, this logic may be an incorrect assumption in this situation. It is conceivable
that the functions with the shortest maintenance intervals may not be the most vital, but
are functions that require the least time and resources required to maintain, similar to
the side mirrors seen in Table 4.8 of the grounding evaluation. Regardless of the reason,

additional training data stands to clear any confusion.

4.5.2 Artifacts of Training Data

Two artifacts are known to pervade the model: the emphasis on Guide Gas rooted in the
aerodynamic requirement of aircraft design and the treatment of parts that contain the
level-2 flow Solid being heavily influenced by the significant number of structural members
found in the aircraft. The influence of these artifacts is that functionally similar parts are
likely to be sorted into the buckets that correspond to the exhaustive inspections undertaken
to certify external aerodynamic surfaces or structural members.

The addition of more diverse training data would clarify the artifact that stems from
the quantity and specific timing of structural member inspections. Two results are possible,
the new training data will either support or contradict the relationship as seen from the
current training data. If the additional data supports the relationship between parts that
serve a function similar to that of structural members (Support/Stabilize/Stabilize3 and
Material/Solid/Object) and the 4 OOM bucket, then this “artifact” is miss-classified and is
capturing a consistent and significant relationship. If the additional data contradicts this
relationship, then the new model would de-emphasize the consistency of this relationship
and indicate that this relationship was not externally valid. Until a new model can be built

using more diverse training data, it’s impossible to tell if this “artifact” is unique to aircraft
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design or if it’s generalizable to other long field-life systems.

The artifact caused by the aerodynamic requirements of aircraft design seems less likely
to be externally valid. Using a MRE as an example, the external surfaces of a wave energy
converter may be better described as Stop Liquid, leaving Guide Gas to explain pneumatic
or HVAC systems. This would result in the model giving unjustified or unreasonable
predictions. Additional training data would help to reduce the influence of this artifact by
diluting the particular design requirements (aerodynamics) of aircraft design on parts that

perform functions related to Guide Gas.

4.5.3 Evaluation

The evaluation efforts uncovered three themes that highlighted the model’s limitations. The
easiest to address is theme #3, discussed in Section 4.2.2.3. This relates to misusing the
model; when parts are predicted on that would not be a maintenance concern the model’s
predictions will not be reasonable. The example given was a cup holder. This is not the
type of part this model is intended for.

Theme #1 is explored in Section 4.2.2.1 and is seen again in Section 4.2.3; it relates
to the model’s inability to capture mechanical simplicity and the nuances of a function
performed by an operation of the part (a gear box that Changes Mechanical Energy) versus
a function performed by the inherent characteristics of a part (a damper plate Changes
Mechanical Energy by its high drag coefficient and mass). Theme #2 is similar but pertains
to the breadth of parts that could be used to accomplish a function.

The limitations related to theme #1 and #2 is that the model’s use of functional
information does not always capture important factors that impact a part’s maintenance
demand. This is both a feature and bug. By restricting the model’s input to functional
information, it’s able to be used earlier in the design process but fails to capture some
aspects of design that may impact O&M considerations (e.g. the size and weight of a part
that performs a function could vary greatly, thus the operational requirements to perform
its maintenance could vary greatly as well).

Through machine learning calibration, explored in Section 4.2.1, the limitations of
the model’s accuracy were seen. The Full Model — which requires both function and flow
information — has an accuracy of 40.2% and an expanded accuracy of 79.4%. The Flow
Model — potentially useful earlier as it relies primarily on flow information — has an accuracy
of 37.5% and an expanded accuracy of 76.9%. The macro-average PPV of the Full Model
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was 42.3% and 83.1% for the average expanded PPV. The Flow Model’s average PPV was
46.2% and the average expanded PPV was 79.4%. These metrics highlight the superiority
of the Full Model, but at the expense of requiring more information on the system. As
there is no threshold for machine learning metrics that define a “good” model versus a “bad”
model, the goodness of these models must be taken in the context of their application and
the impacts of their results.

Considering the high degree of uncertainty present in the application context — early
design of a novel system — a judgement by the designer is necessary to say if an average
PPV or expanded average PPV of 42.3% and 83.1% is acceptable. Is a 42.3% chance for a
prediction to be in the bucket useful during early design of a novel system? What about
a 83.1% chance of a prediction to be within 0.5 OOMs of its predicted bucket? That
information may be helpful despite the values, but if the risk of an incorrect prediction
is significant, that would reduce the goodness of the model. So what is the impact of an
incorrect prediction? As the intent of the model is to guide and inform design decisions
as opposed to making design decisions, the potential risk associated with an incorrect
prediction is mitigated by an informed understanding of the model and the designer’s own
judgement.

This is not to say the model cannot be improved. Increasing overall accuracy and the
PPV of each class would significantly improve the potential value this model could provide.
Additional training data could result in an increase in these metrics or highlight an upper

limit of the strength of connection between functions and maintenance.

4.6 Improving the Work

As is often the case, hindsight is 20/20. This section addresses improvements to the current
work that, had I been wiser, I would have implemented. Future work that falls outside the

scope of this project is presented in Section 5.3.

4.6.1 Intra-Coder Reliability

Following the methods described in Section 3.3, all functional decomposition was performed
at least once using the final guidelines. Though a consistent process was applied, without
a separate decomposition effort, there was no verifiable degree of intra-coder reliability.

Ideally, two functional decomposition efforts would have been undertaken during the course
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of this work. By doing so, the difference between the first and second modeling effort could

have been captured and quantified, then used to prove a degree of internal consistency.

4.6.2 Documentation of Maintenance Intervals

As currently documented, each data point is defined by a maintenance action at a certain
frequency, not by the part of concern. This most closely aligned with the structure and
presentation of information of the maintenance documents. Organizing the mined data by
part may have allowed additional insights to be captured without requiring significant work.
For example, data point #1,225 and #1,456 are both the aileron balance tab hinge, the
maintenance interval of these two data points were 6,000 and 12,000 hours. As is currently
recorded, each of these data points are included in the training data, as if to say that this
part needs maintenance every 6,000 hours as well as every 12,000 hours. It would have been
more accurate to say that this part had a maintenance interval of every 6,000 hours, as
12,000 would be captured by that as well. That example is fairly clear cut, but others would
have proven more difficult. Data points #645 and #897 are both the aileron bearings, that
have a maintenance interval of every 5,760 hours and every 7,200 hours. These intervals
correspond to the 6,000-landing/12-year (when both intervals are converted to hours using
Table 3.4, 12 years is more restrictive at 5,760 hours) and the 7,200-hour/12-year (7,200
hours is used as it was given directly in hours) inspections. What interval should be used
for the aileron bearings in this case? Only muddying the waters further is the fact the the
aileron bearings are addressed two more times, except this time when explicitly removed
from the wing, at the 6,000 and 12,000 hour intervals. There are some clear improvements
to be made in how the data was documented — combining 6,000 and 12,000 hour parts
— but other improvements would require additional consideration. The following section

describes one such consideration which could address the less clear cut cases.

4.6.3 Documentation of Preventative Maintenance Type

When documenting data in Table 3.2, the maintenance task served two purposes. The
part of concern was extracted from it and it provided additional context to understand the
part of concern’s function. A missed opportunity was to identify the type of preventative
maintenance action to be performed. All five types of preventative maintenance may

not have been decipherable, but at the very least, the distinction between time, failure
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finding, and condition based maintenance is possible. If the maintenance action involves a
replacement (e.g. replace the seal) or performing a specific task (e.g. lubricate) they are
easily identifiable as a time based task (part #6 in Table 3.2). Failure finding tasks would
include tests to verify the proper operation of a part or system (part #42 in Table 4.1). If
the maintenance action involves an inspection (e.g. inspect for signs of corrosion, cracks...)
it aligns with a condition based task (part #1,999 in Table 3.2). This distinction may
aid in the aileron bearing dilemma discussed above. The function of the bearing (Guide
Solid) may have a defined time based maintenance interval (e.g. packing the bearing with
lubricant) and a distinct condition based maintenance interval (e.g. inspecting for signs of
fretting). This additional information may address theme #1 (discussed in Section 4.2.2.1),
as functions performed by the inherent nature of a part may be distinguishable by a
tendency towards condition based maintenance tasks. Additionally, the predictions of the
model could include not only a frequency, but the type of maintenance to be performed as
well. A prediction similar to “This part has a probability of 75% to be in the 2.5 OOM
bucket and the maintenance action has a 50% chance to be an inspection/condition check”
would be extremely useful. In the case of an ocean deployed MRE system, the difference
between a functional check and the removal/replacement of a part could have vastly different
implications. A designer with knowledge of this could implement systems to perform the
functional check via remote sensors whereas the latter may require a specialized vessel to be
hired and entail a costly and time consuming operation. Having a general knowledge of the
intervals when major maintenance actions will be required can inform design decisions. For
example, if it is known that a major maintenance action is required at a certain interval,
the positioning and accessibility of parts requiring maintenance at that same interval may
be of lower concern. If the device is onshore for maintenance already, all other maintenance

actions become substantially easier.

4.6.4 Function Through Action Versus Inherent Characteristics

The previous section described a possible improvement to this work that could address
theme #1. A more direct method to address theme #1 would be to document whether a
function is performed by an action of the part or an inherent characteristic of the part. The
artifact caused by the aerodynamic requirements of aircraft design, discussed in Section 4.5.2,
could be distinguished from functionally similar parts by the addition of this feature into
the model.
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Better to make a poor guess than to
assume it’s not relevant, because that’s a
big guess.

Jochem Weber

Chapter 5: Conclusion

5.1 Overview

In the design of products for which lifetime costs will be dominated by O&M, early
maintenance consideration is essential to the quality of design, number and impacts of
late stage design changes, and commercial success. Many developers of novel long field-life
products fail to inform themselves and implement known best practices to estimate O&M
costs. This is not entirely their fault though. Significant barriers exist including the business
environment, lack of historic data, and minimal operational experience. To hurdle these
barriers, support is required to justify the business case of a thorough early design process
and to leverage the success of mature sectors through resources that are accessible to
designers and can accommodate the uncertainty inherent when exploring the unknown.
To provide that support, functional analysis was proposed as the means to distill early
design decisions into their elementary tasks, or functions. Consistent and generalizable
relationships between the elementary functions a part performs and its preventative mainte-
nance requirements were then hypothesized. Machine learning was proposed as a method
to capture this relationship and allow for its application to guide and inform maintenance
considerations during early design. The function-maintenance model developed in this
research is best understood as a family of decisions trees that predicts the maintenance
frequency of parts based on the functions they perform. The creation and exploration of

these models has resulted in three key findings, discussed below.

5.2  Key Findings

The first two findings regard the hypothesized function-maintenance relationships and the
final finding pertains to the model itself. Each finding can be summarized by one word and
when combined, gives: EXIST, GENERAL, and USEFUL.

The first finding is that function-maintenance relationships EXIST; that there are
relationships between the description of WHAT a part does and its relative maintenance

demand. This finding is seen in the significant and consistent relationships, explored in
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Section 4.1, that the models are able to capture.

Second, function-maintenance relationships can be captured, modeled and GENERL-
IZED to other long field-life systems. The grounding and verification efforts, discussed
in Section 4.2, showed that the model gives externally valid, reasonable predictions when
confronted with new data.

The last finding stems from an understanding of the first two findings and is the most
important to the practical application of this research. The methods and models used in this
research result in a function-maintenance model that is comprehensible and USEFUL in
building confidence with its users and supporting early design decisions. A sample use case
was described to show how a design engineer could incorporate the model into their design
processes to inform maintenance considerations. The verification effort (Section 4.2.3) pitted
the model against the best-case scenario for maintenance predictions for a novel long field-life
system and gave reasonable results. When applied to a redesign effort (Section 4.3), the
model gave reasonable predictions that allowed the focusing of design effort. Furthermore,
the model provided useful and actionable information on the impacts of the functional
design and guided informed design changes that resulted in a 1.5 OOM (Section 4.3.1)

decrease in maintenance frequency of that part.

5.3  Future Work

This section addresses possible avenues of future work that fall outside the scope of this

project. Possible improvements to this work are explored in Section 4.6.

5.3.1 More Training Data

More training data, both in terms of quantity and diversity is a clear step towards better
understanding function-maintenance relationships. More training data generally leads to
improvements in machine learning models as the sample (the training data) is more likely to
be representative of the population. The diversity of additional training data is important.
Training data from other long field-life systems would improve the model in a few ways.
More diverse training data would improve the model’s external validity. It may be the
case that parts that perform the function Indicate are not generally maintenance intensive
as this model predicts. This relationship may only be valid within the aviation field. If

function-maintenance data from another device in another field (say a piece of heavy
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equipment, like a crane) does support this relationship, that would improve the external
validity of that relationship.

The artifacts identified in the current model could be clarified and be mitigated. The
artifact related to structural members may be address similarly to the point above; but it
could be the case that it and the aerodynamics artifact are in fact by-products from the
aviation training data. Data from another field would dilute the impact of these artifacts,
allowing the model to more accurately capture the nature of long field-life systems in general

and not just the specific nature of aircraft.

5.3.2 Machine Learning Algorithms

More advanced machine learning techniques could be better codify function-maintenance
relationships. Random forest models are less susceptible to overfitting as they make each
prediction based on the most common answer given by a large number of decision trees each
trained on a different subset of features. The benefit of this is that if many decision trees (a
random forest) each come to the same maintenance prediction by asking different questions
it is more likely that the conclusion is valid. A neural network is better able to handle
the large number of features recorded from the maintenance data. The Full Model makes
predictions based on, at most, 7 features of the 168 features provided. Neural networks
could take advantage of more features to refine its predictions.

This avenue of work is likely to result in establishing function-maintenance relationships
with more confidence, but they come at the cost of intelligibility. Sample part #1,236,
examined in Section 4.1.2.3, exemplifies what is lost with a less intelligible, albeit more
accurate, model. If this prediction was made using a neural network, it may have been
made with a higher confidence but the knowledge that the model considered the question
“Is this part a component or assembly?” would be lost. The Full and Flow Model shows
us that this was considered, because of that we know that the prediction is likely to be
referencing the interval required for a full inspection or breakdown of the assembly. With
a neural network based function-maintenance model, the designer would not be aware of
that information and may take the prediction as the components that comprise the rudder
assembly only require preventative maintenance in the 4 OOM bucket. Due to the high
degree of uncertainty that exists when utilizing this model, the ability for a designer to pass

judgement on the model’s predictions is essential.
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5.3.3 Additional Features

Additional training features could be explored without significantly delaying the early design
usage of the model. Input and output flows of each function could be modeled to capture
dependencies, a known factor that influences maintenance and reliability. Additionally, the
impact of adjacent functions could be modeled through additional features. Environmental

conditions and their impact on functions may improve the fidelity of predictions.

5.4 Parting

Without early design tools intended for use with novel systems, developers will continue to
be limited in their ability to make informed decisions during the earliest stages of design. As
a result, costly, late stage design changes are more likely and the final products developed
are not likely to be the best the developer is capable of. Though tools intended for use
during early design of novel systems fight an uphill battle against the unknown and a lack
of experience, their development and implementation stand to significantly benefit the
developers who fight the same uphill battle. The use of function-maintenance relationships
to inform early design decisions is one such tool. The initial steps that this research has
taken in characterizing these relationships and establishing external validity is essential if

function-maintenance relationships are ever to be useful in the design of novel systems.
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