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 a b s t r a c t

Prediction of the responses in wave fields of moored floating structures, such as floating offshore wind tur-
bines (FOWT), wave energy converters (WEC), aquaculture farms (AF), or floating breakwaters (FB), requires 
high-fidelity yet efficient coupled analysis between Computational Fluid Dynamics (CFD) and mooring dynamic 
models. Among the coupled models available to users for the open-source CFD software OpenFOAM and mooring 
libraries like MoorDyn, we can find foamMooring and FloatStepper. These address issues such as added mass 
instability, and offer different computational methods for free-surface capturing and rigid body motion. If we 
also consider the various dynamic mesh techniques, users have multiple options for the general configuration of 
a simulation. Bearing this in mind, the present study proposes an efficient and accurate methodology for simu-
lations with OpenFOAM coupled with the lumped-mass mooring model Moordyn for a simple floating structure, 
with the intention of applying it to more complex structures, or even performing survivability studies. Pursuing 
this goal, different dynamic mesh techniques, free-surface capturing methods and the available algorithms for 
rigid body motions including an added-mass correction algorithm, are investigated systematically and validated 
against experimental data. In the course of this work, new features have been added to the lastest version of 
Moordyn and also coupled with the non-iterative algorithm FloatStepper. The surface elevation, floating body 
motions and mooring line tensions were considered to compare the different settings. The results showed that 
all the tested options were accurate, but the overset technique was the most efficient in terms of computational 
time.

1.  Introduction

Floating Offshore Wind Turbines (FOWT) are designed to operate in 
deep waters to exploit more favorable wind resources. However, this en-
vironment is characterized by challenging and complex metocean con-
ditions, posing difficulties in designing moored floating foundations.
Numerical approaches to the hydrodynamics of these structures of-
ten employ linear wave models based on potential flow theory and/or 
the semi-empirical Morison equation. The second-order hydrodynamic 
model, by incorporating quadratic transfer functions (QTF) or second-
order terms, significantly improves predictions compared to the linear 
models. This enhancement is particularly evident in scenarios involving
small wave amplitudes and small structure motions, where the assump-
tions of weak non-linearity remain valid. These approaches are advan-
tageous for their low computational cost and suitability for predicting 
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FOWT’s hydrodynamic behavior in operational conditions. Neverthe-
less, in deeper waters, survivability analysis becomes crucial, where 
large amplitude waves give rise to highly non-linear phenomena such 
as wave run-up, breaking waves, and wave slamming. These can signif-
icantly impact the structure. For such scenarios, traditional tools based 
on potential flow theory struggle to capture non-linear phenomena, re-
quiring the use of high-fidelity methods like Computational Fluid Dy-
namics (CFD) to provide more accurate estimations, see Zhang et al. 
(2024) or Huang et al. (2022). Moreover, considering the significant 
impact of mooring restraints on the dynamic behavior of floating struc-
tures, see Brown and Mavrakos (1999), the use of a coupled solver be-
comes essential to accurately capture non-linear phenomena.

Therefore the integration of mooring dynamics into CFD codes rep-
resents a significant progress, with implications for the understanding 
of non-linear hydrodynamic in floating structures. In recent years, there
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\begin {align}\label {eq1a} &\dfrac {\partial \rho }{\partial t} \, + \, \nabla \cdot \left (\rho \textbf {u}\right ) \, = \, 0\\[5pt] \label {eq1b} &\frac {\partial \left (\rho \textbf {u}\right )}{\partial t} + \nabla \cdot \left ( \rho \textbf {u} \textbf {u}\right ) \, = \, - \nabla p^{*} + \rho \textbf {g} + \nabla \cdot \left (\mu \nabla \textbf {u}\right ) + \textbf {f}\end {align}
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has been a notable surge in collaborative efforts by both industry and 
academics to integrate mooring models in CFD codes. By considering 
the dynamic nature of the mooring system within the CFD simulations, 
a more comprehensive understanding of how these structures respond 
under realistic and challenging conditions was reached, ultimately con-
tributing to the improvement of their design, safety, and performance. 
These efforts have resulted in the development and implementation 
of advanced coupling techniques in open-source and propietary CFD 
codes. Among the latter, one can cite Star-CCM+, ANSYS Fluent/CFX, 
or FLOW-3D, as discussed in Zeng et al. (2024). However, to the best 
of the authors knowledge, these codes exhibit a lack of an accurate 
mooring dynamics model. In particular, a proper modeling of catenar-
ies, seabed interaction, inclusion of non-linear material for the lines are 
scarcerly proposed. In addition, a quasi-static approach is often used in-
stead of the required dynamic modeling. On the other hand, we find the 
open-source libraries such as OpenFOAM, in which greater efforts have 
been devoted in the coupling with dynamic mooring models.

The lumped-mass (Hall et al., 2020(@), higher-order finite element 
(Palm et al., 2016) and recently introduced finite difference method 
(Chen et al., 2018) are the most commonly used formulations for the 
mooring coupled models with OpenFOAM. Chen and Basu (2018) devel-
oped a dynamic mooring model based on the finite difference method, 
which accounted for current loads. The study investigated the effects of 
nonlinear mooring dynamics on a spar-type FOWT in the presence of 
currents. They concluded that current loads can significantly affect the 
restoring effect of the mooring system, thereby influencing the response 
of the spar-type FOWT. Their open source code called openmoor can be 
accessed at https://github.com/chen-lin/openmoor. In Palm and Eskils-
son (2018), recent developments of an hp-adaptative high-order discon-
tinuous Galerkin mooring solver Moody is presented. An OpenFOAM-
Moody analysis for a cylindrical buoy in regular waves can be found 
in Palm et al. (2016), and validated against experimental data (Paredes 
et al., 2016). Their results showed that in spite of a high computational 
cost for long-term estimations, the CFD properly captured non-linear 
effects. The open-source mooring dynamics model, MoorDyn, based on 
lumped mass approach, was successfully validated against experimental 
results in Hall et al. (2020(@). The model uses a lumped-mass formu-
lation to simulate axial elasticity, hydrodynamic drag and added mass 
based on Morison’s equation and reactions from the seabed. A second 
version of the model is currently under development, which incorpo-
rates cable bending stiffness for power cable simulation and wave kine-
matics into the model (Hall, 2020; Hall et al., 2021).

Recently, several authors have studied the motion of floating bod-
ies and tensions in their mooring lines in a regular wave field by using 
the coupled solver OpenFOAM-Moordyn. In Lee et al. (2021), a mesh 
morphing technique was used to accomodate the motion of a floating 
body, that required customizing and recompiling the flow solver. Chen 
and Hall (2022), in addition to using the first version of the lumped-
mass mooring model MoorDyn, coupled the quasi-static mooring model 
MAP++ (Masciola et al., 2013) and the finite element model Moody 
(Palm et al., 2016) for the body motion solver in OpenFOAM. The re-
sulting coupled code, foamMooring, is open-source and can be accessed 
at https://gitlab.com/hfchen20/foamMooring. Most recently, this code 
has been extended to multiple moored floating structures in Chen et al. 
(2024). Jiang and Moctar (2022) validated the implementation of an 
implicit coupling approach between the dynamic model MoorDyn and 
OpenFOAM, namely the mooring-sixDoFRigidBodyMotion solver. In ad-
dition to validating the model for a single body, they also predicted suc-
cessfully the motion of a moored and articulated multibody in waves. 
Aliyar et al. (2022), developed a coupling between the MoorDyn li-
braries and an in-house CFD code called foamStar, which is built upon 
the OpenFOAM open-source libraries. In Jeon et al. (2023), the mo-
tion responses of a cubic-shaped box and a semi-submersible platform 
are analyzed, both attached with tensioned mooring lines using an in-
house solver that couples OpenFOAM and MoorDyn. More recently, a 
non-iterative algorithm called FloatStepper, developed by Roenby et al. 

(2024), has been coupled with the first version of Moordyn. The innova-
tion of this 6-degree of freedom (DoF) algorithm is that it circumvents 
the well-known added mass instability problem when lightweight float-
ing bodies interact with heavy fluids, see Devolder et al. (2017).

Thus, there is a wide variety of choices available to the user for con-
figuring the simulations of FOWT, from methods for free-surface capture 
to solvers for correcting added mass instability. In addition, to the best of 
the author’s knowledge, no simulations have been conducted with the 
second version of Moordyn, which presents significant improvements 
and corrections compared to the first version. The aim of the present 
paper, as a first step in investigating the coupled dynamic behaviour of 
more complex floating structures, is to develop and validate an efficient 
methodology for such simulations, using a moored cubic-shaped box as a 
benchmark case. Pursuing this objective, the present study compares in a 
systematic way various dynamic mesh techniques such as morphing and 
overset, different methods for capturing the free surface (VoF and isoAd-
vector), as well as the FloatStepper algorithm to study the influence of 
the added mass correction. New features have been implemented in the 
latest version of MoorDyn (version 2), and it has been coupled with the 
FloatStepper solver. The numerical results of surface elevation, floating 
body motion and mooring line tensions are compared with other avail-
able numerical simulations in scientific literature as (Chen and Hall, 
2022; Jeon et al., 2023) and with experimental measurements in Wu 
et al. (2019).

This paper is outlined as follows. Section 2 summarizes the under-
lying numerical methods, including the flow governing equations, rigid 
body dynamic equations, FloatStepper algorithm, dynamic mesh meth-
ods, and the mooring dynamics model. In Section 3, the case setup is 
introduced along with a description of the numerical model, computa-
tional settings, wave dimensionless parameters, boundary conditions, 
and numerical schemes. The solver parameters used in MoorDyn and in 
the CFD simulations are also detailed. Section 4 presents the results of 
the different models validated against numerical and experimental data 
for a floating box with four catenary lines exposed to regular waves. In 
this section, the surface elevation, floating body motions (surge, heave, 
and pitch), and the tensions in the mooring lines at the anchor and fair-
lead are presented. To ensure a consistent and transparent comparison, 
a single variable control strategy was systematically adopted: surface el-
evation was used to assess free-surface capturing methods, floating body 
motions were used to evaluate dynamic mesh techniques, and mooring 
line tensions served to compare the performance of MoorDyn version 2. 
Complementary studies were also conducted to explore the influence of 
the Courant number and axial stiffness, further supporting the robust-
ness of the proposed methodology. The sensitivity of the results to the 
models and parameters used is then analyzed, leading to the definition 
of an optimum simulation approach. The paper closes with conclusions 
in Section 5.

2.  Numerical model

This section begins with a brief overview of the governing equations 
for incompressible two-phase flow, followed by the derivation of rigid 
body dynamic equations and mesh dynamics technique. It concludes 
with the presentation of the implemented dynamic mooring model.

2.1.  Flow governing equations

An unsteady, isothermal, and incompressible two-phase flow is con-
sidered here. The governing equations are the mass continuity and mo-
mentum conservation in an Eulerian frame of reference: 
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌u) = 0 (1a)

𝜕(𝜌u)
𝜕𝑡

+ ∇ ⋅ (𝜌uu) = −∇𝑝∗ + 𝜌g + ∇ ⋅ (𝜇∇u) + f (1b)
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where 𝜌 is the fluid density, u the velocity field, g the gravity accelera-
tion, f represents other forces such as surface tension and external forces 
and 𝑝∗ stands for the pseudo-dynamic (or modified) pressure.

Despite the wide availability of turbulence models in OpenFOAM, no 
universally accepted model has yet been established for accurate wave 
propagation in two-phase flows. As discussed by Larsen and Fuhrman 
(2018), conventional turbulence closures often overestimate turbulent 
mixing beneath surface waves, making their applicability in such con-
texts questionable. Consequently, several previous studies have opted 
to model the flow as laminar, including (Chen and Hall, 2022; Pinguet 
et al., 2020; Roenby et al., 2024), while others, such as (Palm et al., 
2016; Rentschler et al., 2022), have incorporated turbulence modeling 
using the RNG 𝑘–𝜀 and 𝑘–𝜔 SST models, respectively. In the present 
work, the turbulence model was intentionally deactivated. This decision 
is supported by findings from earlier mesh-based CFD and SPH simula-
tions, where omitting turbulence models has shown negligible impact on 
key hydrodynamic responses, including wave elevation, body motion, 
and mooring line tensions (Dominguez et al., 2019; Chen et al., 2023; 
He et al., 2023). Although turning off turbulence modeling implies that 
near-wall effects and boundary layers are not fully resolved, the pri-
mary viscous forces, particularly those induced by shear in the wave 
field, remain reasonably captured within the laminar assumption, espe-
cially given the moderate Reynolds numbers characterizing the present 
setup. Moreover, for configurations involving gap resonance or tightly 
spaced floating structures, the use of laminar flow has proven effective 
in reproducing fluid–structure interactions with satisfactory accuracy. 
Notably, (Feng et al., 2017; Gao et al., 2021, 2022) reported that acti-
vating turbulence models yielded no significant improvements in simu-
lation results. Based on these considerations, and to limit computational 
overhead, laminar flow modeling was adopted herein. Nonetheless, we 
acknowledge that turbulence may play a more substantial role in highly 
nonlinear or extreme sea states, and this remains an open topic for future 
investigation.

In the two immiscible phases, the local fluid density and dynamic 
viscosity vary between 𝜌𝑤, 𝜇𝑤 and 𝜌𝑎, 𝜇𝑎, where the suscripts 𝑤 and 𝑎
denote water and air, respectively. Both 𝜌 and 𝜇 are described in the 
Volume of Fluid (VoF) surface capturing method by the volume fraction 
parameter 𝛼, see Hirt and Nichols (1981). In this method, the parameter 
𝛼 is expressed as a Heaviside function, taking the value 1 in the refer-
ence fluid and 0 in the other, with the air-water interface cells usually 
approximated by an isosurface with 𝛼 = 0.5. The fluid properties in each 
cell is then weighted by: 
𝜌 = 𝛼𝜌𝑤 + (1 − 𝛼)𝜌𝑎 (2a)

𝜇 = 𝛼𝜇𝑤 + (1 − 𝛼)𝜇𝑎 (2b)

and Eq.  (1a) can also be written as the transport of the liquid volume 
fraction: 
𝜕𝛼
𝜕𝑡

+ ∇ ⋅ (𝛼u) = 0 (3)

This system of equations is the basis of the VoF schemes used to track 
the fluid interface. They may be divided into two categories: geomet-
ric methods and algebraic methods. While geometric methods explicitly 
reconstruct the interface from the 𝛼 fields, algebraic methods are much 
simpler and are not restricted to structured meshes. In this work, we in-
vestigate the influence of both methods by comparing the isoAdvector 
algorithm developed by Roenby et al. (2016) as a geometric model, and 
a semi-implicit variant of the interface compression method known as 
Multidimensional Universal Limiter for Explicit Solution (MULES) as an 
algebraic model, see e.g. Larsen et al. (2018).

2.2.  Rigid body dynamics

Applying the conservation of linear and angular momentum laws of 
Newton-Euler dynamics, the equations of motion for the floating body 
in six degrees of freedom with respect to the floating body’s centre of 

mass (Gatin et al., 2017): 
𝜕𝐯
𝜕𝑡

= 𝐅
𝑚

(4a)

𝜕𝛚
𝜕𝑡

= 𝐈−1 ⋅ [𝛕 − 𝛚 × (𝐈𝛚)] (4b)

Here, 𝐯 and 𝛚 are the linear and angular velocities , respectively, with 
respect to the floating body’s centre of mass, while 𝑚 represents the 
body mass, and 𝐈 is the time-invariant tensor of inertia with respect to 
the floating body’s centre of mass. 𝐅 and 𝛕 denote the total external 
forces and moments acting on the body. At each time step, the resulting 
force and moment on the body are computed by integrating the normal 
pressure and tangential shear stress over the body’s surface (𝑆):

𝐅 = ∬
𝑆

(𝑝𝐈 + 𝛕)d𝐒 + 𝐅𝑚𝑜𝑜𝑟 + 𝑚𝑓 𝐠 (5)

𝛕 = ∬
𝑆

𝐫𝑐𝑠 × (𝑝𝐈 + 𝛕)d𝐒 + 𝐫𝑐𝑚 × 𝐅𝑚𝑜𝑜𝑟 + 𝐫𝑐𝑔 × 𝑚𝑓 𝐠 (6)

where 𝛕 represents the viscous stress, 𝐅𝑚𝑜𝑜𝑟 the mooring reaction force 
and 𝐫𝑐𝑠, 𝐫𝑐𝑚, and 𝐫𝑐𝑔 are the lever arms of the hydrodynamic force, moor-
ing force, and gravity force, respectively. When the center of mass and 
the center of rotation are identical, 𝐫𝑐𝑔 = 0. Based on the force and mo-
ment reactions derived from Eqs.  (5) and (6), respectively, the velocity, 
position and orientation of the floating body are updated by applying a 
second-order implicit solver based on the Newmark integration scheme 
in the native sixDoFRigidBodyMotion solver in OpenFOAM, see Chen 
et al. (2019).

2.2.1.  FloatStepper algorithm
FloatStepper is a new non-iterative algorithm developed by Roenby 

et al. (2024) for removing the numerical added mass instability problem 
in the coupling of the motion of a rigid body and an incompressible fluid 
in CFD simulations. The added mass instability problem arises when a 
low structural mass interacts with a surrounding heavy fluid, see e.g. 
Devolder et al. (2017). The core idea behind FloatStepper lies in cal-
culating the added mass matrix, 𝐴, for the rigid body and exploiting it 
to update the body’s motion. More details about the FloatStepper algo-
rithm can be found in Roenby et al. (2024) and the source code on its 
github repository. This approach is based on decomposing the net force 
(and torque) acting on the body into two components, the added mass 
term and all other contributions. If we consider a rigid body exposed to 
a net force 𝐅, this can be written as: 
𝐅 = 𝐅𝑜𝑡ℎ𝑒𝑟 − 𝐴𝐯̇𝐛 (7)

with 𝐴 as the 6 × 6 added mass matrix and 𝐯̇𝐛 = [𝑣̇ 𝜔̇]𝑇  the instanta-
neous acceleration of the body. 𝐅𝑜𝑡ℎ𝑒𝑟 denotes all other forces on the 
body (gravity, buoyancy, mooring, etc). Expressing Eqs.  (4a) and (4b) 
in a more compact form: 
[

𝑚𝐼3 03
03 𝐈

][

𝐯̇
𝛚̇

]

=
[

𝐅
𝛕 − 𝛚 × (𝐈𝛚)

]

(8)

where the force and torque contain terms that are proportional to the 
acceleration: 
[

𝐅
𝛕

]

=
[

𝐅𝑜𝑡ℎ𝑒𝑟
𝛕𝑜𝑡ℎ𝑒𝑟

]

− 𝐴
[

𝐯̇
𝛚̇

]

(9)

By substituting the decomposed force from Eq.  (7) into the body’s equa-
tions of motion (8) and isolating the acceleration, we obtain: 
[

𝐯̇
𝛚̇

]

= (𝑀 + 𝐴)−1
[

𝐅𝑜𝑡ℎ𝑒𝑟
𝛕𝑜𝑡ℎ𝑒𝑟 + 𝛚 × (𝐈𝛚)

]

(10)

Then FloatStepper determines 𝐹𝑜𝑡ℎ𝑒𝑟 by performing a test time step with 
zero body acceleration before the actual time step. The component of the 
added mass matrix, 𝐴, are then numerically computed as the resulting 
force (and torque) per unit of the body’s linear and angular accelera-
tion. Subsequently, the position of the body, mesh and fluid state are 
reversed to their initial value and 𝐯̇𝐛 is calculated using Eq.  (10). A 
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comprehensive description of the FloatStepper algorithm is available in 
Roenby et al. (2024) and its GitHub repository.1

2.3.  Dynamic mesh methods

Two dynamic mesh motion techniques are used in this study to cap-
ture the motion of the floating body. The first is the mesh morphing 
method, which is the most common method for floating body simula-
tions without topological changes (Jasak and Tuković, 2010). It involves 
dynamically adjusting the position of mesh nodes to accommodate the 
motion of the floating structure. It is also known as mesh deformation, 
and ensures that the mesh conforms to the changing geometry while 
preserving the integrity and shape of the floating body itself. The initial 
mesh is generated around the floating body, ensuring an appropiate dis-
tribution of nodes to capture the geometry accurately. As the floating 
body moves, the positions of the near nodes are updated. This adjust-
ment is based on the motion of the floating body and is calculated to 
maintain the mesh quality and prevent excessive skewness. By only up-
dating the nodal positions rather than remeshing the entire domain, the 
computational cost is significantly reduced compared to methods like 
overset meshes. This makes the morphing mesh technique partcularly 
efficient for simulations where the floating body undergoes small dis-
placements. For large deformations, there is a risk of mesh skewness, 
which can lead to solution divergence. To mitigate this, the technique 
includes checks and adjustments to maintain mesh quality (in scenarios 
where the floating body is subject to wave-induced motion, the mesh 
morphing technique can adapt the mesh to follow the body’s move-
ment, ensuring accurate simulation of the fluid-structure interaction). 
Additionally, Jacobsen et al. (2012) found that it is crucial to maintain 
cell aspect ratios around 1.0 in the vicinity of the free surface to accu-
rately simulate breaking waves. In the context of the morphing mesh 
technique applied to moving bodies, the computational domain is typi-
cally divided into three regions: inner, middle, and outer. The inner re-
gion, closest to the floating body, has a high mesh density to capture the 
detailed motion of the body. The middle region serves as a transitional 
zone, smoothing the deformation of the mesh. Here, the cells are moved 
based on Spherical Linear Interpolation (SLERP) to ensure smooth tran-
sitions and prevent abrupt changes in mesh quality. The outer region 
remains largely unaffected by the floating body’s motion and provides 
a stable boundary with a coarser mesh to reduce computational cost.

The second is the overset method which is a powerful method for 
simulating floating bodies and other complex moving geometries, mak-
ing it specially suitable for scenarios involving large amplitude motions 
(Chen et al., 2019). In this method, a background mesh (fixed mesh) 
is first generated and then a separate mesh is generated around the 
body. This second mesh is attached to the body and moves according 
to Newton’s Second Law. The two grids are not deformable, so that why 
maintain their initial quality over time. The cells are classified into hole, 
interpolated and calculated types. The hole cells are geometrically inside 
the moving floating body patches and are obscured cells (the solution is 
not computed). In the calculated cells the solution is computed by solv-
ing the flow governing equations. In the interpolated cells the informa-
tion travels from the background mesh to the floating body fitted mesh 
through the overset patches and vice versa. The cell size close to overset 
patches (background and overset meshes) must be similar to minimize 
interpolation errors. In addition, and based on experience, there is a 
minimum number of cells between the boundary of the floating body 
and the outer boundary of the fitted mesh to ensure the quality of the 
interpolation.

2.4.  Mooring dynamics model

The lumped-mass model discretizes the cable into N equal length seg-
ments connected by N+1 nodes with masses and massless springs and 

1 https://https://github.com/FloatStepper/FloatStepper.git

Fig. 1. Lumped-mass model discretization.

dampers, see Fig. 1. The node index starts with 0 at the bottom anchor 
node and ends at the top fairlead node with index N+1. Each node 𝑖 is 
located by a position vector 𝐫𝐢 = [𝑥𝑖 𝑦𝑖 𝑧𝑖]𝑇  in an inertial reference frame 
which defines the z-axis, pointing positive upwards, towards the still 
water level. Half of the total mass of the two neighboring segments is 
allocated to each node. The cable segments are assumed to be rigid and 
massless, and subject to hydrodynamic forces.

Mooring lines are considered as slender structures, and as a result, 
bending stresses are typically orders of magnitude smaller than axial 
stresses, which is why they are usually omitted. The weight and buoy-
ancy forces, hydrodynamic loads and forces due to interaction with 
seabed are lumped at nodes together with masses in the dynamic moor-
ing model MoorDyn (Hall et al., 2020(@). Hydrodynamic forces are cal-
culated based on Morison’s equation. The tension in the segments due 
to axial stiffness is modeled by specifying a linear stiffness. An internal 
damping force is also specified for each segment to dampen non-physical 
resonances caused by the lumped-mass discretization. The seabed reac-
tion is modeled by a linear spring-damper approach. For further details, 
see Hall et al. (2020(@); Hall (2020); Hall et al. (2021).

2.4.1.  Internal forces
In the dynamic mooring model MoorDyn, the internal forces con-

sidered include axial stiffness, axial damping, and weight , following 
detailed in Hall et al. (2020(@), see Fig. 2 for a free-body diagram of 
a node 𝑖. The net buoyancy, considered with weight for simplicity, of 
each segment 𝑖 + 1

2  is: 

𝑊𝑖+ 1
2
= 𝜋

4
𝑑2𝑙

(

𝜌𝑤 − 𝜌
)

𝑔 (11)

where 𝑑 is the volume-equivalent diameter of the mooring line, 𝑙 is the 
unstretched length of each cable segment, 𝜌𝑤 is the water density, 𝜌 is 
the mooring line density and 𝑔 is the acceleration due to gravity. The net 
buoyancy at segment 𝑖 + 1

2  is divided among the two connecting nodes 
𝑖 and 𝑖 + 1: 

𝐖𝑖 =
1
2

(

𝐖𝑖+ 1
2
+𝐖𝑖− 1

2

)

𝐞̂𝑧 (12)

Fig. 2. Free-body diagram of the node 𝑖.
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where ̂𝐞𝑧 is a unit vector in the positive direction. The tension in a cable 
segment 𝑖 + 1

2  due to axial stiffness is: 

𝐓𝑖+ 1
2
=

{

𝐸 𝜋
4
𝑑2𝜀𝑖+ 1

2
𝐪̂𝑖+ 1

2
if |

|

𝐫𝑖+1 − 𝐫𝑖|| > 𝑙

0 if |

|

𝐫𝑖+1 − 𝐫𝑖|| ⩽ 𝑙
(13)

where 𝜀𝑖+ 1
2
 is the strain, ̂𝐪𝑖+ 1

2
 is a tangent unit vector directed from node 

𝐫𝑖 to 𝐫𝑖+1: 

𝐪̂𝑖+ 1
2
=

𝐫𝑖+1 − 𝐫𝑖
|

|

𝐫𝑖+1 − 𝐫𝑖||
(14)

Eq.  (13) assumes that a tension force is exerted only when there is a pos-
itive tension in the line, meaning |

|

𝐫𝑖+1 − 𝐫𝑖|| > 𝑙. Otherwise, the tension 
force is set to zero, as no compression force is modeled. The resultant 
tension force at node 𝑖 considering both the adjacent segments 𝑖 + 1

2  and 
𝑖 − 1

2  is: 
𝐓𝑖 = 𝐓𝑖+ 1

2
− 𝐓𝑖− 1

2
(15)

The internal damping force in the segment, which plays a significant 
role in ensuring numerical stability is: 
𝐂𝑖+ 1

2
= 𝐶𝑖𝑛𝑡

𝜋
4
𝑑2𝜀̇𝑖+ 1

2
𝐪̂𝑖+ 1

2
(16)

where 𝐶𝑖𝑛𝑡 represents the numerical internal damping coefficient, and 
𝜀̇𝑖+ 1

2
 denotes the strain rate: 

𝜀̇𝑖+ 1
2
=

𝜕𝜀𝑖+ 1
2

𝜕𝑡
(17)

Similar to the tension 𝑇𝑖, the internal damping force at node 𝑖 is also 
expressed as: 
𝐂𝑖 = 𝐂𝑖+ 1

2
− 𝐂𝑖− 1

2
(18)

2.4.2.  External forces
The cable hydrodynamic forces, including both drag and added mass, 

are computed by using the Morison equation applied at node 𝑖, treating 
the cable as a slender structure. The drag force applied to node 𝑖 is com-
posed of a transverse component 𝐷𝑛𝑖 and a tangential component 𝐷𝑡𝑖:

𝐃𝑖 = 𝐃𝑛𝑖 + 𝐃𝑡𝑖 (19)

where each component is calculated as: 

𝐃𝑛𝑖 =
1
2
𝜌𝑤𝐶𝑑𝑛𝑑𝑙

|

|

|

(

𝐫̇𝑖 ⋅ 𝐪̂𝑖
)

𝐪̂𝑖 − 𝐫̇𝑖
|

|

|

[(

𝐫̇𝑖 ⋅ 𝐪̂𝑖
)

𝐪̂𝑖 − 𝐫̇𝑖
]

(20)

𝐃𝑡𝑖 =
1
2
𝜌𝑤𝐶𝑑𝑡𝑑𝑙

|

|

|

(

−𝐫̇𝑖 ⋅ 𝐪̂𝑖
)

𝐪̂𝑖
|

|

|

(

𝐫̇𝑖 ⋅ 𝐪̂𝑖
)

𝐪̂𝑖 (21)

in which 𝐫̇𝑖 represents the flow velocity at the cable node 𝑖 and 𝐪̂𝑖 is 
the unit tangent vector at each node 𝑖 and is approximated by the line 
connecting the two adjacent nodes: 

𝐪̂𝑖 =
𝐫𝑖+1 − 𝐫𝑖−1
|

|

𝐫𝑖+1 − 𝐫𝑖−1||
(22)

The added mass force at node i, 𝐀𝑖, is also composed of a transverse 𝐀𝑛𝑖
and tangential component 𝐀𝑡𝑖:

𝐀𝑛𝑖 = 𝐚𝑛𝑖 𝐫̈𝑖 = 𝜌𝑤
𝜋
4
𝑑2𝑙𝐶𝑎𝑛

[(

𝐫̈𝑖 ⋅ 𝐪̂𝑖
)

𝐪̂𝑖 − 𝐫̈𝑖
]

(23)

𝐀𝑡𝑖 = 𝐚𝑡𝑖 𝐫̈𝑖 = 𝜌𝑤
𝜋
4
𝑑2𝑙𝐶𝑎𝑡

(

−𝐫̈𝑖 ⋅ 𝐪̂𝑖
)

𝐪̂𝑖 (24)

where 𝐶𝑎𝑛 and 𝐶𝑎𝑡 are the transverse and tangential added mass coeffi-
cients and 𝐫̈𝑖 the flow acceleration at node i. 𝐚𝑛𝑖 and 𝐚𝑡𝑖 are the corre-
sponding transverse and tangential added mass respectively. Factoring 
out ̈𝐫𝑖 in Eqs.  (23) and (24) gives the combined 3 × 3 added mass matrix 
𝐚𝑖 = 𝐚𝑛𝑖 + 𝐚𝑡𝑖: 
𝐚𝑖 = 𝜌𝑤

𝜋
4
𝑑2𝑙

[

𝐶𝑎𝑛
(

𝐈 − 𝐪̂𝑖𝐪̂𝑇𝑖
)

+ 𝐶𝑎𝑡
(

𝐪̂𝑖𝐪̂𝑇𝑖
)]

(25)

where 𝐈 is the identity matrix.
The vertical reaction forces due to the interaction of the mooring line 

with the seabed at each node is calculated using a linear spring-damper 

model. This interaction is activated when a mooring line node contacts 
the seabed (i.e. 𝑧𝑖 ⩽ 𝑧𝑏): 

𝐁𝑖 =

{

𝑑𝑙
[(

𝑧𝑏 − 𝑧𝑖
)

𝑘𝑏 − 𝐳̇𝑖𝑐𝑏
]

𝐞̂𝑧 if 𝑧𝑖 ⩽ 𝑧𝑏

0 if 𝑧𝑖 > 𝑧𝑏
(26)

where 𝑘𝑏 is the stiffness coefficient per unit area of the seabed, 𝐜𝑏 is the 
viscous damping coefficient per unit area, 𝑧𝑏 is the seabed vertical coor-
dinate, 𝑧𝑖 and 𝑧̇𝑖 are each node vertical coordinate and vertical velocity, 
respectively, and ̂𝐳𝑧 is the unit vector in the positive z direction.

2.4.3.  Integration of governing equations
The equation of motion at each node 𝑖 is obtained as: 

(

𝐦𝑖 + 𝐚𝑖
)

= 𝐓𝑖 + 𝐂𝑖 +𝐖𝑖 + 𝐁𝑖 + 𝐃𝑖 (27)

where 𝐦𝑖 is the 3 × 3 lumped-mass matrix at each node 𝑖. It is defined 
by assigning half of the total mass of the two neighboring segments and 
expressed as: 
𝐦𝑖 =

𝜋
4
𝑑2𝑙𝜌𝐈 (28)

Eq.  (27) represents a second-order system of ordinary differential equa-
tions (ODEs) that is reduced to a first-order system ones by introduc-
ing auxiliary variables, thus transforming the problem into a system of 
first-order ODEs. MoorDyn offers several time integration schemes to 
solve the equations of motion, including Euler, Runge–Kutta or Adams–
Bashforth methods. In this study we used the Runge–Kutta 4th order 
(RK4) scheme with the same time step in mooring integration.

3.  Case set-up

3.1.  Numerical model and computational settings

The test case used in this study is a solid floating cuboid (referred as 
floating box here after) with geometric features listed in Table 1. The 
results are validated against experimental data generated during the ex-
perimental campaigns for the European MaRINET2, EsfloWC project by 
the Coastal Engineering Research Group of Ghent University (Wu et al., 
2019). The floating box is 0.2m in length, 0.2m in width and 0.132m in 
height, with an initial draft of 0.0786m. The center of gravity is located 
at the geometrical center of the box, 0.066m above the bottom of the 
box along the z-axis. The moments of inertia with respect to the centre 
of gravity are I𝑥𝑥I𝑦𝑦 = 0.015 kgm2 and I𝑧𝑧 = 0.021 kgm2. The floating box 
is connected to the bottom through a four-symmetric catenary mooring 
system, as shown in Fig. 3. Mooring lines 1 and 2 are located at the 
front, facing the incident waves, while lines 3 and 4 are positioned at 
the rear of the floating box. Table 2 lists the parameters of the mooring 
lines, and Table 3 provides the coordinates for the anchor and fairlead 
connections to the bottom and the box, respectively (see Fig. 4). In the 
case of the fairleads, they are located at a distance of 0.061m from the 
center of gravity of the box, that is, 0.005m above the bottom of the box.

Two meshing strategies were employed in this study: an overset mesh 
technique and a morphing mesh technique. Both approaches were con-
figured to ensure accurate wave resolution and stable fluid-structure in-
teraction, while keeping computational cost manageable. In both cases, 
the mesh was refined near the free surface and the floating structure 

Table 1 
Parameters of the floating box used in the simulations.
    Parameter  Value  
  Box length  0.2m  
  Box width  0.2m  
  Box height  0.132m  
  Box center of gravity  (0, 0, −0.0126) m  
  Box initial draft  0.0786m  
  Box mass  3.148 kg  
  Box moment of inertia  (0.015, 0.015, 0.021) kgm2 
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Fig. 3. Description of the mesh and refinement areas.

Table 2 
Parameters of the mooring lines used in the simulations.
    Parameter  Value  
  Diameter (m) 3.656 × 10−3 
  Mass in air per unit length (kg/m)  0.0607  
  Unstretched length (m)  1.455  
  Axial stiffness (N)  29  
  Internal damping (−) −1.0  
  Transverse drag coefficient (−)  1.6  
  Tangential drag coefficient (−)  0.05  
  Transverse added mass coefficient (−)  1.0  
  Tangential added mass coefficient (−)  0.0  
  Discretized segments line (−)  20, 40, 80  

Table 3 
Coordinates of the mooring line anchor and fairlead 
connections used in the simulations.
    Point  Coordinate  
  Fairlead 1 (F1)  (−0.1, 0.1, −0.0736) m  
  Fairlead 2 (F2)  (−0.1, −0.1, −0.0736) m  
  Fairlead 3 (F3)  (0.1, 0.1, −0.0736) m  
  Fairlead 4 (F4)  (0.1, −0.1, −0.0736) m  
  Anchor 1 (A1)  (−1.385, 0.423, −0.5) m  
  Anchor 2 (A2)  (−1.385, −0.423, −0.5) m 
  Anchor 3 (A3)  (1.385, 0.423, −0.5) m  
  Anchor 4 (A4)  (1.385, −0.423, −0.5) m  

with a uniform cell size of 0.008 m. This refinement guarantees a suffi-
cient resolution to capture the wave and body dynamics across all test 
cases. Specifically, for the shorter wave condition (H12T18), this corre-
sponds to 15 cells per wave height (CPH) and 357 cells per wavelength 
(CPL), which aligns with the ITTC recommendations ITTC (2014). In 
both the overset and morphing mesh configurations, stretching regions 
were applied in the background mesh to control cell growth. Vertical 
stretching was defined with an aspect ratio of 1:4, while longitudinal 
stretching used a 1:20 ratio near the domain boundaries.

This graded resolution helps dissipate wave energy away from the re-
gion of interest, reduces the overall cell count, and minimizes artificial 

Table 4 
Numerical schemes.
    Numerical Scheme  OpenFOAM  
  Time [𝜕(𝜙)∕𝜕𝑡]  Euler  
  Gradient [∇𝜙]  Gauss linear  
  Divergence [∇ ⋅ (𝜌𝜙𝐔)]  Gauss limitedLinearV 1; 
  Divergence [∇ ⋅ (𝜙𝛼)]  Gauss vanLeer;  
  Divergence [∇ ⋅

(

𝜙𝑟𝑏𝛼
)

]  Gauss linear;  
  Laplacian [∇2]  Gauss linear corrected  
  Overset interpolation  inverseDistance  

reflections, all while preserving mesh quality around the floating box, 
see Fig. 4. In the overset strategy, this resolution was applied to the 
body-fitted overset mesh and the free-surface refinement zones of the 
background mesh. For the morphing mesh, the same resolution was ex-
tended throughout a uniform band around the floating body, which in-
creased the total number of cells due to the lack of topological separation 
between body and background. As a result, the final mesh contains ap-
proximately 3.4 million cells in the overset configuration and 3.7 million 
cells in the morphing mesh case. This mesh configuration was validated 
through a grid convergence analysis (see Appendix A), which demon-
strated that the intermediate mesh resolution provided a good balance 
between accuracy and efficiency, with converged results for both surface 
elevation and body motion. The overset mesh ensures high resolution 
around the body while maintaining non-deforming, high-quality mesh 
blocks. In contrast, the morphing mesh solution uses a single continuous 
mesh and is more sensitive to large deformations. The morphing domain 
was therefore extended in height to reduce skewness during motion. Fi-
nally, a grid convergence analysis was performed using three mesh reso-
lutions (Appendix A). The intermediate mesh (mesh B) was selected for 
all simulations, as it demonstrated converged results in surface eleva-
tion and floating body motions with significantly lower computational 
cost compared to the finest mesh.

The real flow computational time is 18 s, which corresponds to 10 
wave periods. For time marching, the Euler scheme was used while the 
other discretization schemes are detailed in Table 4. The time step was 
dynamically adjusted during the simulation, with maximum Courant 
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Fig. 4. Geometric description of the experimental setup and the mooring cable configuration.

Table 5 
Description of the boundary conditions for volume fraction, pressure and
velocity.
    Boundary  Alpha (𝛼)  Pressure (p)  Velocity (𝐔)  
  Inlet  waveAlpha  fixedFluxPressure  waveVelocity  
  Oulet  zeroGradient  fixedFluxPressure  waveVelocity  
  Atmosphere  inletOutlet  totalPressure  pressureInletOutletVelocity 
  stationaryWalls  zeroGradient  fixedFluxPressure  noSlip  
  Floating Body  zeroGradient  fixedFluxPressure  movingWallVelocity  
  Overset patch  overset  overset  overset  

number limit of 0.9. It is recommended to optimize for a lower Courant 
number when employing overset simulation, even though this choice 
may result in a trade-off with increased computational time. In prac-
tical applications, favorable outcomes have been demonstrated with a 
Courant number of 1, as evidence by Pinguet (2021); Jeon et al. (2023). 
The influence of the maximum CFL is analyzed in Section 4.5. For each 
time step, we used 2 outer correctors (PIMPLE iterations) and two pres-
sure correctors per PISO loop. To prevent numerical instabilities, we 
applied an 0.8 under-relaxation factor to the floating body acceleration 
without using any acceleration damping. In our presented simulations, 
no turbulence models is activated.

The computational domain comprises six boundaries, as outlined 
in Table 5. The stationaryWalls within the domain include the bot-
tom, front and back boundaries. The key distinction from a non-overset 
boundaries case lies in the use of a specific boundary condition, desig-
nated as overset. For the inlet and outlet boundaries of the wave flume, 
the active wavemaker IHFoam was applied (Higuera et al., 2013) to 
generate regular waves and prevent reflection at the outlet. For the top 
boundary, an open atmosphere condition is used, which switches be-
tween a Neumann condition when the fluid is flowing out of the do-
main, and Dirichlet boundary condition when the fluid is flowing into 
the domain. For the stationaryWalls, no-slip boundary condition is ap-
plied, see Table 5. The moving wall boundary condition is applied to 
the surface of the floating body.

To optimize computational efficiency, a convergence analysis of 
mooring line discretization was conducted to determine the optimal 
number of segments and the appropriate timestep for MoorDyn, see Ap-
pendix B. The mooring line discretization introduces an artificial res-
onance that needs to be damped out by adjusting the damping ratio 

Table 6 
Description of regular wave for simulations Wu et al. (2019).
    Label  Wave height (m)  Wave period (s)  Wave length (m)  Steepness (−)  KC (−)  Re (−)  Wave model
  H12T18  0.12  1.8  3.57  0.034  1.885 0.418 × 105  Stokes 2nd
  H15T18  0.15  1.8  3.57  0.042  2.356 0.524 × 105  Stokes 5th

towards its critical value. In this study, the mooring line discretization 
was performed using 20, 40 and 80 segments, with a damping ratio of 
−1.0. A timestep of 10−4 s for the three discretizations was used. The lat-
est version of Moordyn (version 2) was employed for all discretization 
studies. Additionally, a comparative study between both versions of Mo-
ordyn was conducted using the same segment discretization (N=40). 
The analysis of the numerical results for both studies is presented in
Section 4.

The computational domain is decomposed into 64 sub-domains for 
both overset and morphing mesh simulations. The simulations were run 
on the HPC Centro de Supercomputación de Galicia (CESGA) with the 
Scientific Linux operating system and Intel Xeon Ice Lake processors 
(8352Y@2.2GHz).

3.2.  Wave conditions and resolution parameters

To validate the moored motions and tensile loads of the floating 
box in response to waves, two incident wave 2nd and 5th order pro-
files obtained from experimental data in Wu et al. (2019) were used. 
The specific wave parameters considered in this study are summarized 
in Table 6. Both waves have a wavelength and period of 3.57m and 
1.8 s, respectively, with wave heights of 0.12m (H12T18) and 0.15m 
(H15T18). To compare the surface elevation history with experimental 
results, three wave probes located at the positions listed in Table 7 were 
used for both cases H12T18 and H15T18. The mesh resolution, based 
on the specified discretization criteria, is 357 cells per wavelength (CPL) 
and 15 cells per wave height (CPH) in both cases. The suggested resolu-
tion in the ITTC guidelines ITTC (2014) is CPH=20 and CPL=40, and 
thus, the CPL values align with the recommendations. To avoid large cell 
aspect ratios that could affect simulation results, they were maintained 
around 1.0 in the free-surface refinement area. This is why the CPL was 
not reduced to 40 as recommended by the ITTC guidelines. Regarding 
the CPH, a dedicated study was conducted to verify its impact and op-
timize the computational efficiency. The present investigation includes 
an analysis with different values of CPH (10, 15 and 20). The results 
and comparisons are presented in Fig. 13 of Appendix A.

3.3.  OpenFOAM solvers and computational strategy

Table 8 presents an overview of the solvers evaluated in this study, 
detailing their interface capturing schemes, dynamic mesh strategies, 
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Table 7 
Positions of the wave gauges in the 
numerical wave tank and accord-
ing to experimental setup Wu et al. 
(2019).
    Label  Coordinates  
  WG2  (−0.05, 0.26, 0) m 
  WG3  (0.07, −0.36, 0) m 
  WG4  (0.55, 0, 0) m  

Table 8 
Solver configurations for all tested cases, including interface capturing 
method, mesh motion strategy, and grid resolution.
    Solver  Interface method  Dynamic mesh  Total cells (million) 
  overInterDyMFoam  VoF  Overset  3.4  
  interFoam  VoF  Morphing  3.7  
  interIsoFoam  isoAdvector  Morphing  3.7  
  FloatStepper (1)  isoAdvector  Morphing  3.7  
  FloatStepper (2)  isoAdvector  Morphing  3.7  
  FloatStepper (100)  isoAdvector  Morphing  3.7  

and total mesh resolutions. The numerical experiments were conducted 
using three solver families: overInterDyMFoam, interIsoFoam, and
FloatStepper, each of which implements a distinct approach to han-
dling multiphase interfaces and mesh motion. The overInterDyMFoam
solver is equipped with overset (or chimera) grid capabilities that allow 
independent mesh zones to move without deformation, making it par-
ticularly well suited for simulations involving complex geometries and 
large-amplitude body motions. The solver employs a classical Volume 
of Fluid (VoF) method for interface capturing. While the rigid motion of 
the grid permits larger time steps and avoids mesh quality degradation, 
the overset methodology introduces additional computational overhead 
due to the need to manage hole cells, interpolation stencils, and cell 
connectivity across mesh interfaces.

The interIsoFoam solver utilizes a morphing mesh strategy and in-
tegrates the geometric isoAdvector algorithm for interface reconstruc-
tion, which enhances accuracy and boundedness in VoF-based multi-
phase simulations. As of OpenFOAM v2306, no publicly available solver 
natively combines overset grid motion with the isoAdvector scheme. 
Therefore, simulations requiring geometric interface capturing were 
performed exclusively with morphing meshes.

The FloatStepper solver also uses the isoAdvector scheme 
with a morphing mesh configuration. A distinguishing feature of
FloatStepper is its ability to explicitly separate added mass effects from 
the total hydrodynamic force to avoid added-mass instability. Each time 
step consists of three key stages: (i) a probe step where the body accel-
eration is temporarily set to zero, allowing for the computation of the 
non-inertial hydrodynamic force and torque, followed by a rewind to re-
store the initial state; (ii) numerical evaluation of the added mass matrix 
by sequentially applying unit acceleration perturbations in each active 
degree of freedom and solving the corresponding linearized pressure 
equations; and (iii) a physical update step in which the body acceler-
ation is calculated from Newton’s law using the known hydrodynamic 
force and added mass, followed by mesh deformation and flow field 
advancement. This procedure eliminates the need for outer coupling it-
erations and improves numerical robustness.

To reduce computational cost, the added mass matrix can be updated 
less frequently using the MaddUpdateFreq parameter. Three values were 
examined in this study: 1, 2, and 100. Setting MaddUpdateFreq=1 
implies that added mass is recomputed at every time step, lead-
ing to approximately eight pressure solves per time increment. For
MaddUpdateFreq=2, the added mass is updated every second time 
step, resulting in an average of five pressure solves per step. When
MaddUpdateFreq=100, only one in every 100 steps triggers a full added 
mass update, yielding an average of two pressure solves per time step. 

Table 9 
Comparison of solver configurations and computational performance for 
case H15T18.
    Physical  Runtime per  
  Solver  time (s)  Runtime (h)  physical time (min) 
  overInterDyMFoam  16  11.2  42.0  
  interFoam  16  17.2  64.5  
  interIsoFoam  16  20.1  75.4  
  FloatStepper (100)  16  65.6  246.0  
  FloatStepper (2)  16  73.6  276.0  
  FloatStepper (1)  16  83.2  312.0  

Table 9 reports the total computational cost associated with these dif-
ferent settings.

Although decreasing the update frequency reduces runtime-by ap-
proximately 20% in this test case-the gain is moderate. This is at-
tributable to the fact that the submerged volume of the floating body 
remains nearly constant throughout the simulation. Consequently, the 
added mass matrix evolves slowly and less frequent updates do not 
compromise accuracy. Nonetheless, this finding is case-specific. In 
highly dynamic scenarios, such as water-entry problems or configu-
rations with significant immersion variation, frequent updates (i.e.,
MaddUpdateFreq=1) would be essential to maintain numerical fidelity. 
In summary, while the MaddUpdateFreq parameter offers a means to op-
timize computational efficiency, its selection must be based on a sound 
understanding of the hydrodynamic behavior of the system. Reducing 
the update frequency is justified only in cases where the added mass 
does not vary significantly. Otherwise, aggressive underuse of this up-
date mechanism may yield computationally efficient but physically in-
accurate results.

3.3.1.  MoorDyn version 2 new features and coupling with FloatStepper
The version 2 of MoorDyn version 2 incorporates significant addi-

tions and changes with respect to its first version, as documented by Hall 
(2020). It includes all features of version 1 and introduces new capabil-
ities such as the simulation of six-degree-of-freedom objects, non-linear 
tension, wave kinematics, bending stiffness, bathymetry, and seabed 
friction. As part of this work, new features have been integrated into 
the latest version of MoorDyn and coupled with the solver FloatStepper. 
The newly implemented features include:

• New Time Integration Schemes: Added options with several time 
schemes to enhance simulation efficiency. These schemes are divided 
into two main categories: explicit and implicit. The available explicit 
schemes include Euler, Local Time-Step Euler, Heun, Runge–Kutta, 
Adams–Bashforth, and Local Time-Step Adams–Bashforth. Among 
the implicit schemes, some examples are Backward Euler, Midpoint, 
Backward Euler with Anderson’s acceleration, Average Constant Ac-
celeration, and the Wilson-Theta scheme.

• CFL (Courant–Friedrichs–Lewy) Option: Users can now define the 
time step (dtM) or the Courant-Friedrich-Levy (CFL) criterion for 
adaptative time step, or both, with the more restrictive option taking 
precedence. The CFL factor is defined as the ratio between the time 
step and the mooring line natural period.

• Seabed consideration in the catenary solver: The seabed interac-
tion in the catenary solver has been refined to activate only when 
one of the line ends is sufficiently close to the bottom, avoiding ini-
tialization issues caused by incorrectly considering midline points in 
contact with the seabed. This adjustment ensures more robust han-
dling of scenarios, where both line ends are at similar heights.

For detailed information on these new features, please refer to the 
MoorDyn repository.2 The coupling with FloatStepper solver is freely 

2 https://github.com/FloatingArrayDesign/MoorDyn.git
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Fig. 5. View of instantaneous velocity field on the free surface around floating box and the four catenary mooring tension for a cycle corresponding to a wave period 
for case H12T18 (an animation has been provided as part of supplementary material).

accessible on its github repository.3 This coupling employs the method-
ology outline by Roenby et al. (2024); Aliyar et al. (2022), wherein the 
motion solver provides the floater’s position and velocity to MoorDyn. 
Then MoorDyn computes and returns the net restraining forces and mo-
ments from all fairlead tensions. Notably, in the current coupling, the 
added mass matrix is calculated directly within the PIMPLE loop, as 
was done in the coupling approach for MoorDyn version 1 detailed by 
Roenby et al. (2024).

The coupling between OpenFOAM and MoorDyn requires careful 
handling of time-stepping because the two solvers typically operate with 
different time-step sizes due to the distinct physical processes they sim-
ulate. OpenFOAM uses a very small time step, dictated by the Courant 
number (Co), to resolve fluid dynamics accurately, especially for wave 
propagation. In contrast, MoorDyn simulates the mooring line dynam-
ics, where the time step (dtM) or CFL number is primarily governed by 
the natural frequencies of the mooring system. This allows MoorDyn 
to tolerate larger time steps compared to OpenFOAM. Both coupling 
methodologies (foamMooring and FloatStepper) address this disparity 
using a subcycling approach. In this approach, MoorDyn operates in-
dependently with its internal time step, often performing multiple sub-
steps during a single OpenFOAM time step to accurately resolve the 
mooring dynamics. At each coupling interval (the end of OpenFOAM’s 
time step), the following data exchange occurs:

• OpenFOAM → MoorDyn: OpenFOAM provides updated floater’s mo-
tion data (position and velocity) for the floating structure.

• MoorDyn → OpenFOAM: MoorDyn calculates the mooring forces 
based on the motion data and sends these forces back to OpenFOAM 
for its use in the next time step.
Between these coupling intervals, MoorDyn independently solves the 

mooring system’s dynamics, ensuring accurate force predictions with-
out interfering with OpenFOAM’s time-stepping. Notably, MoorDyn and 

3 https://https://github.com/FloatStepper/FloatStepper.git

OpenFOAM exhibit a two order of magnitude difference in CPU time, 
with MoorDyn being significantly more computationally efficient.

4.  Results and discussion

As an example to illustrate the flow phenomenology, Fig. 5 shows 
the instantaneous velocity fields on the free surface around the floating 
body and the four mooring line tensions for a cycle corresponding to a 
wave period for case H12T18 and using the overset and VoF methods. 
When the crest of the wave pushes the floating box towards the onshore 
(positive x-direction) it produces high tension on the forward mooring 
lines (line 1 and 2), while the trough of the wave, on the other hand, 
pulls the floating body towards the offshore (negative x-direction), and 
produces low tension on forward lines. The tension in the mooring lines 
periodically varies with changes in the free surface elevation, impacting 
the tension in offshore lines (lines 1 and 2) and onshore lines (lines 3 and 
4) during opposite wave phases. Additionally, wave overtopping (green 
water phenomena) is briefly observed, as a small amount of water runs 
up from the lateral sides of the floating structure.

As a reference, Table 9 provides for the three solvers, overInterDyM-
Foam, interIsoFoam, and FloatStepper the computational cost. For the 
latter, the computational times are also given for two different values 
of the parameter for added mass correction (MaddUpdateFreq), specifi-
cally 1, 2 and 100, respectively. In order to evaluate the level of agree-
ment between the experimental results of Wu et al. (2019) and the nu-
merical results of Chen and Hall (2022) with the present study, the Nor-
malized Mean Squared Error (NMSE) has been computed to compare 
the numerical and experimental data, as summarized in Table 10.

4.1.  Surface elevation

Fig. 6 illustrates the time histories of wave elevation registered dur-
ing numerical simulations by wave gauges 2, 3, and 4 (WG2, WG3, and 
WG4 respectively, see Table 7), and compared with numerical results 
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Table 10 
Comparison of values between the experimental data (Wu et al., 2019), previous numerical results (Chen 
and Hall, 2022), and the present study.
    NMSE
  Case  Parameter Chen and Hall (2022)  overInterDyMFoam  interIsoFoam  FloatStepper 
  H12T18  WG2  0.0209  0.0201  0.0219  –  
  H12T18  WG3  0.0672  0.0550  0.0548  –  
  H12T18  WG4  0.0838  0.0809  0.0821  –  
  H12T18  Surge  0.1887  0.1110  0.1592  0.1437  
  H12T18  Heave  0.0991  0.0918  0.0927  0.0925  
  H12T18  Pitch  0.5845  0.5251  0.6857  0.7619  
  H15T18  WG2  0.0927  0.0455  0.0572  –  
  H15T18  WG3  0.0679  0.0517  0.0436  –  
  H15T18  WG4  0.1001  0.0849  0.1033  –  
  H15T18  Surge  0.1821  0.0254  0.0240  0.0268  
  H15T18  Heave  0.1425  0.0792  0.0890  0.0936  
  H15T18  Pitch  0.7950  0.5893  0.6750  0.7028  

Fig. 6. Comparison of surface elevation with experimental Wu et al. (2019) and numerical Chen and Hall (2022) for cases H12T18 and H15T18.
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Fig. 7. Comparison of floating box motions with experimental Wu et al. (2019) and numerical (Chen and Hall, 2022; Jeon et al., 2023) for cases H12T18 and 
H15T18.

obtained by Chen and Hall (2022) and experimental data from Wu et al. 
(2019), for both cases H12T18 and H15T18. As the solver FloatStepper
uses isoAdvector as the interface reconstruction method, Fig. 6 shows 
the results for interIsoFoam (green line) and overInterDyMFoam (black 
line). As observed, the results of Chen and Hall (2022) (depicted as 
dotted red lines) closely align with those from the current simulations 
using overInterDyMFoam (black line) and interIsoFoam (green line). 
Overall, the good agreement between the present simulations and the 
experimental measurements (represented as blue dotted lines) confirms 
the accuracy of the wave generation and propagation in the numeri-
cal wave tank, ensuring that the same wave condition is simulated. For 
clarity, results from FloatStepper were not included in Fig. 6, since its 
surface elevation output using the isoAdvector method is identical to 
that of interIsoFoam. Similarly, results for any additional solver using 
the VoF method are equivalent to those of overInterDyMFoam. There-
fore, only one representative curve is shown per free surface capturing 
method. The errors associated with both interface capturing approaches 

(VoF and isoAdvector) are of the same order of magnitude, as shown in
Table 10. All simulations were conducted using OpenFOAM ver-
sion 2306 and version 2 of MoorDyn.

4.2.  Floating box motion

Fig. 7 shows the numerical simulations of the floating box motion 
in regular waves for cases H12T18 and H15T18, obtained using three 
solvers: interIsoFoam (green line), FloatStepper (yellow line), and
overInterDyMFoam (black line). The comparison is presented alongside 
experimental results (blue dotted line) and previous numerical results 
from Chen and Hall (2022) (red dotted line) and Jeon et al. (2023) 
(pink dotted line), in terms of surge (𝜙1), heave (𝜙3), and pitch (𝜙5) 
response. The corresponding NMSE values for each case are listed in
Table 10.

For clarity, results from interFoam were not included in Fig. 7, as 
they are indistinguishable from those obtained with overInterDyMFoam. 
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Both solvers use the same VoF-based free surface capturing method,
resulting in identical motion predictions. In contrast, FloatStepper and
interIsoFoam, although both based on the isoAdvector method, pro-
duce distinct results due to differences in their motion coupling algo-
rithms.

For the surge motion, the simulations with the three solvers for 
the shortest wave case (H12T18) agree well with experimental data, 
reproducing a similar period and a slightly overestimated amplitude. 
The results from Chen and Hall (2022) also tend to overpredict ampli-
tude with correct phase, while Jeon et al. (2023) achieve both ampli-
tude and phase alignment with experiments. For the highest wave case 
(H15T18), the numerical simulations reveal improved surge accuracy 
relative to H12T18, with overInterDyMFoam showing particularly good 
agreement. Minor discrepancies are still visible in the results of Chen 
and Hall (2022). Although the surge period remains consistent across all 
solvers, the interIsoFoam solver slightly overestimates the amplitude, 
whereas overInterDyMFoam and FloatStepper yield comparable and 
more accurate responses. According to Table 10, the results obtained 
using overInterDyMFoam show the closest alignment with the experi-
mental data.

There is similarly good agreement in the heave response for both 
wave cases. For H12T18, the solvers reproduce the period accurately, 
with minor phase shifts and moderate amplitude overestimation. Both 
(Chen and Hall, 2022; Jeon et al., 2023) produce consistent results in 
heave as well. For both wave conditions, the three solvers deliver similar 
predictions for translational heave motion, matching the experiments in 
both period and amplitude. In case H15T18, a flattening of the trough 
in the heave time series causes a shift in the zero-up crossing, slightly 
affecting the computed period compared to both experimental results 
and previous numerical studies Chen and Hall (2022).

Discrepancies in the pitch response were observed for both H12T18 
and H15T18, with underpredictions in amplitude and the appearance 
of additional peaks as the rotation angle increased. This phenomenon, 
where rotational motion significantly affects the results, has also been 
noted in the studies by (Palm et al., 2016; Chen and Hall, 2022; Jeon 
et al., 2023; Roenby et al., 2024). The deviations in pitch motion have 
been attributed by previous authors to inconsistencies related to the 
modeling of the chain attachment (or fairlead position), or alterations 
of the inertial properties, such as the distance from the centre of gravity 
to the waterline. Palm et al. (2016) demonstrated that moving the center 
of gravity and moment of inertia resulted in better agreement with ex-
perimental data. Chen and Hall (2022); Jeon et al. (2023) hypothesized 
that these discrepancies are due to the definition of the floating box ge-
ometry. The absence of a plate for the camera marker receivers attached 
to the floating box in the simulation (see Wu et al., 2019) was found to 
cause a significant difference in the moment of inertia, thereby affecting 
the rotational motion. Roenby et al. (2024) relocated the fairlead attach-
ment point 1 cm higher on the box and repeated the simulation, which 
led to significant differences in pitch motion. In the mooring setup, cer-
tain experimental configurations, such as the chain attachment, cannot 
be accurately represented by MoorDyn, as discussed in Dominguez et al. 
(2019), thereby increasing the discrepancies with the numerical model. 
These limitations, which are associated with geometric simplifications 
and mooring implementation constraints, are consistent with the pitch 
motion discrepancies observed in the present results.

4.3.  Mooring line tensions

In this section, the predicted mooring line tension response for the 
two regular wave cases outlined in Table 6 is initially showcased. Fol-
lowing that, an analysis of the impact on tensions and motion responses 
resulting of the axial stiffness (EA) is conducted. Additionally, a conver-
gence analysis using three different mooring line discretizations of 20, 
40, and 80 was performed, as detailed in Appendix B.

Fig. 8 show the anchor and fairlead tensions for one offshore line 
(line 1) and one onshore (line 3) for case H12T18 predicted by the three 

solvers interIsoFoam (green line), overInterDyMFoam (black line) and 
FloatStepper (yellow line). As the four mooring lines are symmetric, the 
results in lines 2 and 4 are similar to the 1 and 3, respectively. The 
anchor tensions in line 1 (𝜏𝑎,1) and line 3 (𝜏𝑎,3) are compared against 
experimental data from Wu et al. (2019) (dotted blue line) and other 
numerical results obtained by Chen and Hall (2022) (dotted red line) 
and Jeon et al. (2023) (pink line). The obtained anchor tension force 
in line 1 is in average higher than in the experiments for case H12T18. 
The larger tension predicted by the model and for the seeward line (line 
1) in particular, is caused by the over-prediction of the floating box’s 
surge response, see Fig. 7. The tensions in the offshore lines (lines 1 and 
2) exhibit greater dynamics, characterized by snap load conditions (see 
Fig. 9), whereas the tension in the onshore line (lines 3 and 4) is more 
consistent and smoother.

The predicted anchor tension force in the rear lines reasonably aligns 
with experimental data (depicted as points in blue), albeit with a small 
shift in period. These results are comparable to those obtained by Chen 
and Hall (2022). The numerical results from Jeon et al. (2023) show 
a similar period and amplitude when compared to the experimental 
data. The fairlead tensions in line 3, when compared to line 1, shows 
slightly higher values, similar to anchor tensions. Nevertheless, Jeon 
et al. (2023) indicate similar tensions in both line 1 and line 3, see Fig. 8.

Additionally, numerical oscillations can be noted in the low tension 
region when the cable is completely slack, especially in line 3, see Fig. 9. 
The tension in the subsequent lower region illustrates how the snap load 
propagates back and forth along the cable. It can be observed how the 
slack amplitude is continuously decreasing as the shock propagates. This 
is mainly attributed to the dynamic friction force from the ground, rather 
than the shock of hydrodynamic damping. The peak force aligns closely; 
however, it’s noteworthy that the slack contribution during the peak is 
more prominent in the numerical results compared to the experimental 
findings. Overall, however, Fig. 9 shows that the complex dynamic be-
haviour of the cable during the upstrake motion is very well captured 
by the numerical model.

For the steepest and most non-linear case, H15T18, the anchor and 
fairlead tension in the offshore lines are higher than those in the onshore 
lines, see Fig. 10. This is consistent with the under-prediction of the box’s 
surge motion, see Fig. 7, causing smaller tension than in experiments in 
both line 1 and 3. The anchor tension in lines 1 and 3 gave consistent 
predictions compared with Chen and Hall (2022), although with a small 
period delay. It is also observed that the largest tension in numerical 
results is in the offshore cables for both cases, while it is only occurring 
for the larger wave case H15T18 in experiments.

The dynamics of the lines are better captured in seeward lines 
than the leeward lines with transient snap loads, particularly for case 
H15T18, see Figs. 8 and 9. In addition the tension in anchor line 3 
presents almost null tension values in the lower tension region, indi-
cating that as the wave passes, there remains a length of the mooring 
lines resting on the seabed, as can be observed in Fig. 5b. As expected, 
the tensions obtained with the interIsoFoam solver are slightly higher 
than those from overInterDyMFoam and FloatStepper. This is because 
the displacements in surge for this solver were also higher compared to 
the other two.

Both anchor and fairlead tensions display again a snap load phe-
nomenon propagating from lower tension region to almost peak am-
plitude, see Figs. 8 and 9. This vibration in the low tension region on 
leeward line is caused by the influence of the seabed model and partic-
ularly the seabed damping coefficient value. In Chen and Hall (2022), 
a finite element based model, Moody (Palm et al., 2016) and Moordyn 
version 1 are compared for the H15T18 case. The Moody model was 
developed with the intention to capture snap loads in mooring cables 
with higher accuracy, see Palm et al. (2017). However Moody made no 
better prediction of tension than the lumped-mass model Moordyn.

This indicates that apart from snap loads modeling, there are other 
sources of error in estimating line tensions. One stems from the es-
timation of parameters such as the axial stiffness (EA) and empirical 
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Fig. 8. Anchor (𝜏𝑎,𝑖) and farilead tensions (𝜏𝑓,𝑖) for cases H15T18 and H12T18 and comparison between Moordyn version (v1 and v2) and study of mooring line 
segment discretization.

coefficients, including added mass, drag coefficient, seabed stiffness, 
and damping coefficients. Inaccuracies in, the estimation of those pa-
rameters can contribute to discrepancies in the results. Furthermore, 
the hydrodynamic forces (inertia and drag) calculated by MoorDyn for 
each segment are based on quiescent water conditions. As a result, in 
steep wave scenarios, the mooring line tension may be underestimated 
because wave-induced velocities and accelerations are not fully incor-
porated into the force calculations. In such conditions, the significant 
water particle velocities and accelerations can contribute to additional
hydrodynamic loads on the mooring lines. If these effects are simplified 
or ignored, the forces acting on the mooring lines may be inaccurately 
evaluated, potentially leading to an underprediction of the total mooring 
line tension. This limitation can affect the overall accuracy of simula-
tions, particularly under dynamic or extreme sea states.

According to Chen and Hall (2022), another source of error comes 
from the experiment setup. The chain end connections to the load cells 
are carried out with two tight cable ties on the flume bottom and to 

the floating box through an eye hook. As pointed out by Chen and Hall 
(2022), Moordyn is not able to represent a mooring line being attached 
to or running through an iron hook, nor the elasticity and loose be-
haviour of cable ties used to make end connections. Thus, the approxi-
mations made to model numerically the mooring lines and the incorrect 
representation of the mooring line attachment compared to experiments 
can cause a model’s failure to correctly reproduce the results. Extracting 
the flow motion from the CFD model and feeding them into the mooring 
model is an ongoing work.

4.4.  Influence of axial stiffness

The mooring line elasticity of 2.78MPa was manually tuned by 
Dominguez et al. (2019) in order to match the experimental tension 
response. In addition, and following Chen and Hall (2022) criteria, the 
axial stiffness (EA) was increased from 29N to 50N. Fig. 10 displays 
the numerical results of anchor tensions for line 1 and 3 obtained using 
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Fig. 9. Temporal zoom into the time histories of anchor and fairlead tension for case H12T18.

the three solvers, along with a temporal zoom into their time histories 
and the floating box motion response in surge, heave and pitch as a 
consequence of increasing the axial stiffness.

Increasing axial stiffness adequately captures the magnitude of an-
chor tension in both the offshore and onshore lines. The snap load con-
dition is again observed and extending from the lower tension region 
to the peak amplitudes on both anchor and fairlead tension response. 
However, an overprediction of the surge response is obtained, being 
the heave practically the same and pitch completely mismatched in pe-
riod and amplitude than those with experimental and numerical with 
EA=29N.

4.5.  Influence of co factor

To investigate the influence of the Courant number on solution qual-
ity and computational cost, simulations were performed by setting the 
maximum allowable Courant number to 0.5 and 0.9, respectively, us-
ing OpenFOAM’s adjustable time stepping algorithm. In this framework, 
the local Courant number varies throughout the domain and over time, 
while the maximum value is enforced via the maxCo parameter. Fig. 11 
illustrates the resulting surface elevation at wave gauge 3 (WG3), as well 
as the surge and heave motions of the floating box for case H15T18 us-
ing the overInterDyMFoam solver. Results for maxCo equal to 0.5 (dotted 
yellow line) and 0.9 (black line) show that increasing the Courant num-
ber leads to slightly reduced amplitudes in both free surface elevation 
and body motion. However, these differences remain minimal over the 
entire time series. As expected, a higher Courant number enables larger 
time steps, which reduces computational cost. The total wall clock time 
was reduced from 21.75 h for maxCo equal to 0.5 to 11.2 h for maxCo
equal to 0.9. Although stable simulations with Courant numbers greater 
than 1 are sometimes possible in OpenFOAM (Pinguet, 2021), such con-
figurations may compromise numerical accuracy. These results indicate 

that a maximum Courant number equal to 0.9 provides a suitable bal-
ance between accuracy and computational efficiency for this case.

4.6.  Influence of MaddUpdateFreq

Finally, Fig. 12 displays the results of the floating box motions (surge, 
heave and pitch) obtained with the FloatStepper algorithm and for two 
MaddUpdate values. A low MaddUpdateFreq value of 100 means the 
added mass is updated more frequently, leading to more accurate sim-
ulations but at the cost of a higher computational cost, see Table 9. In 
this case the solver recalculates the added mass every 100 time steps. 
For a higher MaddUpdateFreq (1000), the added mass is updated less 
frequently, each 1000 time steps, reducing the computational time but 
potentially introducing some inaccuracy. For the surge and heave mo-
tions, the choice of a low or high MaddUpdateFreq has a small impact 
in their amplitudes. In the case of pitch, the differences between both 
simulations have a greater impact, although it is not significant. This 
implies that the added mass matrix changes slowly throughout the sim-
ulation, making the choice of 𝑀𝑎𝑑𝑑𝑈𝑝𝑑𝑎𝑡𝑒𝐹 𝑟𝑒𝑞 = 1000 the best option 
for saving computational resources. In conclusion: this parameter has 
a negligible influence on accuracy, and has to be turned with care to 
minimize the CPU time.

Finally, Fig. 12 presents the predicted motions of the floating box 
(surge, heave, and pitch) using the FloatStepper algorithm for different 
values of the MaddUpdateFreq parameter, which controls the frequency 
at which the added mass matrix is updated during the simulation. A 
lower value of MaddUpdateFreq (e.g., 100) results in more frequent up-
dates, every 100 time steps, leading to improved accuracy at the expense 
of increased computational cost. Conversely, a higher value (e.g., 1000) 
updates the added mass matrix only once every 1000 time steps, reduc-
ing computational effort but potentially introducing some inaccuracies. 
Runtime results are summarized in Table 9.
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Fig. 10. Comparison of floating box motions and anchor (𝜏𝑎,𝑖) and farilead tensions (𝜏𝑓,𝑖) with experimental Wu et al. (2019) and numerical Chen and Hall (2022) 
for case H15T18 with increased axial stiffness (EA=50N).
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Fig. 11. Comparison of floating box motions (surge and heave) and surface elevation in WG3 for two Co values (0.5 and 0.9) with experimental Wu et al. (2019) 
and numerical Chen and Hall (2022).

Fig. 12. Comparison of floating box motions with experimental Wu et al. (2019) and numerical Chen and Hall (2022) for case H15T18 and two MaddUpdateFreq 
values (100 and 1000) for the solver FloatStepper.
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In this particular test case, where the submerged volume of the float-
ing body remains relatively stable throughout the simulation, the effect 
of MaddUpdateFreq on the resulting motions is modest. For surge and 
heave, the differences in amplitude between the two configurations are 
negligible. For pitch motion, a more noticeable deviation is observed; 
however, it remains small in magnitude and does not significantly affect 
the overall dynamics. These findings indicate that the added mass ma-
trix evolves slowly in time, making MaddUpdateFreq=1000 a suitable 
compromise for reducing computational cost without sacrificing physi-
cal accuracy.

Nevertheless, caution is warranted when generalizing these results. 
In scenarios involving rapidly varying hydrodynamic conditions-such 
as a body entering the water from air or undergoing large changes 
in immersion-the added mass may change considerably over short 
timescales. In such cases, setting MaddUpdateFreq to a low value (e.g., 
1) may be necessary to accurately capture the fluid-structure interaction 
dynamics. Therefore, while reducing MaddUpdateFreq can offer notice-
able gains in computational efficiency (up to approximately 20% in this 
case), it should only be increased when one has prior knowledge that the 
added mass remains nearly constant during the simulation. Otherwise, 
one risks obtaining fast but physically inaccurate results.

In conclusion, the influence of MaddUpdateFreq on accuracy is case-
dependent. For configurations with limited variation in the submerged 
geometry, the parameter has limited influence on the predicted response 
and can be tuned to reduce CPU time. However, in more dynamic sce-
narios, careful adjustment is essential to preserve accuracy.

5.  Conclusions

This study focuses on identifying an efficient methodology for the 
simulation of floating bodies with simple geometries, coupled with 
mooring dynamics models and subjected to regular wave fields, with 
the aim of applying it to platforms such as FOWTs, WECs, etc., in future 
works. The free surface elevation, motion response, and mooring line 
tensions are examined for a simple geometry subjected to two types of 
regular waves. Version 2 of MoorDyn is used as the mooring dynam-
ics model, which offers several advantages over the first version used in 
simulations by other researchers. Several new features have been imple-
mented in this second version, such as new time integration schemes, 
the option to use a CFL number for adaptive time steps, seabed effect 
and local time stepping, all of which are available in its official reposi-
tory. Additionally, in order to test different available solvers, coupling 
was carried out with FloatStepper, an innovative solver that addresses 
the added mass instability problem. This coupling is available in the 
GitHub repository https://github.com/FloatStepper/FloatStepper.

The coupled CFD mooring approach demonstrated good agreement 
with experimental data for surface elevation, surge, and heave mo-
tions. The accuracy was particularly notable for the highest wave case 
(H15T18), where all solvers consistently captured the dynamic behavior 
of the floater. Although the predicted tensions in anchor line 1 showed 
significant deviations, especially in the shortest wave case (H12T18), 
these discrepancies were primarily attributed to the overestimation of 
surge motion and are consistent with trends reported in previous numer-
ical studies. As such, they do not compromise the validity of the overall 
methodology.

Mesh resolution and solver efficiency were key aspects of this work. 
A discretization of 15 cells per wave height and 357 cells per wave-
length proved sufficient for accurate wave and motion predictions, as 
confirmed through a dedicated grid convergence study. The overset 
mesh strategy, in particular, enabled high-quality resolution near the 
body with a manageable cell count of approximately 3.4 million cells. 
In contrast, the morphing mesh strategy, while accurate, resulted in a 
higher computational cost due to full-domain refinement and increased 
sensitivity to mesh deformation. Another important aspect addressed 
was computational performance. The use of a higher Courant number 
(𝐶𝑜 = 0.9) significantly reduced simulation time without noticeably af-

fecting solution quality. Among the solvers tested, overInterDyMFoam 
emerged as the most computationally efficient, while FloatStepper pro-
vided improved numerical stability in simulations influenced by added 
mass effects, albeit with increased runtime. In addition, this study ex-
plored the effect of varying the MaddUpdateFreq parameter in the Float-
Stepper solver, which controls how often the added mass matrix is re-
computed. It was found that reducing the update frequency can sub-
stantially improve computational efficiency in steady-state or weakly 
time-dependent problems, with minimal accuracy degradation. How-
ever, more dynamic cases demand a finer temporal resolution of the 
added mass calculation to maintain fidelity. As such, the parameter can 
be an effective optimization tool, provided the hydrodynamic behavior 
of the system is well understood.

Moreover, this work offers a comparative evaluation of three mul-
tiphase solvers with different interface capturing strategies and mesh 
motion techniques: overInterDyMFoam, interIsoFoam, and FloatStep-
per. The overset-based overInterDyMFoam solver proved to be the most 
time-efficient and robust under large-amplitude motion, thanks to its 
grid independence and ability to handle rigid body translations with-
out distortion. Meanwhile, interIsoFoam and FloatStepper, both based 
on geometric interface reconstruction with morphing meshes, achieved 
higher interface fidelity at the cost of increased mesh sensitivity and 
computational effort. The FloatStepper solver remains especially valu-
able in contexts where added mass instabilities could compromise con-
ventional solvers, and its modular design allows tailored trade-offs be-
tween stability and efficiency. The methodology developed in this study 
combines second-generation mooring modeling capabilities with ad-
vanced CFD techniques in a reproducible, fully open-source framework. 
It provides a solid foundation for simulating more complex floating plat-
forms, including those used in floating wind, wave energy, and aquacul-
ture applications. Future work will focus on extending the overset ap-
proach to the FloatStepper solver and applying the framework to irreg-
ular sea states, survival scenarios, and full-scale configurations. More-
over, the insights gained here will inform the design of dedicated exper-
imental campaigns for further validation.
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Appendix A.  Grid convergence analysis

An analysis of grid convergence was performed using three 
grid densities designated as A, B and C (see Table 11) and the 
solver overInterDyMFoam. The medium grid size (mesh B) was 
0.01m×0.01m×0.008m for the overset mesh. The background mesh, 
which represents the Numerical Wave Tank (NWT), is composed of cells 
with a size 23 times (level 3) larger than the overset cells. All the sim-
ulations were conducted for up to 18 s, with the adjustable maximum 
time step size (𝛿𝑡) controlled by a maximum Courant number of 0.9. The 
three mesh discretization criteria was based on the minimum number of 
cells per wave hegiht (CPH) and cells per wave lenght (CPL), according 
to ITTC guidelines ITTC (2014).

Fig. 12 shows the comparison of the free surface elevation at wave 
gauges WG2, WG3 and WG4, and the surge, heave and pitch motions 
of the floating box for case H12T18. As for the free surface elevation, 
the three meshes A, B and C, show virtually no differences, with conver-

Table 11 
Mesh parameters for different grid density of background mesh 
(𝛿𝑥𝑏) and overset mesh (𝛿𝑥𝑜).
    ID 𝛿𝑥𝑏 (m) 𝛿𝑥𝑜 (m) 𝛿𝑡 (s)  N  CPH  CPL 
  A  0.096  0.012  0.042 2.1 × 106  10  238 
  B  0.064  0.008  0.028 2.9 × 106  15  357 
  C  0.048  0.006  0.021 5.9 × 106  20  476 

gence being observed in the motion response. In the case of surge (𝜙1), 
the differences are barely noticeable among the three grids. Some slight 
discrepancies can be observed in the heave motion where the negative 
amplitude is lower and positive amplitude is larger for mesh A. It can 
be considered that the heave motions converged between the mesh B 
and C. For the pitch motions, there is more sensitive to grid resolutions 
than for surge or heave motions. In general, the results with the medium 
mesh size (mesh B) are consistent, capturing well the surface elevation 
and floating box motions, and it was selected for simulating all the cases.

Fig. 13. Comparison of surface elevation and floating box motions by the three mesh discretizations for case H12T18.
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Fig. B.14. Anchor (𝜏𝑎,𝑖) and fairlead tensions (𝜏𝑓,𝑖) obtained from an analysis of mooring line segment discretization using Moordyn version 2 and overInterDyMFoam 
solver for case H12T18.

Appendix B.  Influence of line discretization

In the lumped-mass model, parameters, such as internal damping for 
each segment, simulation time step, and the dynamic frequencies of the 
mooring line, are dependent on line discretization. To address this, a 
dedicated convergence analysis of the mooring line discretization was 
conducted by dividing the cables into 20, 40, and 80 segments (N) using 
the Moordyn version 2 and overInterDyMFoam solver for case H12T18. 
The simulations are conducted for up to 18 s, with the adjustable time 
step size controlled by a maximum Courant number of 0.9. The same nu-
merical scheme Runge–Kutta 4th order (RK4), time step to use in moor-
ing integration (dtM), time interval for analyzing convergence (dtIC) 
and bottom parameters (stiffness and damping) were used for all the 
simulations.

Fig. B.14 shows the comparison of anchor and fairlead tension in 
lines 1 and 3 using the three discretization criteria proposed. The tension 
responses for mooring lines divided into 40 and 80 segments are con-
sistent, whereas for lower discretization 𝑁 = 20 shows numerical res-
onance responses obtained with shock peaks starting at lower tension 
region and until the maximum peak. This phenomenon is more evident 
in the fairlead tension of line 3.

Supplementary material

Supplementary material associated with this article can be found, in 
the online version, at 10.1016/j.oceaneng.2025.121764. 
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