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Abstract: The present paper deals with the stochastic modeling of bio-colonization for the computation
of stochastic hydrodynamic loading on jacket-type offshore structures. It relies on a multidisciplinary
study gathering biological and physical research fields that accounts for uncertainties at all the levels.
Indeed, bio-colonization of offshore structures is a complex phenomenon with two major but distinct
domains: (i) marine biology, whose processes are modeled with biomathematics methods, and
(ii) hydrodynamic processes. This paper aims to connect these two domains. It proposes a stochastic
model for the marine organism’s growth and then continues with transfers for the assessment of
drag coefficient and forces probability density functions that account for marine growth evolution.
A case study relies on the characteristics (growth and shape) of the blue mussel (Mytilus edulis) in the
northeastern Atlantic.
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1. Introduction

Actual challenges for requalification of existing offshore structures through the reassessment
process emphasize the importance of updating information about the structural condition state. One of
the most important phases during the design or re-assessment level is a re-evaluation of environmental
loads and updating knowledge concerning the state of biocolonization, structural damage, and
corrosion. The random nature of biofouling and the uncertainty inherent to biological processes make
modeling of environmental loading complicated. Biofouling is a complex phenomenon involving
a diversity of marine species, which constitute communities whose dynamic is driven by physical
and biological processes. It has many negative impacts on offshore structures such as loading excess,
structures occlusion, increase in drag coefficient, and corrosion [1,2]. Therefore, it represents a challenge
for engineers with respect to design and maintenance programs. Several standardized methods of
inspections and in-situ measurements of the marine growth have been developed to obtain relevant
information about species composition, percent cover, weight, thickness, and roughness, allowing the
determination of structural design, cleaning, and maintenance strategies. Biocolonization processes
show spatial and temporal variations related to several environmental factors (water temperature,
hydrodynamics, turbidity, distance from the shore, bottom characteristics) acting at regional and local
scales. However, the results are often more qualitative than quantitative and suffer from a lack of
consistent modeling for structural engineers, except when a big database is available. Cost-effective,
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safety management of offshore structures involves allocating the optimal amount of resources to
periodical inspections and maintenance activities in order to control risks (expected life of the structure).

The growth of marine organisms on offshore structures has long been a significant issue for
the oil and gas industry [1,2]. In the 70′s and 80′s, studies focused on the effect of biofouling on
hydrodynamic forces acting on offshore structures. Numerous experimental studies were carried
out with different types of marine growth, cylinder diameter, and hydrodynamic conditions to
provide a better understanding of their interactions with hydrodynamic forces and to highlight the
key relationships. Despite the great variability due to the complexity and instabilities of the flow
regime around structures, abacuses were built and are still recommended by offshore standards such
as American Petroleum Institute (API) [3] and Det Norske Veritas (DNV) [4]. Only a few studies
considered the global modeling of the loading in a probabilistic context [5,6] and none of them consider
the modeling of the organismal growth itself. In fact, there are few available databases containing
on-site measurements with time [7,8]. This paper proposes a modeling of characteristics of the external
marine growth layer consistent with structural engineering needs. As the first year is crucial for future
colonization patterns, we focused here on the building of the first layer of biofouling by a macro-fouler.
The blue mussel Mytilus edulis was considered for the modeling, as it is an ubiquist bio-fouler in
European waters [9,10].

The present paper considers the biocolonization as a stochastic process. Biocolonization is
represented as cumulative deterioration process and this study defines two phases for it: an initiation
phase and a propagation phase. The paper reviews meta-models and it describes database construction,
which consists of the influencing factors. It proposes a stochastic modeling of biofouling based on a
non-stationary, state-dependent Gamma process for the blue mussel Mytilus edulis. The developed
Gamma process [11,12] provides individual shell length time series for blue mussels in the first year of
colonization. Its parameters are identified from simulations carried out by a biological model. To this
aim, a biological model based on the Dynamic Energy Budget (DEB) theory [13,14] was used to simulate
the variations of individual mussel shell size depending on environmental data. Thereafter, the study
focuses on the drag term of Morison’s equation. It reviews a response surface method to model the drag
force as well as the effect of physical characteristics of structural members, such as surface roughness
(k) and the average thickness of marine growth (Th). Moreover, the drag force exerted by extreme
waves for colonized structural members during the typical macro-colonization years is determined.
The probabilistic macro-colonization, shell length time-series considering the occurrence probability of
typical macro-colonization years are provided. The evolution of the drag coefficient with regard to the
probabilistic shell length time series is evaluated and the results are discussed.

A case-study site was chosen offshore the Loire Estuary (France) corresponding to a future offshore
wind farm site, in order to illustrate the role of biofouling on the computation of hydrodynamic
forces (drag force). In order to model the colonization during the first year, two main phases of
bio-colonization were considered: (1) an initiation phase without any macro-fouling on the structure,
and (2) a propagation phase or macro-colonization phase, corresponding to the growth of mussels.
The key influencing factors affecting these two stages were hydrological data (water temperature
and chlorophyll-a concentration, as proxy of mussel food). Mussel growth was used to derive two
geometrical characteristics Th and k describing marine growth. It should be noted that the added mass
and inertia forces are beyond the scope of this paper.

Hereafter, the objective of this work is to propose a meta-model, which combines different
disciplinary approaches accounting for several types of uncertainty and variability among (a) the
temporal variability of the main influencing environmental factors; (b) the biological uncertainty of the
individual’s growth; (c) the uncertainty, due to the modeling of geometrical parameters of structural
components caused by biofouling and needed for structural computations; and (d) the uncertainty of
wave characteristics to compute the loading on structural components. To propagate the uncertainty
of biological and physical marine environment (marine growth and wave), a physical matrix response
surface was used in view to provide a probabilistic model of the environmental loading on jacket type
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offshore structures based on Schoefs & Boukinda (2010) [1]. This method was applied for quasi-static
calculations of wave forces in the presence of marine growth.

2. Materials and Methods

2.1. Requirements for a Meta-Model

To develop the macro-colonization model for structural computation, several properties should
be considered. The main trends of growth with time should be captured using a time step compatible
with sensitivity to input parameters; it should be sensitive to the environmental parameters that govern
the ecophysiology of the biofouling: temperature and food availability; it should provide intermediate
parameters (shell size) from which required outputs can be easily computed (roughness and thickness)
to perform a reliability analysis (stochastic processes); it should be versatile to modify the trends
depending on site specificity. The next sections detail the way these requirements have been taken into
account in this work.

2.2. Description of Bio-Colonization Temporal Dynamic

Bio-colonization is a complex process depending on biotic and abiotic variables with many
interactions [15,16]. Indeed, it would be unrealistic to envisage a complete model involving a
multilayer of various marine organisms that have complex interactions for survival, growth, and
reproduction. We propose here a model that accounts for the temporal variability of the main
influencing factors in a simplified but realistic case. It focuses on the growth of a single species, the
blue mussel Mytilus edulis.

The bio-colonization process depends on two early stages: (1) the reproduction of adults, which
spawn in the water column and produce larvae that will become part of the plankton transported
by currents; (2) larval survival and development in the water column. The bio-colonization itself
starts with the larval settlement on a structure (micro-colonization) and corresponds mainly to the
macro-colonization step, i.e., growth of individuals up to the adult state. It is important to estimate the
spawning date(s) and to assess the conditions allowing larval survival. This is a prerequisite before
modeling macro-colonization. Consequently, the model needs to take into account (1) an initiation
phase (no macro-organism present on the structures) with no significant effect on structural reliability,
and (2) a propagation phase corresponding to the growth of macro-organisms (Figure 1). With these
two phases, an analogy can be made with the dynamic of degradation processes like corrosion of steel
rebars in reinforced concrete [17]. In this study, we considered that the larval settlement corresponds
to the beginning of the propagation phase.
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The model should be able to capture the initiation phase and then simulate a propagation phase
(macro-colonization). The latter allows for obtaining the individual size and, accordingly, the physical
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characteristics of the colonized surface needed for the hydrodynamic calculations [6]. The initiation
phase includes spawning date, larval survival, development, and settlement. We considered that
this phase was mainly driven by temperature while the propagation phase (macro-colonization)
corresponding to the juvenile growth was driven by both, the temperature and the concentration of
chlorophyll-a, a proxy of the food available in the water column for mussels. These drivers are related
to the bivalve ecophysiology, which is detailed in the following paragraph.

2.3. Description of Bio-Colonization Temporal Dynamic

The blue mussel Mytilus edulis (M. edulis) was chosen to develop a simplified (single organism
colonization) but realistic bio-colonization model for the North-Atlantic coasts. M. edulis is a ubiquitous
and abundant species in the coastal waters of the North and Mid-Atlantic Regions [18], and has been
reported as a main macro-colonizer of offshore structures [19,20]. When found as a dominant hard
fouler, it has an influence on the composition of the external layer of marine growth [15]. It is a
suspension-feeding bivalve that attaches to substrata by byssal threads and is traditionally cultivated
on ropes or wooden poles on the Western Atlantic coasts [21]. M. edulis is eurythermal (adaptable to a
wide range of temperatures) and, under the latitude of our case-study site, is well acclimated to a 5
to 20 ◦C temperature range [22]. It is very common in the intertidal area forming beds on rocky and
hard substrates but can be found in subtidal environment down to −10 m. Mussels feed on suspended
particulate matter and their main food resource is phytoplankton cells [23–25]. Phytoplankton is
also considered as the dominant food source for all life stages of M. edulis since larvae also rely on
phytoplankton for their development. The concentration of chlorophyll-a is a widely used proxy of
phytoplankton biomass, and this variable was used in this study to assess the food available for the
mussel’s growth. For more details on M. edulis morphology, physiology and ecology, the reader is
referred to Gosling (2003) [21].

2.4. Initiation Phase and Propagation Phases

The spawning date, larval survival, and development are the most important stages for the
initiation phase modeling. Blue mussels, like the majority of shallow water bivalves, produce large
numbers of pelagic planktotrophic larvae that spend several weeks in the surface waters [25]. M. edulis
sexes are separated, and gametes are shed into the water where fecundation occurs. At the latitude
of the study site, mussels can spawn up to three times a year from April to September successively,
depending on environmental factors. In bivalves, an essential condition related to spawning is a
thermic threshold corresponding to a minimum water temperature [26]. Indeed, the temperature is the
strongest exogenous factor controlling M. edulis reproduction [21]. In this work, we considered only
the spring period when the mussel producers submerge ropes to collect planktonic larvae. In Pertuis
Breton, which is the closest area to our study site, Barillé-Boyer (1996) [22] found a threshold of 10.5 ◦C,
and it has been considered that spawning was not triggered below this temperature. Above this
temperature, the spawning dates are not modeled but forced with observed datasets [24]. In this
study, observations from mussel producers are used. A 30 day interval between two spawning was
adopted in relation to the mussel gametogenesis dynamic. This delay is linked to the time necessary
to reconstitute reproductive tissues [22]. Other exogenous factors, such as storms, shock, rain, etc.,
which can randomly trigger bivalve’s spawning, were not considered. The second important step
following spawning is the larval survival and development. For mussels, Bayne (1965) [27] observed
that M. edulis larvae could reach its development within 20 to 40 days, depending on the temperature.
A slower (S) larval growth and metamorphosis can take 40 days if spawning happened in early spring
with a water temperature of around 10 ◦C, while a faster (F) larval development of around 20 days
is possible at a higher temperature of 14 ◦C [22]. Therefore, it was considered that if during the
next 20 days after spawning water temperature was >14 ◦C, larvae survival and development was
completed in 20 days, otherwise in 40 days. For each year in our database, the spawning occurrence
times and initiation phase typologies are determined by post-processing the temperature time-series.
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As mentioned before, geometrical parameters (thickness and roughness) are required for load
computation. They depend on geometrical specifications (shape) of organisms colonizing the structure.
In this study, these parameters are linked to the shell length of blue mussel individuals. The shell growth
of the blue mussel has an asymmetric sigmoid shape curve [28,29]. The growth rate of blue mussel
individuals is, therefore, neither monotonic nor stationary, and the growth curve can be described by
the acceleration and deceleration phases (Figure A1, in Appendix A). No clear relationship between
the individual shell growth and the water temperature has been observed, while the concentration
of chlorophyll-a appeared to be the main driver. This observation is consistent with several studies
showing that the food supply was the most important variable explaining mussel growth [30–32].

2.5. Database Post-Treatment, Virtual Database, and Aggregation of Influencing Factors

2.5.1. Environmental Data at the Case-Study Site

In order to model the initiation and propagation phases, water temperature and chlorophyll-a
(Chl. a) concentrations were obtained for the site of Le Croisic (47◦17′33” N, 2◦31′15” W) on the western
Atlantic coast of France. This location was chosen for its proximity to the future offshore wind farm
site of Banc de Guérande (47◦19′41” N, 2◦25′46” W). Data were collected by the French Observation
and Monitoring program for Phytoplankton and Hydrology in coastal waters (REPHY, [33]), and
implemented and managed by the French Research Institute for the Exploitation of the Sea (Ifremer).
Bimonthly samples were collected at a sub-surface depth (between 0 and 1 m) during high tides
between 1996 and 2012 (Figure 2). Chlorophyll-a display higher concentration between March to June
corresponding to the spring phytoplanktonic bloom characteristic of northern hemisphere temperate
waters. In 2004, a single spring peak was observed, while in 1996, three peaks of lower concentrations
were detected. It should be noted that the water temperature cannot change abruptly in a short time.
For an overview of the REPHY network, the reader is directed to Hernández Fariñas et al. (2013) [34].
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Figure 2. Inter-annual variations (1996–2012) of water temperature (◦C) (a), and chlorophyll-a
(Chl. a, µg·L−1) (b), at Le Croisic sampling station (Loire-Atlantique, France). Data from Ifremer/
Quadrige/Rephy©.
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In order to model bio-colonization and to standardize the time intervals of data acquisition, each
month has been divided into three 10 day periods. The database used hereafter has been therefore
constructed from periodic observations at established time intervals τ equal to 10 days. The average
value of all temperatures and Chl. a values measured during each decade has been assigned as the
decade temperature and Chl. a values. It should be noted that the water temperature cannot change
abruptly in each decade. On the other hand, Chl. a will not interfere directly in the model but rather
will form the growth potential parameter that is explained in next section. That is why if there were no
available measurements available for some decades, a linear interpolation from adjacent measurements
was carried out. The number of the database time-series [Year Time-step] is defined by N, representing
the number of years for which the database base has been prepared, and t, which represents the
number of observations each year depending on the data acquisition time intervals (in days) τ; in
our case N = 17, t = 37 and τ = 10. The long-term time-variant modeling of input factors being out
of the scope of this work, we assumed that N is statistically sufficient for computing the frequency
of each macro-colonization scenario. Therefore, the database has been constituted from the regular
measurements of water temperature (T) and Chl. a (C), and can be denoted as:{(

Ti
t,τ, Ci

t,τ

)
; t > 0, i ∈ 1, N

}
. (1)

Hereafter, Ti
t,τ, is used for the initiation phase determination and Ci

t,τ for the modeling of the
propagation phase. Four types of larval development combining the slow (S) and fast (F) growth
possibilities are presented in the Table 1 for the three initiation times (corresponding to the three
spawning periods) obtained from the database considering key factors and thresholds described in the
previous section. The first larval development is always slow because the water temperature is below
14 ◦C during early spring, and the third one can be slow only if the second one is also slow (because the
water temperature cannot fluctuate abruptly). These results come from the natural seasonal variations
of temperature during one year. These frequencies will be considered as discrete probabilities for the
modeling. At the end of this larval growth period, we considered that larvae settled on the structures,
and that was the start of the propagation phase (macro-colonization) described in Table 1 for the
17 annual chronicles.

Table 1. Inter-annual development types for three main spawning events (S: slow initiation phase, F:
fast initiation phase).

Development Type Occurrence Probability

SSS 2 0.12
SSF 10 0.59
SFS 0 0.00
SFF 5 0.29

Table 2 shows the date of start of macro-colonization, expressed in 10 day periods (1 = first
10 days of January), for three main spawning events of blue mussel between March and June.
Occurrence and probability were calculated from the 17 year time-series of temperature data at the
study site. Calculations revealed that macro-colonization starting date spanned from the 11th to the 20th
10 day period. The most probable macro-colonization inception times for the three spawning events
corresponded to the combination of 10 days periods of 12-15-16 and 13-16-17 with 18% probability.
The first macro-colonization inception occurred between the 11th and the 16th 10 day periods with
the highest probability of 29% for 11th period and the lowest probability of 6% for the 16th period.
The second macro-colonization inception occurred between the 14th and 17th periods with the lowest
probability of 12% for the latter. The third macro-colonization inception occurred between the 17th
and the 20th periods with the highest probability of 35% for the 17th period and the lowest (6%) for
the 20th.
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Table 2. Date of start of macro-colonization, expressed in 10 day periods, for three main spawning
events of blue mussel.

Start of Macro-Colonization Occurrence Probability

11 14 15 2 0.12
11 14 17 2 0.12
11 15 16 1 0.06
12 15 16 3 0.18
13 14 17 1 0.06
13 16 17 3 0.18
14 15 18 1 0.06
14 17 18 1 0.06
15 16 19 2 0.12
16 17 20 1 0.06

2.5.2. Environmental Data at the Case-Study Site

There was no observation available for blue mussel shell lengths close to our study site and
more generally, no database for the annual growth of mussels during the considered 17 year period.
To fill this gap, we applied a bioenergetics growth model to simulate the individual shell length using
environmental time-series data available at the study site. This biological model was calibrated by a site
with similar environmental characteristics and for the same species of mussels. Different bioenergetics
models have been developed to model the growth of bivalves depending on the environmental
conditions, and among them, Dynamic Energy Budget (DEB) models [13] have been successfully
applied to several bivalve species [24,35–38]. DEB models do not use empirical allometric relationships,
but simply state that feeding is proportional to surface area, whereas maintenance is scaled according
to structural body volume [13]. DEB theory proposes a generic energy budget approach that assumes
common physiological processes among species and life stages via a set of parameters, the only
difference among species lying in the values of those parameters.

In this study, we used the DEB model developed by Thomas et al. (2011) [31] to simulate
the growth of Mytilus edulis in the Mont Saint-Michel Bay. A single parameter, the half-saturation
coefficient of the food ingestion function term (XK), had to be adjusted to local hydrologic and trophic
conditions. For our study, the half-saturation coefficient was calibrated at 2.9 µg·L−1 from growth data
by Garen et al. (2004). Simulations started for 1 mm individuals (0.02 g of Dry Flesh Mass—DFM), a
biometry corresponding to post-settled organisms. Results of the calibration are presented in Figure A2
in Appendix A. A good level of agreement between observations and simulations was obtained for
shell length and dry flesh mass, a biological variable often used in bioenergetics models to assess the
consistency of the simulations.

The model was then used to obtain individual growth trajectories with the 17 year time-series of
the Chl. a concentration measured at Le Croisic (Loire-Atlantique, Le Croisic, France). Three starting
dates were chosen, corresponding to the three spawning events and related macro-colonization starting
dates (Figure 3). Note that the initiation phase and beginning of propagation phase plotted in Figure 1
cannot be measured and are not reported in Figure 3 top.
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Figure 3. (a) Individual annual shell length trajectories simulated by a mussel Dynamic Energy Budget
(DEB) model and (b) corresponding final length.

2.6. The Relation between Environmental Factors, Growth, and the Start of Macro-Colonization

The Gamma process simulates increments for each time interval of τ which correspond here
to variations in mussel shell length (∆St,τ). The parameterization of the function can integrate the
environmental variables. Temperature is a variable of the DEB model, but Chl. a concentration is
the main driver of growth. It was therefore decided to parameterize the Gamma process only with
Chl. a. However, due to potential coupled effects between temperature and Chl. a, we analyzed
the correlation between temperature and growth over the time-series. From ∆S obtained from DEB
simulations, the scatter diagram of ∆S vs. temperature showed that there was no significant correlation
between these two variables with a Pearson correlation coefficient ρ = 0.21 (Figure 4). That means that
temperature is not a key driver of shell growth. On the contrary, there was a structured relationship
between growth and Chl. a (Figure 5). It can be noted that uncertainty increases when Chl. a increases.
Moreover, there is a ∆S plateau showing that the capability of an individual to grow is limited by the
additional food supply: a concentration higher than 8 µg·L−1 does not lead to a larger ∆S. This is due
to a well-described physiological phenomenon of maximum somatic growth in bivalves [39,40].
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The relationship between the start of macro-colonization and the concentration of Chl. a is
presented in Figure A3 in Appendix A. There is no significant correlation between these two variables
with a Pearson correlation coefficient ρ = −0.02. This property is of first importance, as it will govern the
simulation strategy. Simulation of inception times (start of macro-colonization) requires temperature
time-series only, and the modeling of mussel growth will be carried out independently using Chl.
a time-series.

2.7. Chlorophyll Data Aggregation for Growth Computation

In order to improve the biological consistency of our simulations, we tested the possibility to link
the individual growth of blue mussels to Chl. a concentration aggregated over a time-step instead of
using instantaneous values. The integrated value of Chl. a was simply defined as:

C(T(i):T(i+n))
=

1
n

T(i+n)∫
T(i)

Chl(t)dt, i = 1 : 36− n (2)

where C(.) is the aggregated Chl. a; T(i), is a 10 day period, and Chl(t), is the linear equation of Chl. a
obtained from linear interpolation between adjacent measured values for a colonization period, and n
is the number of 10 day time intervals after (i), in which the data aggregation is performed. The best
correlation between ∆S and Chl. a has been obtained for a monthly aggregation (3 time intervals, n = 2
in (2)). This time-step preserved the spring bloom typical of the seasonal dynamic of phytoplankton at
the study site latitude.

In order to identify the non-linear relationship between growth and Chl. a, the non-linear
regression (3) has been fitted with an R2 of 0.74 (Figure 6):

∆S =
0.235

1 + 6.94e−1.005(Chl.−a)
(3)
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Figure 6. Identification of the Chl. a threshold beyond which growth saturation is observed.

The ratio of (d∆S/dChl. a) ≤2% has been chosen as a criterion for stabilization based on slope
variations; this ratio is consistent with the accuracy of the DEB model. A concentration of Chl. a of
8 µg· L−1 was identified as the threshold beyond which ∆S remained constant at 0.235 cm/time interval.
The Chl. a time-series was then truncated with the mentioned threshold to significantly improve the
convergence of the Gamma process parameterization, without an important degradation of the database.
Note that this threshold depends on the metabolism of the organism and is, therefore, species-specific.

2.8. Non-Stationary Modeling of Shell Growth through Stochastic Gamma Process

2.8.1. Growth Approximation through Gamma Processes Meta-Models

Considering the aforementioned characteristics of the mussel’s colonization, and in order to model
the temporal dynamic of structure deterioration, a stochastic approach based on Gamma processes has
been selected [41]. Since the introduction of the Gamma process in reliability [42], it has been used
commonly to model stochastic cumulative and uncertain deterioration phenomena for the maintenance
optimization of various industrial systems. Indeed, the Gamma process is an analytically tractable
stochastic process accumulating over time in a sequence of positive increments. Recently, it has been
widely used to model cumulative degradation processes, such as corrosion, fatigue, crack growth,
creep, degrading health, erosion, and wear in engineering systems and structures [11,41,43,44].

The Gamma process is a special case of a non-decreasing jump stochastic process that properly
captures the temporal variability associated with the deterioration dynamic. This justified the choice
of the non-stationary state-dependent Gamma process. The non-stationary Gamma process is a
widely used mathematical model to describe a degradation process whose growth rate at time t
depends only on the current state of the parameters and not on the accumulated damage up to
t [45]. The complete Gamma process function is defined by two parameters: a shape function αS
and a scale function βS (4). We discredited time horizon into equal intervals of length τ = 10 days.
Then, the state-dependent non-stationary and bivariate Gamma process was represented as a series
of state-stationary Gamma processes in each time interval. The rate of the deterioration process can
thus be considered as the process resulting from the Gamma process variations from one time-interval
to another. The deterioration increment in a given time interval ∆St,τ has been considered to be a
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random variable with a shape function (αS) dependent of the present deterioration state St,τ and a
second variable, the state of chlorophyll-a concentration Ct,τ. Thus, for each time step τ, we have:

∀St,τ > 0 : St,τ, ∆St,τ, τ : ∆S(τ; St, Ct) : Γ(αS(St, St).τ, βS) (4)

where St,τ is the shell length for each time interval of τ and αS and βS are the shape and scale functions
of the Gamma process, respectively. To simplify the modeling of this process, it has been assumed that
the scale function βS was constant and Gamma process was only governed by the shape function [11].

2.8.2. Parameter Estimation of the Gamma Process (Learning Phase)

In order to simulate the growth of blue mussel submitted to fluctuations of Chl. a in each time
interval τ, the parameters of the developed Gamma process have to be estimated. The deterioration
increments have been calculated by the simple subtraction of consecutive individual shell lengths and
the resulting database used for deterioration density estimation is denoted as:{(

Ci
t,τ, Si

t,τ, ∆Si
t,τ

)
; t > 0, i ∈ 1, N − 1

}
(5)

where N is the number of years (in this study N = 17). In order to estimate the parameters of the
Gamma process, the Expectation-Maximization (EM) method has been employed. The program starts
by scanning the database and indexes the values of C(t) and S(t) time-series; then using the observed
data, initial parameters are estimated and used to start an iterative EM algorithm. The Gamma process
parameters have been estimated and determined as:

∆S(τ; St, Ct) : Γ

αS = (0.198 + 1.68Ct) exp

−(St − 0.44)2

6.512

, βS = 0.039

. (6)

2.8.3. Stochastic Simulation from Gamma Process (Propagation Phase)

Once the Gamma process has been estimated, the DEB data are not needed anymore and we
can use the Chl. a database to predict the growth rate of mussels. The macro-colonization can be
then simulated with the Gamma process function (6) and consider the Chl. a database for 10 typical
macro-colonization years from the 17 year time-series. We considered this database to be representative
of the dispersion from a richer database in respect to the frequency of the main phenomena and their
consequences. Thus, each environmental input (Chl. a time-series C(t)) is considered with the same
weight as the growth uncertainty (biological process). The 5000 simulated growth curves obtained by
the Gamma process (50 realizations of C(t) for each of the 10 Chl. a time-series) and individual growth
curves simulated with the DEB model are compared in Figure 7. Each growth curve is simulated from
one realization of the Gamma process with Chl. a randomly sampled from the 17 year time-series
database: uncertainties for Chl. a. and the simulation of S at a given time have herein the same
weight in statistical terms. After one year of growth, the mussel shell length time-series S(t) simulated
with the Gamma process encompassing the extreme values obtained with the DEB model. Moreover,
stabilization is reached (asymptotic behavior) after the 30th time periods when the growth is stabilized
at a mature age. At the beginning of the simulations (first 25 weeks), a higher variability was observed
with the Gamma process; this would lead to conservative estimations of marine growth characteristics
colonizing the structure. From an engineering perspective, it is essential to reach a good representation
of the distribution of maximum values of S, which is the case here.
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Figure 7. Individual growth trajectories obtained with the DEB model for each year of the 17 year time
series (solid red lines) compared with simulated individual growth obtained with the Gamma process
approach (dotted blue lines). The time unit represents 10 day periods.

Note that the Gamma process model accounts for the stabilization of shell growth during one
or several time steps: that phenomenon is observed in the DEB simulation and actually represents a
lack of available food. To complete this statistical analysis, the average and the standard deviation of
individual shell length curves are presented in Figure 8. These curves were similar for both methods
throughout the simulation period. The Gamma process simulations were a bit conservative in terms
of shell length overestimation. The standard deviation curves showed differences between the two
approaches. This may be due to the choice of the constant scale parameter βS, which controls the
response dispersion of the Gamma process. Note that there is also a statistical bias when estimating
standard deviation from the DEB time-series due to the limited amount of data (17 trajectories).
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2.9. Effect of Marine Growth and Hydrodynamic Forces on Jackets

From the structural point of view, marine growth may affect dynamical behavior, resistance to
fatigue or extreme loading. We focused here on the latter. Offshore platforms are generally gathered
in two families: bottom fixed and floating. Many works studied the effect of marine growth and
hydrodynamic forces on components (cylindrical beams) of fixed steel framed offshore structures
called jackets for which the component diameter (1 m) is small in comparison with wavelength during
storms (100–400 m). This type being, on the one hand, the most popular in oil and gas industry and
also for the offshore wind turbines substation, and on the other hand very sensitive to marine growth
(fatigue and extreme loading). The analysis of marine growth effect on hydrodynamic forces could be
categorized into two groups as follows:
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(i) experimental modeling of hydrodynamic forces for cylinders with different roughness
conditions [46,47]. Recent studies are mostly concentrated on the water particle velocity and
acceleration measurement techniques.

(ii) evaluation of hydrodynamic forces by the physical modeling of marine growth characteristics
obtained from in-situ measurements [6,48]. These studies were based on inspections carried
out during survey campaigns. They advocate guidelines for the probabilistic modeling of
hydrodynamic forces at a given time. The biofouling database has been analyzed to propose a
model of marine growth evolution and to update the design criterion. A physical response surface
matrix has been proposed in order to provide a probabilistic modeling of the environmental
loading on jacket type offshore structures. The key parameter is the increase of the structural
diameter due to the marine growth thickness.

In the present study, we are considering the non-linear effect of the roughness of marine growth
on the loading during a yearly growth. The results from laboratory studies focused mainly (i) on the
regular shape of marine growth and homogeneous colonization around the cylinder and (ii) on mean
thickness. Moreover, for time computation constraints (stochastic simulations of wave and marine
growth) and because it allows explicitly introducing the role of marine growth, we used Morison
modeling [49] for which the link between homogeneous roughness and loading is available. Because
roughness is non-homogeneous and random, an uncertainty was added.

2.9.1. Effect of Marine Growth on Morison’s Equation

Usually, Morison’s model [49] is used to estimate hydrodynamic forces on tubular offshore
structures like jackets, using the particle kinematics obtained from the wave heights and periods.
It should be noted that for the jacket structures Morison’s equation is valid because the structural
diameters (D) are small compared to wavelengths λ (D/λ < 0.2). This equation can be employed from
medium to deep-water depth [49]. It has been shown to be very appropriate for an expansion in the
stochastic domain [48]. This equation is denoted as:

FMorison = FD + FI =
1
2
ρCDDu|u|+ CM

ρπD2

4
.
u (7)

where FMorison is the hydrodynamic force per unit length of the member (N/m), FD is the drag force per
unit length of the member (N/m), FI is inertia force per unit length of the member (N/m), CD is the
drag coefficient, CM is inertia coefficient, ρ is the density of water, D is member diameter (m), and u is
velocity of wave’s water particles (m/s),

.
u is the acceleration of wave’s water particles (m/s2). u and

.
u

are computed by Stoke’s model [50] from the knowledge of metocean data: wave height H and period
T.

Generally, the inertia term of the mentioned equation becomes important for small waves or
for members with large diameters [48], otherwise the drag term will be dominant. Marine growth
increases the surface roughness and hence changes both the drag and inertia forces. The variations
induced by the presence of marine growth impress the hydrodynamic forces in a non-linear way.

Considering the effect of biofouling on hydrodynamic coefficients in Morison’s equation, some
researchers have proposed a model for the drag coefficient as a linear regression function of the thickness
and roughness [51,52]. According to the recommended practice of [3], an additional parameter that
affects the drag coefficient of elements with circular cross-sections is the relative roughness, e = k/De.
The surface Roughness k is the average peak-to-valley height of hard growth organisms and the
effective member diameter De can be obtained as:

De = Dc + 2 Th (8)
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where Dc is the outer diameter of the clean member and Th is the biocolonization thickness (i.e., the
mean of distributed thickness around the diameter) obtained by circumferential measurements [3].
API [3] gives the relationship between De and the steady-flow drag coefficient (CDS) (9).

CDS = a +
b

k
De + c

; a = 0.07152, b = −2.9× 10−4, c = 4.12× 10−4. (9)

CD is then computed from the knowledge of CDS and the Keulegan-Carpenter number KCmg

according to [3,6].
This approach allows measuring the influence of roughness on the drag coefficient and therefore

the drag force as well as their evolution with time. This leads us to choose an uncertainty model for
the relationship between the size of the shell and the roughness in Morison’s equation.

Coefficients of fluid-structure interactions are modeled from the knowledge of the hydraulic flow
regime around the structural components [47]. Reynolds Re and Keulegan-Carpenter KC numbers
are essential for characterizing the flow regime [6]. For most offshore jacket structures in extreme
conditions, Reynolds numbers are put into the post-critical flow regime, where the steady-flow drag
coefficient CDS for circular cylinders is independent of Reynolds number [3,53].

2.9.2. Stochastic Modeling of Marine Growth and Hydrodynamic Parameters

There is not enough knowledge, nor enough observations, about the settlement of blue mussels
on offshore structures and a 100% cover was considered on the component. In order to account for the
diameter of the colonized structural member, the marine growth thickness time-series Th(t) should be
modeled. Marine growth thickness is modeled as a Gamma process Tht,τ deduced from the simulated
individual shell length time-series St,τ for blue mussels in each time interval. For simplicity at this step
of modeling, it has been assumed that the individual shell length time-series S(t) gives the average
size time-series Tht,τ with a multiplying uncertain factor (10): it follows a uniform distribution with
support [0.3; 0.6] at each of the i 10 day periods.

Th(t) =
{
(Th1, . . . , Thn); 0.3 Si ≤ Thi ≤ 0.6 Si, i ∈ 1, 37

}
. (10)

This uncertainty accounts for the geometrical arrangement of the shells (Figure 9).
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For roughness, on the one hand, there is a lack of on-site measurements and on the other, the
available relationship between roughness and hydrodynamic forces (9) relies on a uniform roughness
around the component [3]. Hence, roughness is also modeled as a Gamma process kt,τ based on
individual shell length time-series St,τ (11), with a random factor following a uniform distribution with
support [0.2; 1]. The latter is a model error for modeling the uncertainty when quantifying the real
effect of a randomly distributed roughness around the component. Note that intensive developments
on underwater image processing are emerging [54–56], enabling one to envisage progress in on-site
measurements. Recent works investigate the relationship between non-homogenous roughness
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and loading [57,58]. The wide range of uncertainty will, therefore, decrease in the next decade.
Consequently, the error of computation of equivalent roughness is significant and the interval in (11) is
large: it includes the stochastic distribution of shells around a tubular component and the error of
model for computing the equivalent roughness.

Finally, the time-series of surface roughness k(t) and marine growth average thickness Th(t) have
been considered independently as the random value uniformly distributed in an interval bounded to a
ratio of individual shell length S(t):

k(t) =
{
(k1, . . . , kn); 0.2 Sn ≤ kn ≤ Sn, n ∈ 1, 37

}
. (11)

The relative surface roughness e(t) time-series are deduced (e(t) = k(t)/De(t)) and CDS(t) time-series
have been simulated according to (9).

This study deals with two major time variant random variables in the hydrodynamic calculations,
the meteocean data including a couple of wave height and period (H, T) and the stochastic process
generating the individual shell length St,τ in each time interval τ from (4). Parameters of Gamma
processes Tht,τ, and kt,τ are dependent of individual shell length St,τ and the hydraulic parameters
(Remg, KCmg), and therefore drag coefficients CD, depend on individual shell length St,τ and the couple
of wave height and period (H, T).

Thus, parameters of Tht,τ affect the hydrodynamic coefficients through the relationships between
the hydraulic parameters (Re, KC) and the diameter of the elements, which is dependent of the
coefficient of Tht,τ itself [6]. The next section will explain how these cross-effects are accounted for.

2.9.3. The Stochastic Modeling Wave Loading in the Presence of Marine Growth

Figure 10 summarizes the steps of drag forces computation in a flowchart. It should be noted
that the steps of hydrodynamic coefficients calculation are based on an interpolation of experimental
curves [6] presented by [3].
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The main steps of this flowchart are detailed below ((#X) means the step in circle X in the figure):
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• (#1) Statistical Identification: the employed parameters are the heights of extreme waves H and
associated periods T. They are modeled with a random variable, whose probability is conditioned
by the wave direction θ;

• (#2) A kinematic model for the fluid for computation of water particle velocity: the Stokes
model [50] is used. It assumes that the fluid is Newtonian and irrotational and the trajectory of
the fluid particles is elliptical. The kinematics field deduced from the velocity potential can be
defined at any point M of coordinates x and z. The maximum velocity um (#5) is deduced and is
used in the computation of KC and Re (#6).

• (#3) The fluid-structure Interaction model: this level is involved in the hydrodynamic coefficients
determined by using the recommendation of [3].

• For the probabilistic modeling of CD, in order to avoid multiplying the case studies, only vertical
elements under the wave crest are analyzed. This implies high horizontal speeds and accelerations
that generate very small forces, which means that the inertia forces in (7) are very low and will be
neglected in the following.

• (#4) The colonized diameter De(t) is a stochastic process that results from the increase Th(t) of the
initial radius of the clean component. Starting from (8), the diameter is computed by multiplying
Dc by the factor θmg. The latter is computed from the thickness Th(t) (12):

De = Dc + 2 th = θmg Dc with θmg =

(
1 +

2 Tht,τ

Dc

)
. (12)

Random or stochastic nature of variables or processes is reminded at the beginning of the flowchart
by writing as a function of the hazardω.

According to API RP 2A WSD [3] and DNV-RP-C20 [4], since the flow regime is post-critical (Re

> 5 × 105) by using 100 year-return wave characteristics, the drag coefficient does not depend on Re

but rather on KCmg and CDS. Note that API ([3], section C2.3.1b7, p. 143 and p. 145) provides, in fact,
a piecewise model on two intervals depending on KC or KC/CDS and the scales of these models are
different. It results in two effects on the evolution of the drag force (CD): first for some values of CDS it
is the cause of discontinuity of the model at KC = 12 and second, it is very difficult to analyze directly
the effect of CDS. This is visible in Section 3.2.

Extreme wave characteristics (H, T) of the Gulf of Guinea have been considered for the
hydrodynamic calculation, which is a specific site with low KCmg values. Moreover, it gathers
wave and wind-sea values and the spectrum is very similar to the one in French Atlantic offshore sites.
Using meteocean data from this region allowed us to cover a large range of KCmg to better illustrate the
non-linear effects of marine growth on the drag coefficient evolution and hence on the load probabilistic
distribution. This covers almost all configurations of Atlantic French offshore sites. Joint distribution
of the extreme height and period for a return period of 100 years for the Gulf of Guinea are simulated
based on [7]. It has been provided by recombination of sea states from the knowledge of the H-T scatter
diagram. Representation of the joint distribution for wave height and the 100 year return period is
presented in [59]. Note that breaking waves are not considered here.

We focused on drag forces acting on vertical cylindrical components under the wave crest with
a diameter of 0.762 m (corresponding to the diameter of a Φ30” leg). Note that, for simplicity, the
probability of storm occurrence is independent of time and can happen in every 10 day periods of the
macro-colonization period. This assumption is conservative. The time-series of surface roughness k(t)
and marine growth thickness Th(t) obtained from the individual shell length time-series S(t) have been
considered for the determination of the CDS (CD in steady flow) time-series (CDS(t) = f (kt,τ/De). In this
paper, knowing CDS, a numerical fitting of the curve of CD = f (KCmg) given in [3] is used and is plotted
in Section 3.2 (lower multi-linear curve for the smooth cylinder).
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3. Results

3.1. Simulation of the Drag Force Evolution from the Stochastic Time-Series of blue Mussels

This section aims to assess the evolution of the drag coefficient (CD) by mixing all of the
typical macro-colonization time-series according to their occurrence probabilities by considering the
macro-colonization inception times in the initiation phase (Sections 2.2–2.4). The individual shell
length time-series for all the typical macro-colonization years are necessary to provide the probabilistic
matrix of individual shell length. This matrix consists of the individual shell length time-series for all
typical macro-colonization years, which are weighted by the occurrence probability of each typical
macro-colonization year. Therefore, 30,000 simulations (10,000 simulations for each macro-colonization
inception time in one year) have been performed to provide the individual shell length of blue mussels
for each typical macro-colonization year.

The individual shell length time-series S(t) of the blue mussels are simulated from the
developed Gamma process (Section 2.8) from the inception times for typical macro-colonization
years. No correlation between macro-colonization inception time conditioned by the temperature
and the aggregate Chl. a (Ct) levels are observed (Section 2.6). Therefore, the levels are simulated
independently. Hence, all the time-series of aggregate C(t) could be used for the simulation of the
individual shell length time-series S(t)) for each typical macro-colonization year.

The individual shell length time-series simulation procedure is as follows: the typical
macro-colonization year determined by the temperature is first selected. Then, the individual
shell length time-series S(t) are simulated from the Gamma process. This simulation is performed
according to the aggregated Chl. a time-series, which have been selected randomly, generating one S(t)
from one C(t). Thus, we obtain the same statistical weight for the inception and growth by choosing an
aggregated Chl. a time-series randomly for each simulation.

Figure 11 illustrates the estimated individual shell length time-series for the 2nd typical
macro-colonization (starting dates at 11, 14, and 17 10 day periods) and 200 simulations, as an
example. The highest jumps are observed for the 18th to 22nd 10 day periods, because of the important
peak occurrence in the aggregated Chl. a time-series in 2001, 2007, and 2008 (see Figure 12).
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Figure 12. The aggregated Chl. a time-series for the years 2001, 2007 and 2008.

The simulation allows the individual shell length matrix to represent all of the typical
macro-colonization years. The contribution of the individual shell length time-series could be
obtained as:

Nt = NS × Pt (13)

where, Nt is the numbers of time-series for the typical macro-colonization year of S(t), which should be
selected randomly, Ns is the sample size (here equal to 30,000), and Pt is the occurrence probability
of the typical macro-colonization year (Table 2). The simulation procedure is illustrated in Figure 13.
The KC, CD, and drag forces are then computed according to the flowchart reported in Figure 10.
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3.2. Statistical Analysis of the Transfer of Distributions

Quality of distribution transfer or uncertainty propagation is a well-known criterion for the analysis
of the change of the distribution (its parameters or probabilistic law), especially for matrix response
surfaces [48]. We focus first on the evolution of shell length distribution. Figure 14 illustrates the three
most interesting 10 day periods representing insignificant (the 11th 10 day period), intermediate (the
18th 10 day period), and extreme (the 37th 10 day period) roughness values. The distribution of shell
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length changes from bimodal (the 11th and 18th 10 day periods) to normal (the 37th 10 day period),
depending on time. It should be noted that the shape of the shell length distribution evolves strongly
with time, which will lead to significant variations in the distribution of CD along with its support due
to the dependence of CDS to k/De in (9). The mixing of sources of uncertainties due to independent
macro-colonization inception time and independent growth builds finally a normal distribution as
expected from the Central Limit Theorem.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 20 of 29 
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Figure 14. Evolution of shell length distribution as a function of time for three selected 10 day periods:
(a) 15th, (b) 18th, (c) 37th.

Figure 15 illustrates the distributions of drag coefficients CD as a function of KC for the three
above-mentioned 10 day periods. First, we plot the bounds of the relationship (CD)–(KC) with lower
and upper lines that depict, respectively, the smooth and roughened cylinders’ drag coefficients.
The discontinuity comes from the discontinuity of curves in the standards generated by the various
scales (CD/CDS, CD, KC, KC/CDS) used around KC = 12. Note that this discontinuity for the smooth
and roughed cylinders follows, respectively, a potential positive and a negative jump of the CD. Second,
the scatter plots are reported in red, moving from the lower part to the upper part from 11th to 37th
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decade 10 day periods. Consequently, the distribution of CD is affected. An important point is that the
distribution maintains two modes, the uppermost being around 1.2 and the lowermost following the
shift of the non-linear transfer function, from 0.2 to 0.6 (see the 37th 10 day period). It demonstrates
the evolution of the drag coefficients CD for the individual shell length from the non-linear transfer of
the distribution of KC and during the probabilistic macro-colonization year (from the 11th to the 37th
10 day period). Finally, the probability of the highest values (typically 1.8) increases with time, which
is a key result because it will potentially affect the distribution tail of the corresponding loading and
decrease structural reliability. There is not a clear distinction between the macro-colonization inception
times because of the mixing of all typical macro-colonization years. Indeed, the mixing of a large
amount of potential macro-colonization inception times does not allow one to distinguish between the
contribution of each year in terms of the mode in the distribution.

J. Mar. Sci. Eng. 2019, 7, 0 20 of 28

decade 10 day periods. Consequently, the distribution of CD is affected. An important point is that the
distribution maintains two modes, the uppermost being around 1.2 and the lowermost following the
shift of the non-linear transfer function, from 0.2 to 0.6 (see the 37th 10 day period). It demonstrates
the evolution of the drag coefficients CD for the individual shell length from the non-linear transfer of
the distribution of KC and during the probabilistic macro-colonization year (from the 11th to the 37th
10 day period). Finally, the probability of the highest values (typically 1.8) increases with time, which
is a key result because it will potentially affect the distribution tail of the corresponding loading and
decrease structural reliability. There is not a clear distinction between the macro-colonization inception
times because of the mixing of all typical macro-colonization years. Indeed, the mixing of a large
amount of potential macro-colonization inception times does not allow one to distinguish between the
contribution of each year in terms of the mode in the distribution.

J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 20 of 29 

 

 
Figure 14. Evolution of shell length distribution as a function of time for three selected 10 day periods: 
(a) 15th, (b) 18th, (c) 37th . 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

(c) 

(a) 

 

J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 21 of 29 

 

 

 
Figure 15. Distributions of the drag coefficients (CD) as a function of (KC) values for three selected 10 
day periods and Monte-Carlo simulations (cloud of red points): (a) 11th, (b) 18th, (c) 37th . 

4. Discussion 

Previous results give the opportunity for discussing the effect of our modeling on post-treated 
results, such as wave loading in the presence of marine growth. We now compare the distribution of 
De and CDS (Figure 16). The distributions of De are mono-modal because of the combination of all 
typical macro-colonization years. The distributions of CDS are bimodal and become mono-modal from 
the smooth to the ultra-roughened condition at the end of the macro-colonization period. 

Distribution of the drag force FT is plotted on the same Figure 16 to better illustrate differences 
in distribution (mode and tails) and the transfer of these distributions. The drag force is exponentially 
distributed. The right distribution tail moves to higher values according to time, thereby decreasing 
the reliability. We analyze this distribution tail after the computation of FT_MAX (note that distributions 
are bounded) and the fractiles FT(90%), FT(95%). Figure 17 shows the evolution of these statistics after each 
10 day period. The latter increase smoothly with time except for the increase during one month and 
a half (from 10 day period 11 to 18). Finally, there is a great difference between the extreme values 
(FT_MAX) and the fractiles (FT(90%) and FT(95%), confirming a long distribution tail that was observed 
already in Figure 16. 

(b) 

 

 

 

 

 

 

 

 

(c) 

Figure 15. Distributions of the drag coefficients (CD) as a function of (KC) values for three selected
10 day periods and Monte-Carlo simulations (cloud of red points): (a) 11th, (b) 18th, (c) 37th.
Figure 15. Distributions of the drag coefficients (CD) as a function of (KC) values for three selected
10 day periods and Monte-Carlo simulations (cloud of red points): (a) 11th, (b) 18th, (c) 37th.



J. Mar. Sci. Eng. 2019, 7, 158 21 of 28

4. Discussion

Previous results give the opportunity for discussing the effect of our modeling on post-treated
results, such as wave loading in the presence of marine growth. We now compare the distribution of
De and CDS (Figure 16). The distributions of De are mono-modal because of the combination of all
typical macro-colonization years. The distributions of CDS are bimodal and become mono-modal from
the smooth to the ultra-roughened condition at the end of the macro-colonization period.
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Distribution of the drag force FT is plotted on the same Figure 16 to better illustrate differences in
distribution (mode and tails) and the transfer of these distributions. The drag force is exponentially
distributed. The right distribution tail moves to higher values according to time, thereby decreasing
the reliability. We analyze this distribution tail after the computation of FT_MAX (note that distributions
are bounded) and the fractiles FT(90%), FT(95%). Figure 17 shows the evolution of these statistics after
each 10 day period. The latter increase smoothly with time except for the increase during one month
and a half (from 10 day period 11 to 18). Finally, there is a great difference between the extreme values
(FT_MAX) and the fractiles (FT(90%) and FT(95%), confirming a long distribution tail that was observed
already in Figure 16.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 23 of 29 
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5. Conclusions

The originality of this work lies in the choice to consider biocolonization as a cumulative
deterioration phenomenon and to simulate trajectories relying on individuals’ characteristics through
a state-dependent model to compute the probabilistic distribution of loading. The latter is a key
input for structural reliability. As far as the authors know, this is the first time that bio-colonization
has been considered as consecutive stochastic jumps governed by a gamma process. The developed
non-stationary, state-dependent Gamma process was selected as a flexible and simple to perform
methodology, which was used to generate an individual shell length time-series for blue mussels.
Results of the simulation reveal that the method can capture the distribution and especially the extreme
values of the observed shell length. The macro-colonization inception times determined in the initiation
phase may be considered as one of the criteria for the installation or cleaning time of the structures
through the maintenance programs strategy. One of its advantages is that it can be extended to other
organisms, such as oysters, with the possibility of adding or modifying the parameters that influence
individual growth and shape.

A model was used to investigate the drag coefficient evolution exerted by extreme waves during
the mussel’s growth. Three types of uncertainties have thus been considered:

- Environmental: due both to the physics of waves (height, period) and water parameters
(temperature and chlorophyll-a).

- Modeling: with an uncertainty of modeling from the shell size to the thickness and the roughness
in the sense of API regulation.

- Biological: accounting for the inter-individual variability.
- Moreover, calculation of hydrodynamic forces due to the biocolonization using meteo-ocean data

as well as biological data is a complex task and generates two types of difficulties.
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- First, the distribution of input variables that can be multi-modal (e.g., individual shell length)
due to the various macro-colonization inception times.

- Second, the nonlinear transfer from the Keulegan Carpenter number to drag coefficient generates
bimodal distributions from mono-modal ones.

A full probabilistic simulation that allows predicting the evolution of drag forces in a reliability
context has been developed. The evolution of physical parameters due to individual growth has
been presented in a time-series form. Using the empirical curves recommended by API standards to
obtain wake amplification factors in a probabilistic context resulted in an abnormal discontinuity when
passing the critical value KC = 12. Thus, these curves may not perfectly explain the evolution of the
drag coefficient in a probabilistic context.

This study highlights the site-specific property of biofouling and, therefore, constructs a
condition-based methodology for the modeling of biocolonization. Considering the site-specific
property of biofouling, it is not logical to define a similar strategy for the maintenance and periodical
cleaning programs of offshore structures without consideration of the specifications of each site.
Therefore, periodical monitoring campaigns could be very useful in understanding the reaction of
biofouling to environmental parameters, especially after installation or cleaning programs, and to
establish the adequate maintenance strategy for each site. It allows the model to be updated as well
and hence increases prediction accuracy. For some structures, it may not be necessary to clean all
members completely to allow a macro-fouling community to develop and create artificial reefs that
would be useful for fisheries and biodiversity. Some limitations discussed in the paper highlight that
further research is requested:

- A single species was studied in a place where we can find barnacles and even algae. For the latter,
relationships for the computation of drag coefficients are less developed and research is required.

- There is uncertainty in the definition of roughness and its use by engineers, which is the reason
why an uncertainty of modeling is added in this paper. Recent works [60] have proposed some
improvements, but this is still an open area of study. Quantification from on site inspections is
possible [54], thereby opening a new area for more representative tests in laboratories.

- The probability of the occurrence of storms depends on seasons and could be introduced to
reduce the conservatism.

- Effects of the Cd variations on dynamics should be introduced to expand the method to
fatigue assessment.

- In the same manner, inertia forces and current could be added to get a more global influence of
marine growth.

This work can be extended to floating structures once the correlation between thickness and
weight is known.

6. Patents

A patent was developed in view to measure on site the marine growth and update the model:
Schoefs F., Ameryoun H. (2013) «Biocolmar: Offshore Station for Measuring and Collecting Data in an
Underwater Environment», 21 October 2013, N◦ 1360256.
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Appendix A Additional Information about the Growth of Blue Mussels

This appendix details the intrinsic characteristics of shell growth of blue mussels (Figure A1), the
comparison between the calibrated DEB model and the database in terms of shell growth, and the
weight increase (Figure A2). Figure A3 illustrates the fair strait correlation between the inception date
and chlorophyll-a.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 25 of 29 

 

 

Figure A1. Schematic annual growth curve of individual blue mussels illustrating the acceleration 
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Figure A2. Calibration of the mussel DEB model used in this study to simulate shell length. a) Mussel 
growth in length (mm), b) Observed vs. simulated length; the dashed line corresponds to the 1:1 line, 
c) Mussel growth in dry flesh mass (DFM, g); Note the strong decrease of DFM corresponding to 
spawning in September, d) Observed vs. simulated DFM; the dashed line corresponds to the 1: 1 line. 
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Figure A1. Schematic annual growth curve of individual blue mussels illustrating the acceleration and
deceleration in the growth rate.
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Figure A2. Calibration of the mussel DEB model used in this study to simulate shell length. (a) Mussel
growth in length (mm), (b) Observed vs. simulated length; the dashed line corresponds to the 1:1 line,
(c) Mussel growth in dry flesh mass (DFM, g); Note the strong decrease of DFM corresponding to
spawning in September, (d) Observed vs. simulated DFM; the dashed line corresponds to the 1: 1 line.
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Figure A3. The relationship between macro-colonization starting times (end of the initiation phase) 
expressed in 10 days; each color represents a year of the 1996–2012 time-series. 

References 

1. Heaf, N.J. The Effect of Marine Growth on The Performance of Fixed Offshore Platforms in The North Sea. 
In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 1979; p. 14, 
doi:10.4043/3386-MS. 

2. Jusoh, I.; Wolfram, J. Effects of marine growth and hydrodynamic loading on offshore structures. J. Mek. 
1996, 1, 77–98. 

3. API RP 2A WSD. Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms, 
21st ed.; American Petroleum Institute: Washington, DC, USA, 2005; Volume 2. 

4. DNV. Recommended Practice Det Norske Veritas; DNV-RP-C20; Dnv.: Oslo, Norway, 2010. 
5. Faber, M.H.; Hansen, P.F.; Jepsen, F.D.; Moller, H.H. Reliability-Based Management of Marine Fouling. J. 

Offshore Mech. Arct. Eng. 2001, 123, 76, doi:10.1115/1.1355773. 
6. Schoefs, F.; Boukinda, M.L. Sensitivity Approach for Modeling Stochastic Field of Keulegan–Carpenter and 

Reynolds Numbers Through a Matrix Response Surface. J. Offshore Mech. Arct. Eng. 2010, 132, 011602, 
doi:10.1115/1.3160386. 

7. Boukinda, M.L. Surface de Réponse des Efforts de Houle des Structures Jackets Colonisées par des Bio-
salissures. Ph.D. Thesis, Université de Nantes, Nantes, France, 2007. 

8. Schoefs, F.; Boukinda, M.L. Modelling of Marine Growth Effect on Offshore Structures Loading Using 
Kinematics Field of Water Particle. In Proceedings of the Fourteenth International Offshore and Polar 
Engineering Conference, 23–28 May 2004, Toulon, France; pp. 419–427. 

9. Joschko, T.J.; Buck, B.H.; Gutow, L.; Schröder, A. Colonization of an artificial hard substrate by Mytilus 
edulis in the German Bight. Mar. Biol. Res. 2008, 4, 350–360, doi:10.1080/17451000801947043. 

10. Maar, M.; Bolding, K.; Petersen, J.K.; Hansen, J.L.S.; Timmermann, K. Local effects of blue mussels around 
turbine foundations in an ecosystem model of Nysted off-shore wind farm, Denmark. J. Sea Res. 2009, 62, 
159–174, doi:10.1016/j.seares.2009.01.008. 

11. El Hajj, B.; Schoefs, F.; Castanier, B.; Yeung, T. A condition-based deterioration model for the stochastic 
dependency of corrosion rate and crack propagation in a submerged concrete structure. Comput. Aided Civ. 
Infrastruct. Eng. 2014, 32, 18–33. 

12. Ameryoun, H. Probabilistic Modeling of Wave Actions on Jacket Type Offshore Wind Turbines in Presence 
of Marine Growth. Ph.D. Thesis, Université de Nantes, Nantes, France, 2015. 

13. Koojiman, S. Dynamic Energy and Mass Budgets in Biological Systems; Cambridge University Press: 
Cambridge, UK, 2000. 

14. Koojiman, S. Dynamic Energy Budget Theory for Metabolic Organization; Cambridge University Press, 
Cambridge, UK, 2010. 

15. Dürr, S.; Thomason, J. Biofouling; Wiley-Blackwell: New York: NY, USA, 2009. Available online: 
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1405169265.html (accessed on 18 December 2009). 

16. Railkin, A.I. Marine Biofouling: Colonization Processes and Defenses; CRC Press: Boca Raton, FL, USA, 2003. 

Figure A3. The relationship between macro-colonization starting times (end of the initiation phase)
expressed in 10 days; each color represents a year of the 1996–2012 time-series.

References

1. Heaf, N.J. The Effect of Marine Growth on The Performance of Fixed Offshore Platforms in The North Sea.
In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 1979; p. 14.
[CrossRef]

2. Jusoh, I.; Wolfram, J. Effects of marine growth and hydrodynamic loading on offshore structures. J. Mek.
1996, 1, 77–98.

3. API RP 2A WSD. Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms,
21st ed.; American Petroleum Institute: Washington, DC, USA, 2005; Volume 2.

4. DNV. Recommended Practice Det Norske Veritas; DNV-RP-C20; DNV: Oslo, Norway, 2010.
5. Faber, M.H.; Hansen, P.F.; Jepsen, F.D.; Moller, H.H. Reliability-Based Management of Marine Fouling.

J. Offshore Mech. Arct. Eng. 2001, 123, 76. [CrossRef]
6. Schoefs, F.; Boukinda, M.L. Sensitivity Approach for Modeling Stochastic Field of Keulegan–Carpenter and

Reynolds Numbers Through a Matrix Response Surface. J. Offshore Mech. Arct. Eng. 2010, 132, 011602.
[CrossRef]

7. Boukinda, M.L. Surface de Réponse des Efforts de Houle des Structures Jackets Colonisées par des
Bio-salissures. Ph.D. Thesis, Université de Nantes, Nantes, France, 2007.

8. Schoefs, F.; Boukinda, M.L. Modelling of Marine Growth Effect on Offshore Structures Loading Using
Kinematics Field of Water Particle. In Proceedings of the Fourteenth International Offshore and Polar
Engineering Conference, Toulon, France, 23–28 May 2004; pp. 419–427.

9. Joschko, T.J.; Buck, B.H.; Gutow, L.; Schröder, A. Colonization of an artificial hard substrate by Mytilus edulis
in the German Bight. Mar. Biol. Res. 2008, 4, 350–360. [CrossRef]

10. Maar, M.; Bolding, K.; Petersen, J.K.; Hansen, J.L.S.; Timmermann, K. Local effects of blue mussels around
turbine foundations in an ecosystem model of Nysted off-shore wind farm, Denmark. J. Sea Res. 2009,
62, 159–174. [CrossRef]

11. El Hajj, B.; Schoefs, F.; Castanier, B.; Yeung, T. A condition-based deterioration model for the stochastic
dependency of corrosion rate and crack propagation in a submerged concrete structure. Comput. Aided Civ.
Infrastruct. Eng. 2014, 32, 18–33. [CrossRef]

12. Ameryoun, H. Probabilistic Modeling of Wave Actions on Jacket Type Offshore Wind Turbines in Presence of
Marine Growth. Ph.D. Thesis, Université de Nantes, Nantes, France, 2015.

13. Koojiman, S. Dynamic Energy and Mass Budgets in Biological Systems; Cambridge University Press: Cambridge,
UK, 2000.

14. Koojiman, S. Dynamic Energy Budget Theory for Metabolic Organization. Cambridge University Press:
Cambridge, UK, 2010.

http://dx.doi.org/10.4043/3386-MS
http://dx.doi.org/10.1115/1.1355773
http://dx.doi.org/10.1115/1.3160386
http://dx.doi.org/10.1080/17451000801947043
http://dx.doi.org/10.1016/j.seares.2009.01.008
http://dx.doi.org/10.1111/mice.12208


J. Mar. Sci. Eng. 2019, 7, 158 26 of 28

15. Dürr, S.; Thomason, J. Biofouling; Wiley-Blackwell: New York, NY, USA, 2009; Available online:
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1405169265.html (accessed on 18 December 2009).

16. Railkin, A.I. Marine Biofouling: Colonization Processes and Defenses; CRC Press: Boca Raton, FL, USA, 2003.
17. Liu, Y. Modeling the Time-to-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced

Concrete Structures. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA,
USA, 1996.

18. Newell, R.I.E. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates
(North and Mid-Atlantic); Biological Report, 82(11.102) TR EL-82-4 June; US dept of Interior/US Army Corps
of Engineers: Baltimore, MD, USA, 1989.

19. Bruijs, M.C.M. Biological Fouling Survey of Marine Fouling on Turbine Support Structures of the Offshore Windfarm
Egmond aan Zee. Report Prepared for Noordzeewind; 50863511-TOS/PCW 10-4207, OWEZ_R_112_T1_20100226;
KEMA Nederland, B.V.: Arnhem, The Netherlands, 2010.

20. Langhamer, O.; Wilhelmsson, D.; Engström, J. Artificial reef effect and fouling impacts on offshore wave
power foundations and buoys—A pilot study. Estuarine. Coast. Shelf Sci. 2009, 82, 426–432. [CrossRef]

21. Gosling, E. Bivalve Molluscs: Biology, Ecology and Culture; Wiley-Blackwel: Hoboken, NJ, USA, 2003.
22. Barillé Boyer, A.-L. Contribution à l’étude des potentialités conchylicoles du Pertuis Breton. Ph.D. Thesis,

Université d’Aix-Marseille II, Marseille, France, 1996.
23. Garen, P.; Robert, S.; Bougrier, S. Comparison of growth of mussel, Mytilus edulis, on longline, pole and

bottom culture sites in the Pertuis Breton, France. Aquaculture 2004, 232, 511–524. [CrossRef]
24. Rosland, R.; Strand, Ø.; Alunno-bruscia, M.; Bacher, C.; Strohmeier, T. Applying Dynamic Energy Budget

(DEB) theory to simulate growth and bio-energetics of blue mussels under low seston conditions. J. Sea Res.
2009, 62, 49–61. [CrossRef]

25. Widdows, J. Physiological ecology of mussel larvae. Aquaculture 1991, 94, 147–163. [CrossRef]
26. Dutertre, M.; Beninger, P.G.; Barillé, L.; Papin, M.; Rosa, P.; Barillé, A.-L.; Haure, J. Temperature and seston

quantity and quality effects on field reproduction of farmed oysters, Crassostrea gigas, in Bourgneuf Bay,
France. Aquat. Living Resour. 2009, 22, 319–329. [CrossRef]

27. Bayne, B.L. Growth and the delay of metamorphosis of the larvae of Mytilus edulis (L.). Ophelia 1965, 2, 1–47.
[CrossRef]

28. Bayne, B.L.; Worrall, C.M. Growth and Production of Mussels Mytilus edulis from Two Populations. Mar. Ecol.
1980, 3, 317–328. [CrossRef]

29. Van Harden, R.; Koojiman, S. Application of a Dynamic Energy Budget Model to Mytilus edulis (L.). Neth. J.
Sea Res. 1993, 31, 119–133. [CrossRef]

30. Page, H.M.; Hubbard, D.M. Temporal and spatial patterns of growth in mussels Mytihs edulis on an offshore
platform: Relationships to water temperature and food availability. Exp. Mar. Biol. Ecol. 1987, 111, 159–179.
[CrossRef]

31. Thomas, Y.; Mazurié, J.; Alunno-Bruscia, M.; Bacher, C.; Bouget, J.-F.; Gohin, F.; Pouvreau, S.; Struski, C.
Modelling spatio-temporal variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget
model with satellite-derived environmental data. J. Sea Res. 2011, 66, 308–317. [CrossRef]

32. Thompson, R. Production, reproductive effort, reproductive value and reproductive cost in a population
of the blue mussel Mytilus edulis from a subarctic environment. Mar. Ecol. Prog. Ser. 1984, 16, 249–257.
[CrossRef]

33. REPHY dataset. French Observation and Monitoring program for Phytoplankton and Hydrology in coastal
waters. 1987–2016. Metrop. Data 2017. [CrossRef]

34. Hernandez-Farinas, T.; Soudant, D.; Barille, L.; Belin, C.; Lefebvre, A.; Bacher, C. Temporal changes in the
phytoplankton community along the French coast of the eastern English Channel and the southern Bight of
the North Sea. Mar. Sci. 2013, 70, 1439–1450. [CrossRef]

35. Barillé, L.; Lerouxel, A.; Dutertre, M.; Haure, J.; Barillé, A.L.; Pouvreau, S.; Alunno-Bruscia, M. Growth of the
Pacific oyster (Crassostrea gigas) in a high-turbidity environment: Comparison of model simulations based
on scope for growth and dynamic energy budgets. J. Sea Res. 2011, 66, 392–402. [CrossRef]

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1405169265.html
http://dx.doi.org/10.1016/j.ecss.2009.02.009
http://dx.doi.org/10.1016/S0044-8486(03)00535-0
http://dx.doi.org/10.1016/j.seares.2009.02.007
http://dx.doi.org/10.1016/0044-8486(91)90115-N
http://dx.doi.org/10.1051/alr/2009042
http://dx.doi.org/10.1080/00785326.1965.10409596
http://dx.doi.org/10.3354/meps003317
http://dx.doi.org/10.1016/0077-7579(93)90002-A
http://dx.doi.org/10.1016/0022-0981(87)90053-0
http://dx.doi.org/10.1016/j.seares.2011.04.015
http://dx.doi.org/10.3354/meps016249
http://dx.doi.org/10.17882/47248
http://dx.doi.org/10.1093/icesjms/fst192
http://dx.doi.org/10.1016/j.seares.2011.07.004


J. Mar. Sci. Eng. 2019, 7, 158 27 of 28

36. Handå, A.; Alver, M.; Edvardsen, C.V.; Halstensen, S.; Olsen, A.J.; Øie, G.; Reinertsen, H. Growth of farmed
blue mussels (Mytilus edulis L.) in a Norwegian coastal area; comparison of food proxies by DEB modeling.
J. Sea Res. 2011, 66, 297–307.

37. Pouvreau, S.; Bourles, Y.; Lefebvre, S.; Gangnery, A.; Alunno-Bruscia, M. Application of a dynamic energy
budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions.
J. Sea Res. 2006, 56, 156–167. [CrossRef]

38. Ren, J.S.; Ross, A.H. Environmental influence on mussel growth: A dynamic energy budget model and its
application to the greenshell mussel Perna canaliculus. Ecol. Model. 2005, 189, 347–362. [CrossRef]

39. Barillé, L.; Prou, J.; Héral, M.; Razet, D. Effects of high natural seston concentrations on the feeding, selection,
and absorption of the oyster Crassostrea gigas (Thunberg). J. Exp. Mar. Biol. Ecol. 1997, 212, 149–172.
[CrossRef]

40. Bayne, B.L.; Newell, R.C. Physiological energetics of marine molluscs. Mollusca 1983, 4, 407–515.
41. Van Noortwijk, J.M. A survey of the application of gamma processes in maintenance. Reliab. Eng. Syst. Saf.

2009, 94, 2–21. [CrossRef]
42. Abdel-Hameed, M. A Gamma Wear Process. IEEE Trans. Reliab. 1975, R-24, 152–153. [CrossRef]
43. Cheng, T.; Pandey, M.D.; Van Der Weide, J.A.M. The probability distribution of maintenance cost of a system

affected by the gamma process of degradation: Finite time solution. Reliab. Eng. Syst. Saf. 2012, 108, 65–76.
[CrossRef]

44. Van Noortwijk, J.M.; Van der Weide, J.A.M.; Kallen, M.J.; Pandey, M.D. Gamma processes and
peaks-over-threshold distributions for time-dependent reliability. Reliab. Eng. Syst. Saf. 2007, 92, 1651–1658.
[CrossRef]

45. Guida, M.; Postiglione, F.; Pulcini, G. A time-discrete extended gamma process for time-dependent
degradation phenomena. Reliab. Eng. Syst. Saf. 2012, 105, 73–79. [CrossRef]

46. Sarpkaya, T. On the Effect of Roughness on Cylinders. J. Offshore Mech. Arct. Eng. 1990, 112, 334. [CrossRef]
47. Theophanatos, A. Marine Growth and the Hydrodynamic Loading of Offshore Structures. Ph.D. Thesis,

University of Srathclyde, Glasgow, UK, 1988.
48. Schoefs, F. Sensitivity approach for modelling the environmental loading of marine structures through a

matrix response surface. Reliab. Eng. Syst. Saf. 2008, 93, 1004–1017. [CrossRef]
49. Morison, J.R.; Johnson, J.W.; Schaaf, S.A. The Force Exerted by Surface Waves on Piles. J. Pet. Technol. 1950,

2, 149–154. [CrossRef]
50. Stokes, G.G. On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 1847, 8, 441–455.
51. Wolfram, J.; Jusoh, I.; Sell, D. Uncertainty in the Estimation of Fluid Loading Due to the Effects of Marine

Growth, Safety and Reliability Symposium. In Proceedings of the 12th International Conference on Offshore
Mechanics and Arctic Engineering (O.M.A.E’93), Glasgow, Scotland, UK, 20–24 June 1993; Volume II,
pp. 219–228.

52. Kasahara, Y.; Koterayama, W.; Shimazaki, K. Wave Forces Acting on Rough Circular Cylinders at High
Reynolds Numbers. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May
2013; p. 12. [CrossRef]

53. Troesch, A.W.; Kim, S.K. Hydrodynamic forces acting on cylinders oscillating at small amplitudes. J. Fluids
Struct. 1991, 5, 113–126. [CrossRef]

54. O’Byrne, M.; Schoefs, F.; Pakrashi, V.; Ghosh, B. An underwater lighting and turbidity image repository
for analysing the performance of image based non-destructive techniques. Struct. Infrastruct. Eng. 2018,
14, 104–123. [CrossRef]

55. O’Byrne, M.; Schoefs, F.; Pakrashi, V.; Ghosh, B. A Stereo-Matching Technique for Recovering 3D Information
from Underwater Inspection Imagery. Comput. Aided Civ. Infrastruct. Eng. 2018, 33, 193–208. [CrossRef]

56. O’Byrne, M.; Pakrashi, V.; Schoefs, F.; Ghosh, B. Semantic Segmentation of Underwater Imagery Using Deep
Networks. J. Mar. Sci. Eng. 2018, 6, 93. [CrossRef]

57. Zeinoddini, M.; Bakhtiari, A.; Schoefs, F.; Zandi, A.P. Towards an Understanding of the Marine Fouling
Effects on VIV of Circular Cylinders: Partial Coverage Issue. Biofouling 2017, 33, 268–280. [CrossRef]

58. Bakhtiari, A.; Schoefs, F.; Ameryoun, H. Unified Approach for Estimating of The Drag Coefficient In Offshore
Structures In Presence Of Bio-Colonization. In Proceedings of the 37th International Conference on Offshore
Mechanics and Arctic Engineering (O.M.A.E’18), Madrid, Spain, 17–22 June 2018; p. 78757.

http://dx.doi.org/10.1016/j.seares.2006.03.007
http://dx.doi.org/10.1016/j.ecolmodel.2005.04.005
http://dx.doi.org/10.1016/S0022-0981(96)02756-6
http://dx.doi.org/10.1016/j.ress.2007.03.019
http://dx.doi.org/10.1109/TR.1975.5215123
http://dx.doi.org/10.1016/j.ress.2012.06.005
http://dx.doi.org/10.1016/j.ress.2006.11.003
http://dx.doi.org/10.1016/j.ress.2011.12.016
http://dx.doi.org/10.1115/1.2919875
http://dx.doi.org/10.1016/j.ress.2007.05.006
http://dx.doi.org/10.2118/950149-G
http://dx.doi.org/10.4043/5372-MS
http://dx.doi.org/10.1016/0889-9746(91)80014-5
http://dx.doi.org/10.1080/15732479.2017.1330890
http://dx.doi.org/10.1111/mice.12307
http://dx.doi.org/10.3390/jmse6030093
http://dx.doi.org/10.1080/08927014.2017.1291803


J. Mar. Sci. Eng. 2019, 7, 158 28 of 28

59. Nerzic, R.; Prevosto, M.; Frelin, C.; Quiniou, V. Joint Distributions for Wind/waves/current in West Africa and
derivation of Multi Variate Extreme I-FORM Contours. In Proceedings of the 17th International Offshore
and Polar Engineering Conference, Lisbon, Portugal, 1–6 July 2007; pp. 81–88.

60. Schoefs, F.; Bakhtiari, A.; Hameryoun, H.; Quillien, N.; Damblans, G.; Reynaud, M.; Berhault, C.; O’Byrne, M.
Assessing and modeling the thickness and roughness of marine growth for load computation on mooring
lines. In Proceedings of the Floating Offshore Wind Turbine Conference (FOWT 2019), Montpellier, France,
24–26 April 2019.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Requirements for a Meta-Model 
	Description of Bio-Colonization Temporal Dynamic 
	Description of Bio-Colonization Temporal Dynamic 
	Initiation Phase and Propagation Phases 
	Database Post-Treatment, Virtual Database, and Aggregation of Influencing Factors 
	Environmental Data at the Case-Study Site 
	Environmental Data at the Case-Study Site 

	The Relation between Environmental Factors, Growth, and the Start of Macro-Colonization 
	Chlorophyll Data Aggregation for Growth Computation 
	Non-Stationary Modeling of Shell Growth through Stochastic Gamma Process 
	Growth Approximation through Gamma Processes Meta-Models 
	Parameter Estimation of the Gamma Process (Learning Phase) 
	Stochastic Simulation from Gamma Process (Propagation Phase) 

	Effect of Marine Growth and Hydrodynamic Forces on Jackets 
	Effect of Marine Growth on Morison’s Equation 
	Stochastic Modeling of Marine Growth and Hydrodynamic Parameters 
	The Stochastic Modeling Wave Loading in the Presence of Marine Growth 


	Results 
	Simulation of the Drag Force Evolution from the Stochastic Time-Series of blue Mussels 
	Statistical Analysis of the Transfer of Distributions 

	Discussion 
	Conclusions 
	Patents 
	Additional Information about the Growth of Blue Mussels 
	References

