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Abstract: A design method was developed for automated, systematic design of hydrokinetic turbine
rotor blades. The method coupled a Computational Fluid Dynamics (CFD) solver to estimate the
power output of a given turbine with a surrogate-based constrained optimization method. This
allowed the characterization of the design space while minimizing the number of analyzed blade
geometries and the associated computational effort. An initial blade geometry developed using
a lifting line optimization method was selected as the base geometry to generate a turbine blade
family by multiplying a series of geometric parameters with corresponding linear functions. A
performance database was constructed for the turbine blade family with the CFD solver and used
to build the surrogate function. The linear functions were then incorporated into a constrained
nonlinear optimization algorithm to solve for the blade geometry with the highest efficiency. A
constraint on the minimum pressure on the blade could be set to prevent cavitation inception.

Keywords: design; marine turbine; hydrokinetic turbine; computational fluid dynamics;
surrogate-based optimization

1. Introduction

Horizontal axis hydrokinetic turbines (HKTs) are a class of energy conversion devices
that transform the kinetic energy of flowing water into mechanical work. HKTs offer
many advantages over conventional hydropower turbines due to their low set-up cost and
environmental impact. The development of optimization tools for the design of efficient
HKTs has therefore become a recent focus of worldwide research [1].

The operating principle of HKTs is largely equivalent to the one corresponding to
horizontal axis wind turbines. However, there are also significant differences in the physics
underlying both types of turbines, such as the density of the fluid medium, the potential
for cavitation and biofouling [2,3], and the design of the support structure, among others.

Design and optimization techniques commonly used in the industry have been
adapted from those developed for wind turbines and marine propellers. Blade Element
Momentum (BEM) theory, commonly used for wind turbine design [4], has increasingly
been applied to HKTs [5,6]. Lifting line theory was originally developed for the analysis
and design of marine propellers [7], and it has recently been successfully extended to
HKTs [8–10]. Both techniques are commonly used as preliminary design and analysis tools
due to their high computational efficiency.

Lifting line models can also be used as the basis for mathematical optimization algo-
rithms that seek blade loading distributions which maximize the torque generated by the
rotor [8–10]. However, these models commonly adopt a series of simplifications that limit
their capabilities as accurate predictors of turbine efficiency, such as constraints on wake
geometry, assumptions on drag-to-lift ratios, and simplified hub geometries. The blade
geometries generated with these methods are thus usually used as an initial step in an inte-
grated design workflow including more sophisticated models such as vortex lattice [11,12],
boundary element [11–14], and Computational Fluid Dynamics (CFD) models.
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There is a spectrum of CFD models of varying complexity and fidelity that can be
used to model HKTs, such as Large Eddy Simulation (LES) and Reynolds-averaged Navier–
Stokes (RANS) models. LES models are usually reserved for modeling turbine wakes for
turbine farm optimization [1,15,16], while RANS are commonly applied to accurately model
horizontal axis wind turbines [17] and HKTs [18–20]. Unlike more simplified models, CFD
simulations can directly consider non-uniform axial inflow conditions, flow separation,
rotor-structure interaction, and viscous drag. However, the use of CFD greatly increases
the computational cost of a given simulation. Optimization based on CFD simulations
therefore requires efficient and robust methods to minimize the number of blade geometries
that need to be analyzed.

The methodology presented in this article is based on steady-state RANS simulations
using the open source multi-physics solver OpenFOAM [21] (version 8.0), seeking a com-
promise between accuracy and computational cost. A surrogate-based optimization (SBO)
method [22] was selected to optimize the turbine rotor blade geometry. In this method,
an approximate mathematical model (referred to as the “surrogate”) is constructed by
sampling the design space and conducting a limited number of CFD simulations. Once the
surrogate is built, it is used to replace the expensive CFD simulations for predicting the
selected performance parameters (e.g., power coefficient).

A Multi-Objective Genetic Algorithm (MOGA) was selected to find the optimum blade
geometry. The optimization algorithms and the interface between them and OpenFOAM
were provided by the Dakota library [23]. Dakota is a general-purpose optimization toolbox
developed by Sandia National Laboratories.

SBO has been used in the optimization of horizontal axis wind turbines [24] and
marine turbines [25–27]. In general, previous research focuses on maximizing the power
output of the turbine by varying a series of geometric parameters [25–27].

In this article, a preliminary geometry developed using an optimization method based
on lifting line theory [9] was further optimized by means of multi-objective SBO. A turbine
blade family was generated by multiplying a series of geometric parameters with the
corresponding linear functions. A performance database was constructed for the turbine
blade family with the OpenFOAM solver and used to build the surrogate function. The
model results were used to characterize the design space and evaluate the influence of each
design variable on turbine performance. The MOGA optimizer was finally employed to
study the relationship between the power output, the thrust on the rotor, and the minimum
pressure on the blade. Constrained optimization on blade pressure could then be set to
prevent cavitation inception.

2. Methododology
2.1. Initial Geometry
2.1.1. Lifting Line Optimization

The lifting line optimization methodology used to generate the initial blade geometry
is not the subject of this article, but it is briefly described in this section because it represents
the starting point for the optimization method. Further details are given in [9].

Lifting line theory is particularly suitable for the high aspect ratio rotor blades com-
monly used for HKTs. Each blade is represented by a straight, radial line vortex of varying
strength (bound vortex), characterized by the circulation Γ. The lifting lines extend from
the hub to the blade tip and generate a more or less helical wake (free vortex sheet). One of
the blades (referred to as the “key blade”) is selected for the analysis, and it is assumed that
all the blades have the same circulation distribution. The bound vortex is then discretized
into a series of horseshoe vortices of unknown strength Γi, and a wake model is used to
estimate the velocities induced on the key blade by the trailing vortex sheet.

For a known circulation distribution, the thrust T and torque Q on the key blade
can then be estimated using the Kutta–Joukowski law. Viscous effects can be introduced
into the formulation using a sectional drag-to-lift ratio κ = D/L [10], where D is the
drag and L is the lift at a given section. The thrust and the torque can be expressed
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in nondimensional form as the thrust coefficient CT = T/
(
0.5ρπV2R2) and the power

coefficient CPow = Qω /
(
0.5ρπV3R2), respectively, where V is the inflow velocity, ω is the

rotor angular velocity, ρ is the water density and R is the rotor radius. The angular velocity
is expressed nondimensionally as the tip-speed ratio TSR = ωR/V. These coefficients
CPow are commonly adopted as the key performance parameters for the turbine. The most
efficient turbine will maximize power extraction (CPow) while reducing the load on the
rotor (CT) for a given operating condition (TSR).

Different optimization algorithms to maximize turbine torque (and consequently,
power output) have been proposed. The classical theory can be adopted by assuming a
constant-pitch wake with no deformation, known as Betz’s condition [10]. OpenProp [28]
is an open-source lifting line code that can be applied for turbine rotor optimization, based
on a hybrid lifting-line/momentum-theory procedure [8]. Other methods not using linear
theory have been proposed, either by modeling the nonlinear terms when estimating the
induced velocities on the key blade [29] or by combining the optimization algorithm with
a full wake alignment model [9]. In general, all lifting line optimization algorithms are
effective in producing highly efficient solutions [8–10,29], which indicates that for every
combination of TSR and number of blades Z there exist a large number of solutions with
high CPow. Searching methods that attempt to find optimized geometries by varying HKT
rotor blade geometric parameters [12,30] seem to sustain that conclusion.

The adopted wake model significantly affects the estimation of the power output for a
given blade geometry [9]. The simplest wake model assumes that the horseshoe vortices
follow a constant-pitch and constant-radius helical trajectory and that they are aligned
to the velocity at the key blade [7,8]. More sophisticated models align the wake pitch
angle at multiple sections downstream of the rotor [31] or employ force-free wake models
that do not impose helical shapes and allow for the natural expansion of the wake [9],
better resembling real HKT wakes, as predicted by RANS models. Complex wake models
improve the accuracy of the power output prediction of lifting line models [31], yet their
inclusion in the optimization algorithm presents a series of numerical challenges [9].

Lifting line models allow for quick parametric studies to determine the optimum
TSR for different combinations of κ, Z, R, and hub radius Rhub. The results presented in
this article assume Z = 3, R = 1m, Rhub = 0.2m, and TSR = 5, which maximizes CPow
according to lifting line optimization.

2.1.2. Initial Blade Geometry

For a given optimum circulation distribution Γ(r), where r is the radial coordinate,
the preliminary blade geometry can be created using Prandtl’s lifting line equation [7]. The
circulation can be related to the sectional lift coefficient CL(r) by the Kutta–Joukowski law:

CL(r) =
L(i)

0.5 ρ(V∗(r))2 c(r)
=

2 Γ(r)
V∗(r) c(r)

(1)

where L is the sectional lift, c(r) is the chord distribution along the blade, and V∗ is the
inflow velocity with respect to a blade-attached coordinate system. For a given chord
distribution, Equation (1) can then be used to determine the lift coefficient.

The sectional pitch angle φ relates to the wake pitch angle β at the key blade and the
sectional ideal angle of attack αi according to Equation (2).

φ(r) = β(r)− αi(r) (2)

The ideal angle of attack and the sectional maximum camber fmax are a function of
the lift as indicated in Equations (3) and (4). α0 and f0 are the ideal angle of attack and the
ideal maximum camber when CL = 1.

αi(r) = α0 CL(r) (3)
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fmax(r) = f0 CL(r) (4)

The generation of the blade geometry requires the selection of arbitrary radial max-
imum thickness and chord distributions and sectional mean line and thickness forms.
Linear distributions, commonly used in the industry, are adopted for the maximum
thickness chord. For this study, we have adopted typical sectional properties from the
NACA series [32]. The 3D blade geometry can then be built from a sufficient number of
2D section profiles.

Hub effects are typically included in lifting line models by means of an image
model [7], which represents the hub as a cylinder of infinite length. The geometry of
the hub is heavily influenced by the design of the electromechanical components housed
within it (e.g., generator, gearbox, etc.). A simple cylindrical geometry with rounded
semispherical noses has been adopted for the present study. Some manufacturers build
hydrodynamic hub shapes in order to reduce the drag transferred to the support structure.

2.2. Analysis
2.2.1. Model Set-Up

Performance assessment of the HKT rotor blade was conducted using the open source
CFD library OpenFOAM [21,33]. OpenFOAM offers several numerical schemes to solve
different terms of the fluid flow equations. It applies a segregated process using an
iterative sequence coupling through well-known algorithms such as SIMPLE or PISO.
To model the HKT, the steady-state, incompressible, isothermal, turbulent flow solver
simpleFoam was used.

The RANS method of solution for the fluid flow equations was selected in order to
attain a balance between acceptable solution accuracy and reasonable computational run
times. The two-equation k-ω SST [34] turbulence closure model was adopted because it
has been successfully applied to wind turbines [17] and HKTs [18–20] and has shown good
agreement with experimental results [12]. The k-ω SST turbulence closure model requires
the specification of values for the turbulence variables at the inlet. A sensitivity analysis
to changes in the turbulence intensity from 1% to 10% was carried out, but no significant
variation of the solution was detected.

The support structure was not included in the model, and the 120-degree periodicity
of a three-bladed turbine allowed the simulation of only one third of the total domain,
including a third of the hub and one of the rotor blades. The computational domain
extended 10R in the upstream direction, 30R in the downstream direction and 10R in the
radial direction, where R is the rotor radius. Cyclic (periodic) boundary conditions were
set on the symmetry planes, and free slip conditions on the far-field boundary. A uniform
velocity field was imposed at the inlet, and a pressure outlet boundary condition at the
outlet. A no-slip condition was specified at all hub and turbine surfaces.

The coordinate system used cartesian coordinates attached to the blade, with the
x-axis as axis of rotation oriented in the direction of the flow, and the z-axis aligned with the
blade. A rotating reference frame model with angular velocity ω was used to simulate the
rotation of the blade and hub. This allowed the transformation of an unsteady flow problem
when solved with respect to a stationary reference frame into a steady flow problem in the
non-inertial moving frame.

The model domain and boundary conditions are represented in Figure 1.
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Figure 1. CFD model domain and boundary conditions.

Meshes were generated using the snappyHexMesh utility in OpenFOAM. The snappy-
HexMesh utility generates unstructured 3D meshes containing hexahedra (hexes) and split
hexahedra from a triangulated surface geometry in Stereolithography (STL) format.

To generate a mesh with snappyHexMesh, a background or base mesh is required.
The base mesh was generated using the blockMesh utility in OpenFOAM. The base mesh
consisted purely of hexes, and the cell aspect ratio was approximately 1 in the region near
the HKT. snappyHexMesh generates the final mesh by subdividing the base mesh locally
as many times as necessary to achieve the desired cell size specified in each region of the
domain. The resulting mesh is then fitted to the boundaries. Refinement regions were
set near the HKT blade and in the wake region close to the rotor. Inflation layers were
then added on the turbine and hub surfaces to improve mesh resolution in the boundary
layer zones.

Due to the high number of simulations required, mesh density was selected as a
compromise between model accuracy and computational run times. A mesh convergence
analysis was carried out to evaluate the error and uncertainty in the estimation of the CPow
and CT coefficients due to mesh size.

2.2.2. Convergence Analysis

A convergence analysis using the Grid Convergence Index method (GCI) [35] was
performed on the initial blade geometry described in Section 2.1.2. Three gradually refined
nonstructured hex-dominant meshes with prismatic near-wall elements were used. These
meshes were generated using the exact same method and parameters, but different element
sizes on the base mesh were generated by the blockMesh utility. Progressive grid refinements
with a factor r of 1.5 were applied to the base meshes.

The theoretical basis of the method is to assume that the results are asymptotically
converging towards the exact solution as the mesh is refined with an apparent order of
convergence m, calculated according to:

m =

∣∣∣ln∣∣∣ εi+1
εi

∣∣∣∣∣∣
ln r

(5)

where εi = |(φi+1 − φi)/φi+1| and φk denote the chosen variable solution on the kth
mesh. [35] recommends limiting m to the maximum theoretical value, which is 2 for
the selected discretization schemes. The uncertainty GCI can be evaluated according to
Equation (6) using an empirical factor of safety FS equal to 1.25.

GCIi+1 =
FS εi

rm − 1
(6)

A 95% confidence interval estimate of the exact solution can then be determined
relative to the finest grid result as ∆φi = GCIiφi. The response coefficient CPow was selected
as the control variable φ. The results for the convergence analysis are presented in Table 1.
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The error due to mesh size for the medium mesh (k = 2) was about ± 0.5%, which is
considered as acceptable. An equivalent analysis for the CT coefficient resulted in an error
for the medium mesh of about ±0.4%.

Table 1. Convergence analysis results for CPow.

k Mesh Number of Cells Average y+ CPow = φk GCIi ∆CPow

1 Coarse 1.9M ~13 0.423
2 Medium 3.6M ~8 0.428 0.012 0.005
3 Fine 7.2M ~4 0.430 0.004 0.002

The meshes used for the SBO analysis were equivalent to the medium mesh listed in
Table 1, with ~4M cells and average y+ in the 5–10 range. A y+ insensitive wall treatment
was selected. Figure 2 shows a detail of a typical mesh used during the optimization
analysis simulations. Once an optimum solution is reached, a detailed simulation with a
mesh that fully resolves the boundary layer can be conducted to estimate the performance
parameters of the HKT more accurately.

Figure 2. Typical medium mesh used for the RANS analysis simulations: (a) Longitudinal section
along xz plane y = 0; (b) detail of longitudinal section on turbine area; (c) detail of surface mesh at
blade root.

2.3. Optimization
2.3.1. Blade Geometry Parametrization

The initial geometry obtained from lifting line optimization was used as a basis
to generate a family of blade geometries that defines the optimization problem design
space. Three geometric parameters were selected to control the blade geometry: the
nondimensional chord c/D, where D is the turbine diameter, the pitch angle φ, and the
nondimensional maximum camber fmax/c. Each parameter is affected by two linear factors
as expressed in Equations (7)–(9).

c/D(r)j = (c/D (Rhub)i a1 − c/D (R)i a2)
1− r/R

1− Rhub/R
+ c/D (R)i (7)

φ(r)j = φ(r)i

(
b1 +

r/R− Rhub/R
1− Rhub/R

(b2 − b1)

)
(8)
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fmax/c(r)j = fmax/c(r)i

(
c1 +

r/R− Rhub/R
1− Rhub/R

(c2 − c1)

)
(9)

where the subindex i represents the initial geometry, and subindex j the new geometry.
Factors a1, b1, and c1 modify the blade radial properties based on their value at the hub,
while factors a2, b2, and c2 use the value at the blade tip as a basis. This resulted in a total
of six factors that could be varied to generate a family of turbine blade geometries. The
number of factors selected significantly affects the number of analysis runs required to
adequately explore the design space and construct a useful surrogate function.

Other geometric parameters, such as the sectional mean line distribution and thickness
form of the blade and the radial maximum thickness, were not varied. In this study, the
NACA a = 0.8 camber line and the NACA 66 thickness form were chosen for the blade
section profile, which gave α0 = 1.54 deg and f0/c = 0.0679. Different assumptions for the
blade sectional properties would generate different blade geometry families.

The maximum thickness is usually determined by structural analysis. A thickness
fraction tF = t0/D = 0.03 was adopted arbitrarily, where t0 is the theoretical thickness at
the hub axis. A relative thickness tR/D = 0.004 was adopted at the tip, and the variation
of the maximum thickness along the blade was assumed to be linear. A higher thickness
fraction would increase the viscous drag of the blade and thus reduce the power output.

Figure 3 shows the initial (base) and optimized rotor blade geometries A.1 and B.1
(refer to Section 3.2).

Figure 3. Cross sections and 3D blade geometry: (a) Initial geometry; (b) optimized geometry A.1; (c)
optimized geometry B.1.

2.3.2. Cavitation

HKTs, unlike their analogous wind turbines, have the potential to suffer cavitation.
Blade design for large turbines installed in shallow waters can therefore be conditioned
by cavitation constraints. Cavitation is undesirable because it can have a significant effect
on turbine performance [36] and may cause extensive erosion of the blades in the long
term. In addition, cavitation increases the level of noise radiating from the HKT, which
represents a significant environmental concern [36], and it may also have a negative impact
on the performance of mechanical components due to excessive vibration.

Cavitation may occur when pressure falls below the vapor pressure for water. The
pressure on the blade p can be made nondimensional by defining the pressure coefficient
Cp = (p− p0) π2/

(
0.5 ρ ω2R2), where p0 is the reference pressure far upstream. The
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maximum negative pressure coefficient Cp.MIN = max
(
−Cp

)
is used as an indicator of

cavitation inception. The design requirements are represented by the cavitation number
σn = (paxis − pv) π2/

(
0.5 ρ ω2R2), where paxis is the pressure at the hub axis (turbine

shaft), and pv is the vapor pressure. Thus, no cavitation will occur when Cp.MIN ≤ σn − ε,
where ε is a tolerance parameter. This condition can be set in the optimization algorithm as
an additional design constraint, as discussed in Section 2.3.4.

Only the pressures on the turbine blade faces were considered. Tip vortex and hub
vortex cavitation, which typically occur on HKTs and can affect power output and increase
the structural load on the support structure, were not included in the current analysis.
Tip vortex cavitation inception can be delayed by modifying the blade tip design without
affecting overall performance [19].

2.3.3. Surrogate Model

SBO methods for shape optimization may use many different types of surrogate
models, such as polynomial approximations, support vector regression, and artificial neural
networks [37]. A universal Kriging model from the Surfpack library [22,38] was selected
to develop the surrogate function. Kriging models are well-suited for low-dimensionality
problems (fewer than 15 variables) [37] and have been used previously for the optimization
of wind and marine turbines [24,25].

The sampling plan is a key step to manage the computational efficiency of the opti-
mization process. The goal of the sampling plan is to accurately characterize the entire
design space while minimizing the number of data points required. The technique known
as Latin Hypercube Sampling (LHS) [22] is commonly used to ensure a well-distributed
sampling and was selected for this study.

No clear guidance on the number of samples (analysis runs) required to train the
surrogate model is available, since it is problem-dependent. However, sampling is known
to scale to the power of the number of design variables [22], which limits the number of
variables that can be analyzed when using an expensive RANS solver.

For the current analysis, the surrogate was constructed based on a limited number
of samples and then validated by comparing the values from CFD simulations against
the predicted values using the surrogate. If the mean difference in CPow was higher than
1%, the surrogate was refined by doubling the training points. The optimization results
presented in Section 3.2 are based on a surrogate trained with 280 analysis simulations.

2.3.4. Optimization Problem Set-Up

The main objective of optimization is to maximize turbine power output, represented
by CPow. Additionally, CT represents the thrust on the blade, which affects blade root
bending, support structure bending, and other forces. Although structural analysis of the
turbine blade is not within the scope of this study, minimizing CT will result in more eco-
nomical HKT rotors and support structures. For an optimized blade geometry, increasing
the power output requires an increase on the total thrust. Thus, the selection of an optimum
turbine blade requires designer input and consideration of the overall turbine cost.

In the case of large turbine rotors designed for high-velocity currents or installed in
shallow waters, a constraint on the minimum pressure coefficient Cp.MIN can be included.
The multi-objective optimization problem can be mathematically defined as follows:

maximize CPow(a1, a2, b1, b2, c1, c2)
minimize CT(a1, a2, b1, b2, c1, c2)
subject to Cp.MIN ≤ σn − ε

0.5 ≤ a1, a2, b1, b2, c1, c2 ≤ 2

(10)

The lower and upper bounds for the optimization variables were set to avoid blade
geometries that are clearly non-optimal, such as those with inverse camber or pitch values
or exaggerated proportions. None of the optimums found during the optimization phase
fell on the upper and lower bounds, which suggests that the limits were correctly chosen. A
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further constraint was imposed on factors a1 and a2 to avoid blade geometries with chord
values increasing from the blade root to the tip.

The optimization was performed on the computationally inexpensive surrogate model
using the Dakota library [23,39], which contains many gradient-based and derivative-free
methods for design optimization studies. Dakota also provides a flexible interface between
the analysis tool (i.e., OpenFOAM) and its optimization algorithms, which allows for the
setup of an automated workflow [40,41]. Dakota uses OpenFOAM as a black box function
that takes some input, specified by Dakota, and transforms it into some output, used by
Dakota to determine whether it meets certain performance conditions.

SBO allows for the identification of local and global maxima within the design space.
The derivative-free method MOGA [39] was selected in this study. This is a rank-based
fitness assignment algorithm for multi-objective optimization that mimics evolutionary
principles. Unlike single objective methods, the results are a series of optimal solutions
forming a Pareto front comprised of designs for which none of the response parameters
(CPow and CT) can be improved without degrading the other parameter.

The optimization flowchart is presented in Figure 4.

Figure 4. Optimization workflow.

3. Results
3.1. Analysis of Design Space

The information gathered during the design space exploration phase can be interro-
gated to identify trends, recognize outliers or anomalies, and analyze the relative impact of
the optimization variables selected.

Figure 5 shows a scatter plot matrix for the 280 sample points used to build the
surrogate model. This is one of the types of plots that can be employed to visualize the
large quantities of data generated during the exploration phase [40,41] and is used to
represent information on correlation, data distribution, and the effect on the response
parameters in a single plot.
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Figure 5. Scatter plot matrix for the data used to build the surrogate model.

To build a good surrogate, exploratory data should be unbiased [21]. The diagonal
of the matrix in Figure 5 illustrates the distributions of the sample points in the design
space and the response parameters using histograms. An analysis of the histograms
corresponding to the design parameters shows that the sample points were generally well-
distributed. Variables a1 and a2 showed a non-uniform distribution due to the constraint set
on them to avoid blade geometries with an increasing chord from the blade root to the tip.
The lower triangular part of the matrix illustrates the data distribution using scatter plots.
In combination, these plots show that the sample points were unbiased and covered the
entire design space. The last three rows of the matrix represent the effect of each of the six
optimization variables selected on the response parameters CPow and CT and the constraint
Cp.MIN . Finally, the upper triangular part of the matrix shows the Spearman correlation
coefficients for all combinations of variables, response parameters, and constraint. The
scatter plots showing the relationship between the response parameters, the constraint,
and each design variable include a linear regression model.

Parameter b2, controlling the pitch angle towards the tip of the blade, showed the
strongest correlation with the response coefficients. Design variables a1 and a2 showed a
clear positive correlation with CT , since increasing the chord also increases the total force
on the blade. On the other hand, the parameters b1 and c1 seemed to have a very limited
effect on the response parameters, which indicates that future optimization procedures
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could discard them as design variables. In general, the variables that control the blade
geometry near the hub had a more limited effect on turbine performance than the ones
which control the geometry near the blade tip.

The minimum pressure coefficient Cp.MIN showed significant scatter, which made
correlation with design parameters difficult. Analysis of the solutions showed that cases
where flow separation occurred resulted in higher Cp.MIN values, and the minimum pres-
sure was located near the leading edge of the blade. When the cases with significant flow
separation were discarded, the tip chord parameter a2 negatively correlated with Cp.MIN .

The scatter plot correlating the response parameters presents a clear boundary for
all the combinations of the CPow and CT coefficients, which approximates the Pareto front
obtained during the optimization process (refer Section 3.2). The histogram for the CPow
parameter shows that there exists a large number of solutions with high, near-optimum
power extraction. The optimum design will therefore maximize power output while
minimizing the loading on the rotor and the support structure.

3.2. Optimization Results

Two alternative optimization problems were solved:

• Problem A: Without imposing a constraint on the minimum pressure coefficient Cp.MIN ;
• Problem B: Imposing Cp.MIN ≤ 3.5 (cavitation constraint).

The Pareto fronts for both cases, as well as the sample points used to generate the
surrogate, are presented in Figure 6. The data point marked as “Base case” in Figure 6 rep-
resents the performance parameters of the initial geometry estimated using a RANS model.
It can be seen that imposing a condition on the minimum pressure impacts the global
maximum efficiency, as well as the maximum CPow coefficient for a given thrust condition.

Figure 6. Pareto fronts for both optimization cases, with and without a constraint on Cp.MIN .

The base case was close to the Pareto front for unconstrained optimization, which
shows that lifting line optimization methods were effective for the preliminary design stage.
By exploring the Pareto front for Problem A, three different optimized solutions could
be selected starting from the base case: A.1, the global maximum, A.2, which maximizes
CPow for a constant CT , and A.3, which minimizes CT for a constant CPow. The global
maximum for Problem B was identified as solution B.1. The design variables and response
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parameters for all solutions are listed in Table 2. The blade geometry for the base case and
the optimized geometries A.1 and B.1 are presented in Figure 3.

Table 2. Optimization results.

Case a1 a2 b1 b2 c1 c2 CPow CT Cp.MIN

Base 1 1 1 1 1 1 0.428 0.707 5.756
A.1 1.521 0.984 1.258 0.532 0.527 1.020 0.463 0.860 8.903
A.2 1.978 0.582 1.258 0.848 0.507 0.780 0.437 0.705 7.916
A.3 1.980 0.620 1.604 0.899 0.896 0.996 0.427 0.686 6.241
B.1 1.371 1.818 1.172 1.072 0.567 0.808 0.437 0.742 3.407

The power coefficient for the base case was 0.428. The global maximum A.1 reached a
power coefficient of 0.463, which represented an absolute increase of 3.5% and a relative
increase of 8%. However, the thrust coefficient CT for A.1 was 0.860, which corresponded
to an absolute increase of 15.3%.

Figure 7 compares the nondimensional chord c/D, the pitch angle φ, and the nondi-
mensional maximum camber fmax/c for the base geometry and optimized geometries A.1
and B.1. Figure 7d shows the nondimensional maximum thickness tmax/D, which was
kept constant for all geometries.

Figure 7. Blade geometry for base and optimized cases: (a) c/D; (b) φ; (c) fmax/c; (d) tmax/D.

The pressure on both sides of the blade for the base case, the global maximum A.1,
and the constrained optimization global maximum B.1 are compared in Figure 8. It is well-
known that increasing the chord typically improves cavitation performance [12], which
was reflected in the B.1 blade geometry obtained through automated optimization. Viscous
losses, however, scale with the chord, so increasing the power output requires increasing
the loading on the blade with respect to the base case.
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Figure 8. Pressures distribution on blade suction and pressure sides: (a) Initial geometry; (b) optimized geometry A.1; (c)
optimized geometry B.1.

RANS simulations can provide useful information on the characteristics of the HKT
wake in order to optimize turbine location and the layout of turbine farm arrays [15]. The
vorticity in the HKT wake can be visualized using the Q criterion, commonly used to
study vorticity in wind turbine wakes [42]. Figure 9 shows the vortical structures in the
wake for the initial geometry and the optimized geometries A.1 and B.1 as represented by
the Q = 0.1 iso-surface. Optimized geometry A.1 showed increased wake vorticity and a
greater expansion of the wake diameter, which is expected due to the higher thrust on the
optimized blade. The wake for the B.1 case showed slightly higher vorticity than the base
case.
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Figure 9. Vortical structures in HKT wake as identified by the Q-criterion (iso-surface Q = 0.1): (a) Initial geometry; (b)
optimized geometry A.1; (c) optimized geometry B.1.

4. Conclusions

In this article, we presented an optimization method which allowed for automated, sys-
tematic design of HKT rotor blades for all combinations of inflow and installation conditions.

The results prove the suitability of surrogate-based optimization to efficiently improve
the power output of hydrokinetic turbines designed using simplified methods such as
lifting line or BEM solvers, based on a limited number of analysis runs performed with a
computationally expensive CFD solver. The optimization method allowed for the represen-
tation of arbitrary hub geometries and, if the periodic domain assumption was not adopted,
could be extended to consider the influence of the support structure and nonsymmetric
inflow conditions.

Two performance parameters were selected in the optimization algorithm: the power
coefficient CPow and the thrust coefficient CT . Maximizing CPow while minimizing CT
resulted in a series of optimal solutions forming a Pareto front. The final selection of an
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optimum turbine blade requires an economic analysis comparing the overall cost of the
turbine, including its support structure, and the energy generated by the turbine.

The blade geometry design space depends on the starting geometry and the selected
design variables. Furthermore, different assumptions for blade sectional properties will
generate different blade geometry families. Future research will focus on the use of blade
profiles designed for their use in HKTs, which prioritize high lift-to-drag ratios, reduced
sensitivity to biofouling, good stall characteristics, and low susceptibility to cavitation and
singing [2]. Better estimates for maximum thickness distributions will require the use of
structural analysis tools.
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