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Abstract. The utilisation of marine current turbines with horizontal axis for electrical
power production offers a sustainable and clean option to augment traditional energy
technologies and enhance the expansion of renewable energies in the marine field. Some
prototypes of these turbines are now available and operating. The advantages of tidal
currents for renewable energies when compared with wind resources are that sea water is
about 800 times denser that air (and the extracted energy is proportional to density) and the
nature of currents that results in a more predictable resource than wind resources. But these
advantages set certain limitations and technical problems, some of them related with the
hydrodynamic design of rotor blades since the design of a marine turbine is some kind
different of the techniques used for wind turbines. Methodologies need be established to
describe the physical and operational performance of the turbines, allowing their design to
be investigated and performance evaluated. This paper describes the hydrodynamics of
rotor design that is projected in order to extract the maximum power from the tide. The
blade element momentum theory is used for the rotor modelling, different aspects and
limitations of this approach when applied to marine rotor design are commented, and
examples are presented.

1. Introduction

Oceans are a substantially resort of renewal energies, well in form of thermal or in kinetic energy
(waves and currents). There are different ways to obtain kinetic energy from tidal currents, which
can be converted into electricity using marine current turbines (MCT) technology, in a similar way
that inland wind turbines extract energy from air currents.

Like in wind energy, ocean energy resource is only economically practicable in some specific
sites of the world, where the currents are strong enough to produce a profitable amount of energy,
since energy varies with the third power of the current speed. However, this production can make a
respectable amount of energy supply and is the reason why marine renewable sector are the focus
of industrial and academic research.

In May 2003, the prototype “SeaFlow” (figure 1) from Marine Current Turbines Itd. was
installed off the coast of Lynmouth, North Devon, England. Seaflow was a single rotor turbine
which generated 300 kW. The successor of Seaflow was SeaGen, a 1.2 MW double rotor turbine.

Verdant Power developed the RITE project in New York City’s East River. This is a 35 kW
turbine in prototype stage (figure 2) for a future commercial development.
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Figure 1. “SeaFlow” from MCT ltd. Figure 2. The RITE project from Verdant Power.

This paper describes the hydrodynamics of rotor design that is projected in order to extract the
maximum power from the tide and convert it into (usually) electricity. The rotor is the first element
in the chain of functional elements of a turbine and it has a decisive influence on the entire system.

Although wind turbine technology has set the foundation to describe the physical and
operational performance of the marine turbines, there are a number of fundamental differences in
the design and operation of a marine turbine that require research.

The performance of a marine current turbine can be modelled satisfactorily using blade element
momentum (BEM) theory. This results from the use of high aspect ratio blades for which the
resulting flow is close to 2D over the blade sections before stall, neglecting 3D flow between the
turbine annular sections.

2. How much energy is in a fluid
Since the primary purpose of a turbine (Horizontal Axis Turbine) is to convert the kinetic energy
(KE) of a fluid into electricity, the first step is to consider how much energy is available. Suppose
the fluid advancing from left to right at a constant speed U,, for simplicity, let’s assume that the
fluid is steady (not varying in time) and uniform (not varying in position) and perpendicular to the
blade disk. These assumptions are normally used in rotor design, although turbulence and non-
uniformity have to be considered in a further stage of the hydrodynamic studies. These
circumstances are not considered in this paper.

The fluid will have a constant density that means that the flow is incompressible. The blade
radius will be denoted as R, and the turbine can be represented by a circular disk whose area A =
7R represents the blades (figure 3)

Figure 3. Energy flow through a circular disk.

On figure 3, the disk represents an elemental volume of the flow. The volume of this element is
the product of A-3x, so its mass will be p-A-5x and its KE will be 0.5-p-A-8x-U,”. The time taken
for this element to cross the blade disk is given by dx = U8t and the contribution of the element to
the total amount of KE that passes in 6t is given by:
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S(KE) = %-p-A-UO OotU,)" = %-p-A-U(f Ot (1)

So the amount of kinetic energy that passes the blade disk per unit of time will be the available

power from the fluid:
O(KE) : 1 3

St w 5 pAU, (2)

Equation (2) indicates that the power of a turbine depends on the cube of the fluid velocity and
on its density [1]. In practice the power output is never as great as suggested in (2) that will be only
reached when the fluid is decelerated to rest. Furthermore, a turbine cannot capture all the flow
crossing the disk since the flow expands before the disk, reducing its speed, and the flow lines are
deflected. Betz proved in 1920 that there is a limit of efficiency of 0.593, and in real practice
turbines are bellow an efficiency of 0.5 without considering electrical and mechanical losses. This
efficiency is often referred as the power coefficient Cy;:

w

C =—
ol 3)
—p-AU?
5 P 0
In reality, a rotor will impart a rotating motion or spin to the rotor wake, and the energy
contained in this spin reduces the useful proportion of the total energy. This is explained later when

the mathematical modelling of the rotor will be explained.

3. Tidal currents

When considering tidal currents, two facts are noticeable: seawater is 800 denser than air and tidal
currents are utterly predictable (sailors have charted them for centuries). Tidal currents are mainly
independent of weather conditions and are accurate foreseeable, while solar and wind energies can
not be predicted with confidence.

The tides cause water to flow inwards (flood flow) and seawards (ebb flow) twice a day. This
will produce a periodical flow in the turbine area. The flow pattern caused by tidal influence is
much more difficult to analyse, and also, data is much more difficult to collect. A tidal height is a
simple number which applies to a wide region simultaneously. A flow has both a magnitude and a
direction, which both can vary substantially over just a short distance due to local bathymetry, and
also vary with depth below the water surface. Flood and ebb flows are often not in opposite
directions. The direction of a flow is determined by the shape of the channel it is coming from, not
the shape where it will shortly be. Likewise, eddies can form in one direction but not the other. So,
the speed diagram for a given position has normally an elliptical shape.

Because of these reasons, there are some places in the world, that are most suitable than others
for the installations of MCT because of its current speed, such us Raz de Sein or Raz Blanchard in
France, the Strait of Messina in Italy, the bay of Fundy in Canada.

Power generation is possible for most of the tidal cycle. This may be true in principle since the
time of still water is short, but in practice turbines lose efficiency at partial operating powers. Since
the power available from a flow is proportional to the cube of the flow speed, the times during
which high power generation is possible turn out to be rather brief unless a yaw mechanism orients
the rotor towards the current or several tidal power generation stations are used, at locations where
the tide phase is different enough so that low power from one station is filled in by high power
from another.

4. Modeling the rotor
When studying a rotor, forces acting on the blades, which give rise to the thrust and torque and
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hence power, have to be computed. The blade element momentum theory (BEM) established by
Glauert will be used to study the rotor blades.

The rotor is substituted by an actuator disk (figure 3) that supports a pressure difference and
decelerates the current trough the disk. This is also equivalent to consider a rotor of an infinite
number of blades.

The velocity will be decreased at the rotor to U; = Uy (1-a), and downstream the current is

slowed further to U_= U, (1-2-a). The velocity at the rotor is considered the average between the

current and the downstream velocities. The axial induction factor a reflects the decreasing in
current velocity at the rotor:

a=—t—" O
The power extracted by the rotor will be:

W= op AU, (U~ U, ) (U, +U,) =

1 &)
=—p-AU 4a(l-a)
5 1% 0
And the power coefficient of equation (3) can be calculated as a function of a:
C, =+ W ha(-ay ©
5. D A'Ug

A little work on equation (6) will produce the mentioned Betz limit of 0.593 for a = 1/3.
Additional calculations can be derived to obtain the thrust of the tide on the rotor:

T :%'p'A'(Ué -U2) :%-p'A'Ué 4a(l-a) (7)

And a thrust coefficient is obtained:

T
Cr=g——=4a(l-a) ®
E'p'A'Ué

Figure 4. Annular streamtube.
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The traditional way to extend the previous expressions from the actuator disk to the turbine
blades is to divide the flow through the blades into a number of concentric annular streamtubes or
strips along the span, and consider these elements as control volumes, figure 4. The intersection
between the streamtubes and the turbine will be the blade elements and velocity and forces within
each stream tube can be calculated with the premise that the flow in each streamtube is independent
of that in another streamtube.

Another assumption of BEM is that the blade elements behave as airfoils. If a blade element at
radius r is considered, the 2D analogy will be an infinite cascade of airfoils spaced 2-7-#/N, where
N is the number of blades. The ratio of the element’s chord length ¢ to this quantity is called
solidity 6 = N-¢/(2-7'r). For low solidity, the blade would behave as an airfoil, but for high values
of solidity the flow over each blade will be affected by the proximity of the adjacent blades.
Nevertheless, this solidity is low enough for the calculations because of the slender shape of turbine
blades.

With the momentum theory, one can calculate the induced velocities from the momentum lost in
the axial and tangential directions for a given annular streamtube. The contribution to the thrust of
a blade element can be calculated as:

dT = ,o-UO2 277, 0¥, —p~Ui 2wy, Or, =

i ©)

=47-pU;-a(l-a)or

The torque of a blade element is calculated with the help of conservation of the angular
momentum:

dQ=pr, W U 27T, or,

Where W; stands for a swirl velocity, related with the circulation around the airfoil. The previous
expression assumes that there is no swirl upstream of the blades. If the angular momentum is

conserved downstream, it means ‘W, =r,‘W_ so, the torque contribution can be rewritten as:

dQ =27pU,(1-a)W,1*Sr =

3 (10)
=47-pU,(1-a)a"Qr or

Where W, = 2-a'C)'r, defining a’ as the rotational interference factor and Q as the turning ratio

(rad/s). If a indicates the decreasing of current velocity in the rotor blades, a’ represents the effect
on the fluid of the turning of the blades that will be accelerated contrary to the rotating direction.

4.1. Forces acting on a blade element

One of the assumptions of the BEM is that the blade elements behave as airfoils, which combined
with the analysis of the previous section allows the calculation of the forces acting on a blade
element.

For a blade element at a radius 7, the velocities and forces acting on it are depicted in figure 5.
The undisturbed current velocity is Uy but it has to be corrected because of the speed losses at the
rotor with a term U’= a-Uj_so the velocity of the water is U;=(1-a)- U,.

The circumferential or tangent velocity is T=Q-r, but the effect of turning in the fluid produces
the term T’=a’-Q-r. The combination of both axial and tangent components produces the velocity
polygon of figure 5. With this polygon, the total or effective velocity W as seen by the blade
element can be computed.

This figure shows also some important angles. The first one is B and it is the geometrical angle
between the plane of rotation and the element’s chord line. It is imposed by the designer and is
called twist angle. The second angle is a, the angle of attack of the water to the profile. And finally,
the third angle shows the incidence angle of the total speed W in respect to the rotor plane, and is
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the sum of the previous angles: ¢ = o +

Rotating Direction

Current Direction

Figure 5. Velocities and forces for a blade element.

The effect of the total velocity with a angle of attack will produce a force that is decomposed in
two: Lift (L) and Drag (D), perpendicular and parallel to the flow direction.

The magnitude of T=Q-r varies importantly across the blade span, so B has to vary significantly
with radius to maintain o at reasonable values to avoid flow separation. Angle B can be altered
including pitch controllable blades, so the power can be reduced to avoid over power in case of
high flow speed or to adapt the blade to an optimum position that depends of the flow
characteristics.

Assuming lift and drag acting on the element are the same as those on an airfoil of the same
section, angle of attack and total velocity W, they can be calculated with the use of lift and drag
coefficients C, and C4and are proportional to the chord ¢ of the profile:

L:%'p'WZ'CI'C D:%'p'Wz'Cd c (11)

These coefficients can be obtained from experiments in wind or cavitation tunnels, and are

tabulated as a function of Reynolds number and angle of attack in the called “polar curves”. There
are many references and families of airfoils that include these tables [2].
From the practical point of view, equations (12) and (13) shows that the key of the hydrodynamic
design is the selection of appropriate profiles in order to maximize L and minimize D, and also the
proper selection of the twist angle, so that every profile along the blade’s length operates at an
optimum angle of attack.

With the use of Lift and Drag from equation (11), the total thrust and torque on N blade
elements of a turbine can be calculated:

dT :%-p-Wz-c-N-(C, Cosp + C,-Singp)-Sr (12)
And
doO :%-p-Wz-c-N-(Cl Sing — C,-Cosp) -5 13)

Equations (12) and (13) are the basic blade element equations. Through and iterative procedure
with equations (12) and (9) for the thrust and with equations (13) and (10) for the torque, the axial
and the rotational interference factors can be computed, and with these factors, the total velocity W
and its correspondent angle of attack allows the interpolation of C, and C, to calculate thrust and
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torque for a given element at a radius r [3].

Considering several blade elements for different radius » and by integrating their resulting dT
and dQ distribution along the blade’s spam, total hydrodynamic thrust and torque acting on the
turbine blades can be worked out.

4.2. Corrections to the theory

Some correction of the mentioned theory comes from realising that the streamtube analysis has
assumed that the velocities and pressures are uniform in the circumferential direction, or in other
words, the axial velocity at a blade element may be different from U, given by equation (4), which
is the streamtube’s average velocity, Figure 6.

The calculation of the balance of forces includes not only the forces of the blade element, but
also other components from the spatial flow around the blade. This is more pronounced next to the
blade tip, where the pressure difference between the top and the underside of the blade produces
the tip vortices. The result drag is called induced drag. There are equivalent losses next to the
turbine hub.

bound
lift-generating
vortices

free-tip vortices

Figure 6. Vortices produced by the rotor.

Semi-empirical corrections factors for the coefficients @ and a’ such us the ones proposed by
Prandtl or Goldstein can be implemented in the theory to model these induced losses [4].

But the most important corrections are considered for high loaded rotors. When « is high, the
momentum theory predicts a reversal of the flow in the wake as can be seen in equation (7). Such a
situation cannot actually occur so what happens is that the wake becomes turbulent and, in doing so,
entrains water from outside the wake by a mixing process which re-energizes the slow moving
water which has passed through the rotor. This has been experimentally demonstrated in air (figure
7).

| I T |
correction (linear)

exp. (Lock et al.)

0.5 | . |
} da(1-a),
U r | N sl
|#x
05 1 i | 1 | 1
0 02 04 06 08 1 12

Figure 7. Ct for highly loaded blades.
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In a high loaded rotor, a > 0.4, the flow will pass from one face of the blade to the other
producing swirls, which can not be modelled with the BEM theory. This can be corrected by
assuming a new expression for the thrust instead of equation (7) for ¢ > 0.4, such us the linear
fitting of the experimental data proposed in figure 7.

5. Designing the rotor

When designing a rotor, the task is to find the best possible rotor on the basis of a determined
requirements and objectives. The starting point is a certain idea of the power output of the turbine
on a given location. This location will be described by an average tidal speed and is a function of
the depth where the turbine is installed.

It is out of the scope of this paper to explain the effect of a variable speed profile in the rotor
characteristics, or the behaviour of the turbine in a skew condition when the flow is not
perpendicular to the rotor plane. Normally a design speed at the depth of the rotor hub, Uy, is a
design parameter. An advantage of the tidal current is that this speed is quite predictable and
without big variations as in wind turbines.

With the estimated power and speed, the rotor diameter can be estimated with a rough
estimation of the rotor power coefficient. An average value of 0.4 is a common starting point.

Although it is mathematically possible to derive optimum shapes for the rotor blades, this is a
merely orientation in the design process, since the final solution will be a compromise between
hydrodynamics, strength and economical production, and it is also influenced by other factors such
us the installed generator and rotor power control. The final result is achieved after and iterative
process, where the hydrodynamics can be studied with the use of BEM theory described in the
previous sections.

Since this paper is focused in hydrodynamics, the important factor will be the optimization of
the power coefficient and the main parameters dominating C, will be:

e The number of blades
e Chord and twist distribution of the blades
e Airfoil characteristics

The previous sections have explained how the rotor impart a rotating motion or spin to the rotor
wake and how to model this motion mathematically in order to obtain forces and moments. The
power, thrust and torque coefficients will be a function of the ratio between the rotating motion and
the translation motion of the water flow. This ratio shows the relation between the tangential
velocity of the rotor blades and the axial flow and is normally called tip speed ratio:

QR
UO

A (14)

Where Q are the rpm that are a function of the generator turning speed and of the multiplier that
connects them.

5.1. Number of blades

This is the first design parameter to impose, and its influence on rotor power is small. Nevertheless
it determines the optimum tip speed ratio where the maximum power is achieved, that is normally
the design point of the rotor: a rotor with a lower number of blades rotates faster compensating the
smaller blade area.

Figure 8 shows the influence of the number of rotor blades, for blades of identical shape. The
maximum value does not change importantly with the number of blades, so rotors with more than 3
blades, are not used.

The optimum A lies between 7 and 8 for a three blades rotor, and between 9 and 10 for a two
blades rotor. So according to the optimum A of the design, the number of blades is selected.

Notice that according equation (14), for lower tidal flow speeds maintaining constant rpm, the
tip speed will be increased, so a 2 blades rotor is less sensitive to the reduction of the power
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coefficient than a 3 blades rotor.
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Figure 8. Influence of rotor blades.

5.2. Shape of the rotor blades

The power captured by the rotor will be influenced by the shape of the rotor blades. A
mathematically optimum shape can be derived by several ways [3,5]. The common point is that
with the rotor momentum theory, Cp of equation (6) is maximised if the axial coefficient has a
value of 1/3 for each section. These mathematical models produce tapered blades with a maximum
section next to the hub for low values of A and extremely slender blades for high values of A. These
mathematical blades can present problems of strength. From the point of view of manufacturing,
the aim should be straight-bladed planforms. So, the mathematical shape can be used for a starting
point to a more constructible approach with straight lines in some parts of the blade planform, as
the one of figure 9.

L L L 1 1 )
0 5 10 15 20 25 30

Figure 9. Mathematical and constructible blade shape.

If pitch controlled blades are used, the chord distribution next to the hub is constant since a
cylindrical form is used in this part of the blade (figure 1). In the case of fixed blades (figure 2),
chord can be increased in this area improving a little Cp and increasing blade strength at this area.
Twist angle distribution is also very important to obtain a good behaviour of the airfoils. Since the
tangential speed varies along the span and the axial speed is supposed to be constant, the angle of
attack will vary importantly from root to tip unless a twist angle distribution is adopted.

Figure 10 shows the twist of the profiles and the velocity polygons at three stations of a blade:
0.3-R at the hub, 0.7-R at the upper part and at 0.9 next to the blade tip. The axial speed is the same
in the three cases, but the tangent one varies. The twist is selected so the angle of attack of the three
profiles is the same.
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Figure 10. Twist distribution at st. 0.3, 0.7 and 0.9.

The twist is selected according the airfoils characteristics, so the angle of attack can be optimum
that means that the profile can produce maximum lift with a minimum drag force.

The twist presents negative values next to the blade tip, and the distribution from blade to tip is
a soft curve.

By controlling the twist distribution, the Cp maximum can be sifted to higher or lower tip speed
ratios (figure 11). Since the variation of the flow of a tidal turbine is cyclical, the twist can be
studied for different operating speeds trying to prevent the stall of a significant part of the blades, in
case of fixed pitch blades.

045
0.40 f__;"\, | ~ m:y
035 / \\
030 / \’\
025 / \
“®oa / \
015 / \
010 / \\
0.0s / .

0.00

u] 2 4 b | 10 12 14 16 18

Figure 11. Effect of twist distribution.
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Figure 12. Effect of pitch.

If the blades are pitch controlled, the effect on the Cp can be seen in figure 12. This mechanism
can be difficult to maintain under the water and hard to implement on the global design, apart from
the necessary control mechanism, but the advantages of such control that allows to maintain the
maximum Cp value for different tip speed rations, are clear on this figure.

The pitch mechanism is used in wind turbines to increase the torque at the starting, and to
prevent overpower at high wind speeds. In the case of a well design tidal turbines, overpower is
avoided if the maximum tidal speed at the turbine site has been considered in the design.

5.3. Blade sections

The airfoil design is the key for a good behaviour of the rotor since according equations (12) and
(13), the total thrust and torque of the rotor depends upon the lift and drag coefficients of the
airfoils in which the blades are divided. From the mentioned equations, it can be seen that optimum

10
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torque and thrust will be obtained by maximizing the lift and minimizing the drag forces.

These forces will be a function of the angle of attack (o) and of the Reynolds number of the
flow moving into the airfoil. The variation of these coefficients with o for a typical turbine airfoil
can be seen in figure 13.

Figure 13. Lift and drag coefficients.

Lift forces rises until a maximum value where stall begins. This means that the airfoil will start
to produce turbulence for high values of alpha, the water flow will separate from the surface of the
rotor and this will produce a reduction of the lift forces. On the contrary, drag force increases
rapidly over a certain angle. So, for any airfoil there will be an optimum point that produces a
maximum Cl/ Cd and this angle of attack is the target when designing the rotor (in the case of
figure 13, this value is about 4°). This is a complex matter since alpha varies along the span of the
blade because of rotational effects and changes with the flow condition. This can be seen on the
velocity polygon of figure 5.

The lift and drag coefficients will be a function of the Reynolds number that varies along the
blade from root to tip. For a water turbine, the Re is over one million. When increasing Re, the lift
increases and the drag diminishes, which is positive for water turbines that works in Re number
about ten times higher than wind turbines.

The optimum twist of the blade for a given design condition with constant speed U, and
constant turning speed is obtained when the angle of attack for each airfoil along the blade is next
to the optimum angle of attack that produces the maximum Cl1/ Cd.

In practice this is difficult to find because of the cyclic tide characteristics that produce
variations in the entrance flow along the blade both in magnitude (speed profile) and direction (yaw
angles). But the mentioned design criteria is the most followed when designing a rotor blade.

When talking about a marine propeller, one has in mind the NACA series (figure 14). The
NACA airfoils were developed prior to World War II. All these airfoils were developed for high

11
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Reynolds numbers representative of airplane wings, and suffer from significant laminar separation
bubbles when used on wind turbines at much lower Reynolds numbers. These bubbles can lead to
large variations in airfoil performance as a function of roughness. These airfoils also lack adequate
thickness for the blade-root region to accommodate high root-bending moments.

S ———
A

Figure 14. NACA 4415 and 23015.

Another characteristic needed for turbine airfoils is a reduced sensitivity of the maximum lift
coefficient to roughness effects that is of great importance in the marine environment where fouling
will be unavoidable.
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Figure 15. Effect of airfoil roughness. Figure 16. Turbine airfoils.

The increment of surface roughness will produce and increment of the drag, and a diminution of
the circulation around the airfoil that will produce a reduction on the lift coefficient. Of course, this
is improved with the maintenance of the turbine that in case of water turbine can be difficult and
expensive when compared with wind turbines. Figure 15 from [6] shows the effect of roughness on
the reduction of the lift coefficient of two NACA profiles and on one specific turbine profile, the
LS series, the upper profile of figure 16. This study is made experimentally on wind tunnels by
adding sand paper strips to the tested models in a similar way that turbulence stimulators are used
in ship models tested in a towing tank.

Normally, turbine profiles have the shape of the ones of figure 16, with the maximum thickness
of the upper part moved towards the trailing edge. This way, this profiles exhibit turbulent flow
along the entire upper surface just prior to maximum lift, which make these profiles less sensitive
to roughness.

By controlling the shape of the lower part, the peak of the lift curve and the stall characteristics
can be controlled. The thickness is varied along the blade to accomplish structural design, with the
thickest profiles next the hub. Water turbines profiles are thicker than their equivalent wind turbine
profiles, because water loads are much higher than wind ones. This produces lower lift and higher
drag coefficients than in wind turbines, with the consequent reduction on the power coefficient
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curve of a tidal turbine.

5.4. Cavitation
An important difference between wind turbines and marine turbines is that the later has the
potential to suffer cavitation, depending on local inflow speed, dynamic forces and depth of
immersion as normally studied in ship propellers. With the use of the explained BEM, cavitation
can be detected and actions can be made in order to avoid or reduce it.

Cavitation inception is assumed to occur on a rotor section, when its local pressure falls to or
bellows the vapour pressure P, of the water and can be predicted with the pressure distribution
around the airfoil section. A cavitation number and a pressure coefficient are usually defined as:

:P +p'gh—P .C :PL—(P0+p~g-h)
l'p'Wz T l'p'Wz (15)
2 2

Where h is the depth of the considered section, and P is the dynamic pressure at the section.
Cavitation inception can be predicted with the Cp of the upper face of the profile equals  as
depicted in figure 17 where the typical form of Cp is represented as a function of the non-
dimensional chord-length of a section.

Length of

Pressure coefficient Cp
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|
|
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X/

Growth Decline

Figure 17. Cavitation inception and Figure 18. Pressure distributions.
extension.

Cavitation will start when Cp=c but will extend for a certain part of the section depending on
the pressure distribution that is a function of the airfoil.

Ship propellers normally use segmental sections with a flat pressure side, as the upper profile of
figure 18. The lower profile is a typical section of a turbine, with the advantages described in the
previous section. Both sections have the same flow characteristics, and one can see how the
pressure distribution is more uniform in the case of the ship’s propeller type.

When comparing the pressure coefficients of both sections in figure 19, cavitation will start
earlier in the segmental section (left) but the extension will be much lower when compared with the
second profile (right).

13
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Figure 19. Pressure coefficients.

So, cavitation can be detected with the use of the pressure plots, and the use of different profiles
can be considered. Anyway, cavitation can be avoided by altering the twist distribution of the rotor
blade: a reduction in the twist will produce a reduction in the angle of attack that has the effect of
reducing the pressure, and of course the lift. Figure 20 shows the effect of a 2° reduction in the
angle of attack of the lower profile of figure 18.

| i

Figure 20. Effect of twist in cavitation.

This modification can eliminate the cavitation of a given section, at the expense of a
performance reduction, but cavitation can produce important fatigue and vibration effects on the
turbine’s structure. The numerical cavitation predictions explained can be used with reasonable
confidence for predicting cavitation at the design stage.

6. Conclusions
This paper has presented a simulation method for the hydrodynamic aspects of marine current
turbines, through the modelling of the rotor effect with a BEM approach.

Different corrections have been explained to consider the tip and root vortexes and the turbulent
wake state where the Glauert empirical correction is used.

The key of a good design is the use of suitable airfoil sections that produce maximum lift with a
minimum drag. Comparison with the usual ship’s propeller profiles has been made.

The prediction of cavitation has been explained that is important for relatively shallow tip
immersion. Cavitation can be avoided with the use of suitable designs and choice of the airfoil
sections, and with the global twist distribution of the blades.

Appendices
Table A Below are nomenclatures.

KE Kinetic energy of the water
BEM Blade Element Momentum
MCT Marine Current Turbine
Cp Power Coefficient

W Power
p Sea Water Density

A Projected Area

U Inflow speed

a Axial induction factor
T Thrust

Q Torque

Ct Thrust coefficient

Cq Torque coefficient

c Chord

c Solidity

14
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PR ZOQUCD® E

Total speed
Circumferential induction factor
r.p.m.

Lift

Drag

Lift coefficient
Drag coefficient
Number of blades
Angle of attach
Twist angle
Reynolds number
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