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Abstract

Climate change “fuelled” by anthropogenic causes has been identified as the greatest threat
faced by societies. In this respect, the roadmap to a “greener” generation mix certainly
includes a greater heterogeneity in terms of renewable energy sources. In this regard, one
of the leading candidates is ocean wave energy. One of the issues with renewables in general
is their unpredictably and variability, as it is crucial to address the subject of wave power
forecasting, to facilitate a future market integration. Hence, to tackle this prediction prob-
lem, a new approach to short-term wave power forecasting is proposed, based on deep
learning capabilities. These highly popular networks were traditionally developed to deal
with images (2D data), so the authors discuss all the necessary implementation and design
details to employ these networks with 1D input data, to solve a regression-based prob-
lem. These case-studies include wave data from three different locations. The proposed
approach was tested across all seasons of the year, revealing the suitability to extract the
relevant input data dependencies from the time-series. As such, especially for horizons up

1 | INTRODUCTION

In the ever increasing quest to develop alternative and non-
conventional renewable energy technologies to effectively tackle
the increased demand for energy, escalating energy prices, and
the environmental harms associated with fossil-based electric-
ity production, researchers have made major efforts, over the
last few decades, to develop and to facilitate the use of renew-
able energy sources (RES) [1]. These concerted efforts aim to
entich the increasingly “particoloured” energy portfolio. With
this in mind, ocean renewable energy (ORE) stands out as one
of the fittest contenders, with densities several times greater
than wind and solar energies [2], coupled with virtually end-
less flows guaranteeing continuous energy availability (relatively
high availability and utilization factor), that is, with the possi-
bility to operate 24/7" [3, 4]. These inhetrent characteristics of
wave energy unveil an enormous potential, and several estimates
suggest generated electricity figures ranging between 8 and 80
PWh per year [5, 0].

On the other hand, it is important to recognize that develop-
ment costs, lack of convergence, potential impact on biodiver-

to 6 h, the proposed approach outperforms other conventional methods.

sity, transmission requitements, and above all the (operational)
harsh environment has delayed the commercialization and wide
adoption of these emerging RES in comparison with more
mature technologies [7]. Despite these challenges, the inher-
ent qualities of ocean wave energy, together with the sizeable
RD&D investments on wave energy converters, particularly in
the EU [8], allow us to anticipate a successful future integra-
tion of ORE resources into the grid. Hence, contributing to the
ambitious targets in terms of RESs generation share, which the
EU estimates to be at least 27% by 2030 and much higher by
2050 [9].

In this foreseeable scenatio and following the lead of more
mature technologies, predicting the energy production from
RES, and in particular wave conditions/wave power, is criti-
cal to maintaining a stable electrical grid due to its intermittent
and non-dispatchable nature of these generation technologies
[9, 10], especially as the amount of energy generated from these
sources increases [11]. Additionally, these predictions are also
key for project planning, decision-making and risk management
of market players [12] and developers. Hence, if wave energy
technologies are expected to play a significant role in a future
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cleaner energy mix, then it is crucial to have accurate estimates
of the potential energy production in order to lay the founda-
tions for suitable wave energy converters [13, 14].

However, the benefits of developing accurate forecasting
models go far-beyond the latter, and the list includes aquacul-
ture industry, optimised shipping routes, nautical sports, mili-
tary operations etc [10]. Consequently, ocean wave forecasting
essentially focus on the challenging task of predicting charac-
teristic wave heights and periods using readily available weather
conditions [15].

The future role of wave energy technologies coupled with all
the different applications of wave energy forecasting are the rea-
son behind an increasing number of works in this field. This
follows a broader trend in the renewable forecasting literature,
which is attributed to the intense worldwide renewable integra-
tion efforts [16]. It also constitutes the main motivation of the
presented work.

One literature survey reveals three conventional categories of
methods to perform this task, namely: i) numerical approaches
primarily centered on wave energy-balance relationships [17].
For example, authors in [18, 19] used the popular wave
numerical model WAVEWATCH III (WW3) to perform the
forecasting task of ocean wave energy related variables; other
popular choices are simulating wave nearshore (SWAN) and
community climate system model (CCSM4) models [15, 18].
Even though wave numerical models offer a good accuracy,
they tend to be computationally expensive, thereby, open-
ing path for machine learning (ML) approaches [10, 15]. ii)
Statistical methods such as regression, Box—Jenkins method
applying auto regressive moving average (ARMA) [20] and
auto regressive integrated moving average (ARIMA) models,
exponential smoothing, among others are a common choice
to solve a time-series forecasting task. However, a common
downsize is the difficulty to capture non-linear data patterns
[21]. iii) Soft-computing approaches are amongst the trendiest
options due to their ability of efficiently mapping large datasets
and deal with non-lineatities in the predicted and auxiliary
time-series. The list includes trendy ML and deep learning
(DL) based methods, fuzzy logic, expert systems, decision trees,
genetic algorithms, and hybrid approaches [13, 22].

A particular highlight can be given to ML approaches,
which overcome several shortcomings of traditional data anal-
ysis techniques, thus providing accurate and efficient meth-
ods for predicting ocean related variables [23]. In this field,
artificial neural networks (ANNSs) [24, 25] and support vector
machines (SVMs), multi-layer perceptron (MLP) [10, 15], non-
linear autoregressive network with exogenous inputs (NARX)
[17], recurrent neural netwotks (RNNs) [26], random forests
(RF) [27], and extreme learning machine (ELM) [28], are among
the most common choices used in forecasting.

An example of a hybrid approach is given in [29], where a
genetic fuzzy system built on a three- staged algorithm is used
to estimate significant wave height and energy flux. In another
instance, a hybrid grouping genetic algorithm—FELM approach
is proposed in [30]. Alternatively, a wavelet and neural network
hybrid model was developed in combination with empirical
orthogonal function analysis to better the performance of tra-

ditional ANNSs [31]. In another instance a comparison between
single and multi-layered RNN, LSTM, and seq-to-seq networks
is conducted in [32], and in [33] ocean wave height is also pre-
dicted using a LSTM network, proving its superior accuracy in
comparison with a MLP network, SVM and RE.

In the wake of all these successful approaches where ML and
DL are employed to predict all sorts of wave energy related data,
this paper presents and discusses a new DL approach based on
convolutional neural networks (CNNs or ConvNets) to tackle
a research gap, where better short-term wave power forecasting
approaches are being searched. In addition, we can summarize
the main contributions as follows:

* In the wake of the developments of DL, a CNN is introduced
for the task of short-term wave power flux forecasting by
exploiting its advantage of not requiring an exhaustive input
pre-processing stage.

* A tailored dual layered CNN architecture was designed to
accommodate the different specificities of the 1D datasets, in
order to extract the most relevant characteristics of the time-
series.

* Wave data from 3 different datasets were analysed and used
to validate the proposed approach for a variety of prediction
steps-ahead.

* Direct and indirect results analyses reveal an encouraging
forecasting performance, especially between 1 h to 6 h in all
case-studies. This highlights the broad scope of application
of the proposed approach.

The rest of the paper is organised as follows: Section 2 pro-
vides a brief theoretical background of the most important sea
state parameters and is about how the wave power is estimated,
followed by the illustration and relevant statistics of the wave
data used as case-studies in this work. Section 3 describes the
methodology, starting with the CNN fundamentals and ending
with the key data selection implementation details of the pro-
posed CNN. Subsequently, Section 4 discusses the testing pro-
cedure, error metrics, and results. Lastly, Section 5 outlines the
main conclusions of this work.

2 | WAVE POWER AND SEA STATE
PARAMETERS

The main considerations about sea state parameters and wave
power required to understand the predictable variable in the
short-term wave power forecasting, as well as the auxiliary asso-
ciated variables, are presented in this section. Afterward, the
wave data employed in this work is illustrated together with the
main statistics.

2.1 | Wave power estimation

In the last few decades, climate models and particularly wave
models were refined to produce a greater understanding
of the different physical interactions responsible for wave
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TABLE 1 Statistics of the different wave power datasets [kWm™]

Buoy ID/stats ~ Mean  Min  Max St. dev® Skew  Kurt

41048 18.19 0.72 461.62 24.93 3.93 28.44
42056 6.27 0.25 184.45 8.08 4.88 50.32
44014 12.42 0.39 261.90 19.73 4.33 29.42

“St. dev - Standard Deviation.

phenomena, providing useful knowledge for public and pri-
vate entities to better monitor and explore ocean resources,
for example, when we explore the potential of wave energy
converters in certain sea state conditions. To achieve this goal,
meteorological, sea, and atmospheric agencies across the globe,
such as National Oceanic and Atmospheric Agency (NOAA),
have greatly expanded scalar buoy and nautical radar measure-
ments of ocean waves (wind generated) to better study the sea
state spectral parameters estimated from both sensors [34].

In this work, we are solely interested in the set of sea state
parameters from where it is possible to derive a wave power
expression. So, we define the mean transport rate of the wave
energy through a vertical plane of unit width, parallel to a wave
crest, as the wave energy flux or more broadly, wave power,
J [kWm™!] (1). And in deep water conditions, that is, where the
water depth is larger than half the wavelength, the same can be
computed as follows [35]:

2
(pLHZ T)
641 w0 "€

~ 2
J =m0 ~ 0.491 (H2,T), 1)

0

where H, is the significant wave height; 7, the wave energy
period; o the saltwater density; and g the acceleration due to
gravity. When the significant wave height is given in metres and
the wave period in seconds, the result is the wave power in kilo-
watts (kW) per meter of the wave front length.

2.2 | Wave data

In this work, three different houtly datasets will be used to eval-
uate the forecasting performance of CNNs. These comprise a
set of quality-controlled buoy measurements gathered by the US
National Data Buoy Centre (NDBC), spanning between January
2007 and April 2010. The respective buoy IDs are: 41048 in the
West Bermuda; 42056 Yucatan Basin between the Caribbean Sea
and the Gulf of Mexico: 44014 Virginia Beach, Virginia. The
focus of this work will be to predict the wave power or wave
energy flux, /, however, the variables of interest to assemble the
input data also include /7, 7; and windspeed, ».

With this regard, it is important to analyse the time-series
statistics, and therefore Table 1 is presented, showing the mean,
upper and lower occurrences, standard deviation, and the shape
related statistics, kurtosis, and skewness.

These stats show a diversified scenario between datasets,
which will help validate the forecasting performance over a wide
range of sea state conditions. However, a commonality between
the datasets is the greater standard deviations with highly right-

skewed data and with a leptokurtic distribution. Moreover,
the use of these specific datasets allows us to benchmark the
obtained results against several conventional approaches also
considered in [25, 30].

A visual characterisation of the energy density in terms of
significant wave height and energy period is shown in Figure 1
for all the datasets.

This allows us to clearly see the variability of sea state con-
ditions, the absolute frequency of different sea state conditions
(pair /,,) and 7;), as well as the associated (available) wave den-
sity and power, thus validating the representativeness of the con-
sidered datasets.

3 | METHODOLOGY: THEORY AND
IMPLEMENTATION

As the name suggests, this section introduces the important
CNN design and implementation details, as well as the differ-
ent stages of the proposed forecasting approach, starting with
the fundamentals of CNN topology, followed by the required
adaptions to use it in the context of one-dimensional space data
for a prediction-based problem, detailing the assemble stage of
the input training and target samples.

3.1 | Convolutional neural networks

The development of DL approaches has expanded past conven-
tional classification problems, and the vast landscape of ML and
DL techniques are being applied across various research fields.
As we saw in the Introduction, the same is valid for wave power
forecasting, where these approaches are gaining wide traction,
much due to their ability to model complex non-linear relation-
ships between sets of input and output data.

With this respect, CNNs are one of the most promising and
popular DL approaches [37, 38]. Originally conceived for large-
scale image classification, where they have been tremendously
successful [39], CNNs are a type of bio-inspired feed-forward
type of ANN architecture that eliminates the need for manual
feature extraction [37], and is particularly tailored for analysing
and finding patterns in two-dimensional data. However, the
application scope of CNNs extends beyond image data, and
it has been successfully applied in signal processing and time-
series analysis (1D data), audio analysis (2D data) and video clas-
sification (3D data) etc. CNNs consist of a sequence of layers
and its core building blocks are the Convolutional (ConvLayer)
and Pooling (subsampling) layers which have different roles dur-
ing the training process, as illustrated in Figutre 2 [38, 40].

Convolution layers are composed by neurons with weights
and biases which are then continuously updated (each training
epoch), to minimize a loss function. However, for a given hid-
den layer the value of the weights and biases is the same for
all neurons, which is a major contrast with the standard fully
connected networks. Another major difference is that instead
of a fully connected architecture, connections are local in space
(across the width and height of the input volume) but always
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FIGURE 1 Kernel joint probability density estimation of the collected
observations. The colour scale represents the wave energy per metre of wave
front (in MWh/m). The numbers within the graphs indicate the occurrence of
sea states (in number of hours per year) and the isolines refer to the wave
power / (in kW) (a) Buoy ID: 41048, (b) Buoy ID: 42056, (c) Buoy 1D: 44014

full along the entire depth of the input volume, that is, there is
an asymmetry in how spatial and depth dimensions are handled.
The spatial extent of the local connection is called receptive field
(inspired in the biological visual cortex) or filter size.

So, a ConvLayer contains an entite set of filters, each one
producing an individual activation map which is stacked along
the depth dimension resulting in the output volume, that is,
each filter is convolved across the width and height of the input
volume. These (learnable) filters are sparse and shared across
the entire input and are adjusted during the training process, in
order to be activated when certain features are detected. Thus,
we can define in Equation (2) the output result/ feature map
)//(Cm) from the convolution operation that occurs in an arbitrary
Convlayer £, between an input from an arbitrary layer £ — 1,

xgil , and the #/ filter of such channel ¢ in layer 4, LV/;[’”’), fol-

lowed by the added bias term 19? , /; being the chosen activation
function [41].

C
2= | Zw e ). @

c=1

Additionally, two common operations performed that influ-
ence the outcome of the convolution between the input and
the filter/kernel are padding and striding. The first, padding
b, defines the number of “pixels” added to the input (extrem-
ities), and it avoids a sizeable input shrinking and reduces the
discrepancy in the treatment of central versus corner “pixels”.
The second, stride s, describes what is the step taken across spa-
tial dimensions while consecutively convoluting filters with the
inputs. An increased stride will lead to a reduced output dimen-
sion, which is the opposite result of padding. So, the output of
each convolved input volume is used as the input to the next
hidden layer, and for an arbitrary input size [z, X 7, X #,] and
filter size [ f; X f5], the generalized output dimensions of a Con-
vLayer with 7, filters are:

[(—”’]+2p_fl +1) X (—”’”+2P_f2 +1>><nf

S S

€)

where subscripts 4, w and ¢ represent height, width, and chan-
nels (depth), respectively.

In turn, a pooling layer, is responsible for a non-linear down-
sampling of the input volume, thereby, reducing the number of
learnable parameters and hence speed up the computation cost.
To execute the downsampling, a max or average pooling layers
are commonly used, and in the same fashion as ConvlLayers,
pooling layet’s hyperparameters also include kernel size, stride,
and padding. Thus, the output dimensions are obtained simi-
lar to Equation (3), with the exception of depth that retains the
size of the input volume that is forward to the pooling layer.
Other common hidden layers in a ConvNet are normalization
layers, that is, which normalize the output of the previous layers
to improve the batch learning process; flatten layers, as the name
suggests, flatten/collapse the input dimensions [#;, X 7,, X #,] to

85U90|7 SLOIWIOD BAIS.D 3|qedt|dde du Aq pausonob a1e S3pIe O B8N JO 3|1 10J Aleiq17 3U1jUO /8|1 UO (SUOIIPUOD-pUe-SWLBH WD A8 | 1M Atelq 1jpu1UO//:SdNY) SUORIPUOD Pue S | 8L} 89S *[€202/90/62] Uo AReiqiautuo 48| Biniisu| eLOWS N 8|pHes Ad 8522T 2601/670T 0T/10p/L0d Ao 1M Afe.q 1 pulJUO 4O Jessa.101//SANY WOy papeoiumoq ‘T ‘TZ0Z ‘vZyTZSLT



BENTO ET AL. | 3345
Convolution Convolution Convolution ° ®
Layer Layer Layer ® L AN\
® L AV 4
Relu Relu RelLu [ [ ] o
Rectified linear Units Rectified linear Units Rectified linear Units . L :
: : O
Max Pooling Max Pooling Max Pooling @) .
Input Cayeh L SaEl Fully Connected Layer
FIGURE 2 Convolutional neural network (CNN or ConvNet) architecture
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FIGURE 3  Wave pre-processing and input data selection

a one-dimensional output, allowing the transition from convo-
lution layers to a traditional dense/fully connected layer. As for
the output layer, it can be either categorical or continuous.

3.2 | Proposed methodology

In order to implement a CNN capable of predicting wave
power for different forecasting horizons, we start the process
by analysing the partial autocorrelation magnitudes (PACF), as
well as the Pearson correlation, for the forecasted variable /,
and the exogenous inputs /), 7, and w,. Besides, the hourly
index of the corresponding target output / is also fed into the
CNN to provide some account of the observed daily seasonal-
ities. Since even though a CNN does not require a manual fea-
ture selection, due to its DL capabilities, it is still important to
only feed input samples and parallel input variables with a sig-
nificant correlation. In this work, a threshold level of 0.05 was
considered. This avoids a more time-consuming training task
and reduces the potential length (height) of the input samples,
which can impact the kernel size. An illustration of this pre-
processing and data selection stage is shown in Figure 3, where
after performing a correlation analysis (auto and partial cot-
relation) of the different time-series, the correspondent train-
ing and testing samples are assembled with its pairing target
data.

Furthermore, it is important to notice that although CNNs
are traditionally employed with 2D data, as we have seen in Sec-
tion 3.1, they can also be used to model univariate time-series.
The difference resides in the kernel size, which has the same
width as the time-series, while the height may differ. In this way,
the filter moves only across one dimension. In the event of a
multivariate time-series, as is the case in this work, the several

inputs are fed in parallel, analogously to the different colour
channels in the 2D data, meaning they are treated fully along the
depth dimension, but locally in terms of spatial dimensions. To
sum up, a 1D CNN completes a 1D convolution operation and
is followed by a dimensionality reduction, combining the feature
extraction, transformation, data fusion, and classification steps
into one framework [42].

So, after having assembled the input data with exogenous
variables, in the form of input samples with the corresponding
target output, we moved on to building the forecasting CNN
architecture. As can be seen in Figure 4 it has two ConvLay-
ers, which is a preferred option over a single ConvLayer when
dealing with long input sequences. The filters of these hidden
layers will be activated, to signal certain input features. Then,
the customary non-linear activation function rectified linear unit
(ReLu) is called to map the convolution operations. This func-
tion has the particularity of only keeping the positive values
(activated features), since negative values are set to zero. After
that, two max pooling layers ate used to condense the output
(feature maps) of ConvLayers, maintaining only the most salient
values. These hidden layers are followed by a flatten layer to
compress the output volume to a single dimension vector. In
turn, this will be the input to a dense (fully connected) layer,
whose task will be to interpret the features extracted by the con-
volution part of the architecture and to produce a single valued
output. The dense layer also has a dropout rate of 20%, in order
to improve its generalization capabilities.

To implement the aforementioned CNN, the authors have
resorted to Python 3.8.7, using the TensorFlow and Keras DL
libraries, and simulations were performed on Windows 10®
with an Intel Xeon E5-1620 v4 CPU.

Additionally, regarding the input data size, we have consid-
ered the previous 30 days before the test week, to assemble
the training input samples. This value enables a compromise
between diversity in the training samples and reasonably recent
data, that is, a batch of roughly 720 samples, with a valida-
tion ratio of 15%. With these training and validation samples,
the ConvNet will learn to map the input sequences, and each
layer will be capable of learning to identify different features. To
achieve this goal, the weights and biases are learned by mini-
mizing the chosen loss function (4), which in this work was the
mean squared error (MSE):

N
min MSE = 1/N Y (.= %), @

w
s=1
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FIGURE 4 Proposed methodology (overview): CNN architecture fed with several 1D wave input data
TABLE 2  Forecasting: Testing dates
Buoy ID/ season WinterWeek SpringWeek SummerWeek FallWeek
41048 07,/02/08-13-02-08 01,/05/08-07,/05,/08 12,/08,/08-16,/08,/08 22/10/08-28/10,/08
42056 07,/02/08-13-02-08 15,/05,/08-21,/05/08 19,/08,/08-25,/08,/08 12/11,/08-18/11/08
44014 31,/01,/08-06-02-08 08,/05,/08-14,/05/08 22/07,08-28,/07/08 29/10/08-05/11,/08

where I represents the learnable CNN weights, /V is the batch
size, %, is the CNN output in this epoch, and g, is the tar-
geted output response. With respect to the task of training
the CNN, the adaptive moment estimation (Adam) was cho-
sen. This stochastic optimizer computes the individual adaptive
learning rates for different parameters from estimates of first
and second moments of the gradients, for each learning epoch
[43].

4 | RESULTS

The proposed methodology is used to perform the short-term
wave power forecast, /, for the three datasets, considering lead
times of 1, 2, 3, 6, and 12 h.

For validation reasons, four weeks of testing are consid-
ered, one week per calendar season of the year (northern hemi-
sphere), which ensures that the results are not tied to a specific
seasonality or trend. The testing dates for each dataset can be
seen in Table 2.

Additionally, for each testing date, the CNN model was evalu-
ated (trained and tested) for 15 times, that is, 15 runs; this allows
us to have a more solidified conclusion about the model perfor-
mance. To evaluate the forecasting performance we employed
common error metrics, namely the correlation coefficient (7),
mean absolute percentual log-difference error (MAPE-log), and
root mean squared error (RMSE), as seen below in Equations

5~

o —2)-(0;— 7
1 0 R

¢221@ 3 Y -9

Zj\f—l [log p; — log o]
MAPE log [%] = 100 - 2= . ©

N,

RMSE [£W /m] = 0]

where /N, is the number of testing samples; p and p; are the
average (for all NV, samples) predicted wave power and the pre-
dicted wave power at time-step 7, tespectively; and 9 and o; are
the average real wave power and the real wave power at time-
step 7, respectively.

After completing the simulations, the mean forecasting
results (r, MAPE log and RMSE) for the three datasets, for
each forecasting horizon, is compiled (see Tables 3—5). Besides,
Tables A.1-A.3 in the Appendix present the best individual
error metrics for each buoy, test week, and forecasting hotizon.

So, by analysing the tables we can see that naturally the fore-
casting accuracy decreases as the forecasting horizon increases,
with error metrics, in terms of RMSE, increasing in compati-
son with the previous lead times, in the order of &15%—20%
(between 1 and 2 h), 18.0%—19% (between 2 and 3h), ~25%—
50% (between 3 and 6 h), and &35%-57.4% (between 6 and
12). Moreovet, there is an obvious connection between the pre-
diction accuracy and the season of the year, where the CNN
testing is being conducted since, as we saw in Table 1, there is a
great standard deviation in the data, with significant higher wave
power during the winter and fall seasons.

Commencing with buoy data 41048, Table 3
tively uniform accuracy across all seasons, with the exception
of 12 h horizon, with error metrics of 0.97-0.29 in terms of r,

reveals a rela-
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TABLE 3  Forecasting errors: Buoy 41048 (mean results)

WinterWeek SpringWeek SummerWeek FallWeek
For hor/ season  r MAPElog RMSE r MAPEIlog RMSE r MAPElog RMSE r MAPElog RMSE
1h 0.96  14.40 6.22 0.95  14.34 4.51 0.94 1548 3.04 097 1112 3.19
2h 095 1757 8.11 0.94 1611 4.19 092 17.84 343 095 1398 391
3h 093 2149 9.36 092  18.82 5.18 0.89  20.29 4.01 092 17.16 4.92
6h 092 2819 8.92 072 28.30 6.38 0.80  33.26 5.68 0.82  31.68 8.38
12h 0.85 3891 12.32 029 52.81 12.66 0.69  39.05 6.88 0.54  51.84 19.75
TABLE 4  Forecasting errors: Buoy 42056 (mean results)

WinterWeek SpringWeek SummerWeek FallWeek
For hor/ season  r MAPEIlog RMSE r MAPElog RMSE r MAPElog RMSE r MAPElog RMSE
1h 097  10.10 0.78 0.95  10.05 0.27 0.97 1231 0.27 0.94 1218 2.52
2h 095 1288 0.95 093 12.65 0.34 0.95  15.60 0.34 093 1543 2.85
3h 093  16.01 1.13 0.90 1545 0.42 0.95  14.66 0.39 0.90  18.74 3.37
6h 0.87 2233 1.47 0.75  24.67 0.69 0.87 2752 0.67 0.84 2694 4.61
12h 0.67  31.60 2.21 040  45.08 1.70 0.84 2415 0.78 0.69  41.76 7.02

11.12%-52.81% in terms of MAPE log and 3.19-19.75 £ /
in terms of e3. These results are in line with the regression and
neural net models overall means in [36], the same dataset, with
the exception being the 12 h horizon, where the accuracy falls
by ~50% in terms of RMSE. Therefore, demonstrating the need
to use combined models in this dataset, that is, it would heav-
ily benefit from the physical model “guidance”. With regards to
the best achieved values, Table A.1 shows gain between 5 and
10%. Now by analysing the buoy 42056, error metrics vary in
the range 0.97-0.40 in terms of r, 10.05%—45.08% in terms of
MAPE log and 0.27-7.02 £W [/ in terms of e3. In this case,
we see an improvement in all forecasting horizons, when we
compare them with the ones obtained by the physical models,
regression, and neural network. As for buoy 44014 results, the
error metrics average is in the range 0.95-0.60, 17.6%—63% and
6.24-15.22 £W [ m, for r, MAPE log and RMSE, respectively.
In turn, the distribution (box-and-whisker plots) of the error
metrics during the runs was also analysed, considering all sea-
sons, and forecasting horizons, and Figure 5 is presented to

demonstrate the behaviour of the CNN during the runs for
buoy data 41048. It is revealed that the employed ConvNet
model presents a generally stable forecasting accuracy (a smaller
interquartile range), certainly for the first 3 horizons; then from
6 h onward the error spread increases, which translate an added
difficulty in extrapolating relevant information from the avail-
able input dataset. Additionally, there were no significant out-
liers. The corresponding figures for the remaining datasets are
introduced in the Appendix, and a similar picture is painted in
Figures A.1 and A.2.

For further comparison purposes, some ML conventional
forecasting techniques were implemented using the same input
data. First, a common fully connected NN was selected to
benchmark the obtained results. The NN was configured with
32 neurons in the hidden layer, a hyperbolic tangent sigmoid
as the chosen activation function, and it is trained using the
Levenberg—Marquardt method (maximum number of 1000
iterations) with a training to validation ratio of 80%. Second,
we choose a generalized radial basis function network (RBNN)

TABLE 5 Forecasting errors: Buoy 44014 (mean results)
WinterWeek SpringWeek SummerWeek FallWeek

For hor/ season  r MAPElog RMSE r MAPElog RMSE r MAPElog RMSE r MAPElog RMSE
Th 097  13.80 5.84 097  19.21 14.96 0.91 15.79 0.43 093 2146 373
2h 094  18.63 6.62 093  26.09 18.19 0.84  21.72 0.58 0.88  29.03 4.98
3h 093 2358 6.68 093 3514 20.51 073 26.79 0.75 0.84  39.05 5.94
6h 0.84  39.52 8.91 0.86 5223 28.95 0.53  33.27 0.96 072 57.20 8.63
12h 0.68 5795 10.64 0.80  68.79 36.15 041 4329 1.20 0.51  84.89 12.89
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FIGURE 5 Box plots of the error metrics distributions, considering all
forecasting horizons (buoy 41048)

with a maximum number of 1000 neurons, in order to fit the
radial basis neurons with a spread of 1 to reproduce the train-
ing pattern with a good compromise (to avoid overfitting). The
last comparative method was a Support Vector Machine regtes-
sion model, which is also a common ML method employed to
continuous data and regression analysis. In this work, we used
a predefined third-degree polynomial approximation as a kernel
function.

The resulting error metrics of this direct comparison of dif-
ferent ML forecasting methodologies can be seen in Tables
A.4—A.6, which for convenience purposes were placed in the
Appendix. The results for the buoy data 41048 reveal a superior
performance of the proposed approach, in almost all metrics
and horizons (highlighted in bold). The exceptions occurred for
longer horizons (6 and 12 h) in terms of MAPE log and RMSE
for the summer and fall weeks (where the conventional NN and
RB with the same input data achieved slightly better results).
With regard to buoy data 42056, a similar picture was that the
proposed approach consistently outperforms the other meth-
ods, with the exception being typically for longer horizons in
the summer test week. Finally, the error metrics for buoy data
44014 are no exception to the rule, confirming a 2% to 11%
better average accuracy, and the proposed methodology is only
outperformed by the RBNN, particulatly in the longer hotizons,
and more so in terms of MAPE log.

A graphical representation of the short-term wave forecast-
ing is given in Figure 6, where we can see the real and predicted
wave power (left axis), as well as the absolute error (right axis),
for all the considered forecasting horizons, regarding buoy data
41048 (spring testing week).

Additionally, Figure 7 is also introduced to illustrate the
results of the direct comparison between ML methodologies
made in Tables A.4—A.6. It can be visually confirmed that the
proposed methodology forecast resembles the real wave power
the most.
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FIGURE 6  Test results illustration for all hotizons: Actual and forecasted
wave power flux, /, respectively, blue solid line and maroon dashed line (left
axis) and absolute error, canary yellow dot-dashed line (scaled right axis) ample
graph with blue (dotted), green (solid) and red (dashed) lines (a) Buoy 41048
Spring Week, (b) Buoy 42056 Winter Week

5 | CONCLUSION

With the advent of DL, researchers and industry have shifted its
focus to use these tools for data analysis and features extraction.
So, following this path, this work proposes the use of ConvNets
for short-term wave power forecasting. These biologically
inspired networks have been successfully applied to traditional
categorical problems concerning 2D data. However, its distinct
nature, where there is sparsity of connections, that is, local con-
nections along the width of the datasets (1D data), makes them
interesting to explore and access its potential. Further, a recent
day’s input data selection, with the auxiliary PACF contributing
to feed only relevant wave power time-steps in the input sam-
ples, is used to avoid even larger input datasets, which would
impact the simulation time, and almost certainly provide irrel-
evant data. Moreover, the paper also presents the background
and considerations that led to the design of this specific CNN
model, since many other configurations would be possible.
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FIGURE 7  Test results illustration for all hotizons: Actual wave power
flux, /, blue solid line; and forecasted wave power flux by CNN (green dashed
line), NN (maroon red dashed line), RBNN (canary yellow dashed line) and
SVR (cyan dashed line), respectively, and wine dashed line (left axis)

The effectiveness of the proposed method was evaluated in
three different case-studies, from NDBC buoy measurements
on different sites. The proposed approach is versatile, proving
the viability of CNNs, avoiding the need for time-consuming
data pre-processing mechanisms. Numerical results reveal good
performances, especially for horizons between 2 h and 6 h,
where the CNN model can sometimes be quite fitting with
a relatively small input training set (~30 days), meaning, aver-
age accuracies across all seasons ranged from &11% to ~30%.
As for the furthest forecasting horizon, the CNN model was
sometimes unable to perform as well, which is normal in non-
combined models, that is, without information from a physical
(numerical models).

A possible future work will consider different hyperparame-
ter fine-tuning, with different ConvNet architectures being eval-
uated, that is, different number of ConvlLayers and pool Lay-
ers, different filter sizes, as well as the use of a lengthier input
training with different combinations of exogenous variables, to
gauge the DL generalization capabilities, evaluating the poten-
tial to improve the proposed CNN methodology.
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NOMENCLATURE
%, CNN output
w, windspeed
H,, significant wave height
N, number of testing samples

7, wave energy period
7 filter weights (ConvlLayer neurons)

bias term (ConvlLayer)
fi X fo  filter size (window)
J; activation function evaluation
n, input height (spatial dimension)
n, number of input channels (depth)
n;  number of filters
input width (spatial dimension)
o average real wave power (all time-steps)
0; real wave power at time-step /
P average predicted wave power (all time-steps)
p;  predicted wave power at time-step /
(,,,1) input ConvLayer

. output ConvLayer

g, CNN target output
MAPE —log mean absolute percentual log-difference
MSE  mean squared error
RMSE root mean square error
J wave energy (flux)
N batch size (CNN train)
IV generic learnable weights

¢ arbitrary input channel (CNN)
g gravity acceleration
7 time-step (sample)
k arbitrary ConvLayer (CNN)
m  arbitrary ConvLayer filter (CNN)
r correlation coefficient
0 Saltwater (volumetric mass) density CNN out-
put
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APPENDIX
As mentioned in Section 4, the results regarding the best fore-

casting errors for each buoy and forecasting hotizon, that is,

the maximum value in terms of » and the minimum values in
terms of MAPE log (%) and RMSE, Tables A.1-A.3, are here
provided. Also, the box and whisker plots displaying the error
mettics distribution for datasets 42056 and 44014, considet-
ing all horizons, is shown in Figure A.1 and A.2. Last of all,
the results from the direct comparative analysis of the differ-
ent ML techniques using the same input data can be seen in
Tables A.4—A.06.
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TABLE A.1 Forecasting errors: Buoy 41048 (best values)
Winter Week Spring Week Summer Week Fall Week
For hor/season  r MAPElog RMSE r MAPElog RMSE r MAPElog RMSE r MAPElog RMSE
1h 0.97  13.02 5.75 0.96  13.60 4.21 0.96  14.08 2.68 0.97 10.30 2.80
2h 0.95  16.38 7.17 0.96  15.08 3.85 0.94  15.86 3.08 0.96 11.65 3.62
3h 0.94  20.04 8.41 093 17.60 4.13 0.91 18.73 3.55 0.95 13.67 417
6h 0.94 2722 8.28 0.78 2453 5.47 0.85  29.30 4.82 0.88  24.34 6.99
12h 0.87  35.65 10.82 0.34  49.88 11.40 0.79  37.05 6.10 0.61 46.35 18.35
TABLE A.2 Forecasting errors: Buoy 42056 (best values)
Winter Week Spring Week Summer Week Fall Week
For hor/season  r MAPEIlog RMSE r MAPEIlog RMSE r MAPEIlog RMSE r MAPEIlog RMSE
1h 0.97 9.04 0.73 0.95 8.87 0.25 0.97 9.57 0.24 0.95 11.05 2.29
2h 0.96  11.51 0.89 0.94  11.47 0.31 096  11.28 0.29 0.94  14.19 2.53
3h 0.94  14.68 1.03 0.91 13.89 0.36 0.96  11.60 0.32 0.91 17.49 3.06
6h 0.89 2022 1.34 0.78 2224 0.64 0.90  21.27 0.57 0.85  24.69 4.22
12h 0.73  29.53 2.01 052 39.34 1.58 0.89  19.80 0.56 073 37.42 6.44
TABLE A.3 Forecasting errors: Buoy 44014 (best values)
Winter Week Spring Week Summer Week Fall Week
For hor/season r MAPElog RMSE r MAPEIlog RMSE r MAPEIlog RMSE r MAPElog RMSE
1h 097 1271 4.51 098  17.60 11.94 093 1371 0.39 0.94 1745 3.43
2h 0.96  16.62 5.44 0.94  23.67 16.86 0.88  18.80 0.50 0.90 2507 4.62
3h 0.95 2174 5.50 095 3272 18.64 0.80  25.06 0.63 0.87  34.48 5.34
6h 0.88  306.75 7.53 0.90  48.56 26.07 0.61 30.37 0.85 0.75  53.07 7.93
12h 0.72  53.19 9.51 0.86  63.40 32.40 0.49 3829 1.08 0.53 7845 11.88
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FIGURE A.1 Box plots of the error metrics distributions, considering all FIGURE A.2 Box plots of the error metrics distributions, considering all

forecasting horizons (buoy 42056)

forecasting horizons (buoy 44014)
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TABLE A.4 Forecasting errors comparison: Buoy 41048 (mean results)

41048 Winter Week Spring Week Summer Week Fall Week

r NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN
1h 0.86  0.95 0.95  0.96 0.86  0.94 095 0.95 0.86  0.92 0.83  0.94 0.91 092 0.96  0.97
2h 0.81 091 0.90  0.95 0.77 091 093  0.94 0.89  0.89 0.64  0.92 0.88  0.89 0.93  0.95
3h 0.82  0.88 0.86  0.93 0.77  0.87 0.88  0.92 0.86  0.86 0.36 0.89 0.84  0.89 0.92  0.92
6h 0.72  0.73 0.79  0.92 0.63  0.67 0.65  0.72 0.81  0.82 0.34  0.80 0.74 072 0.79  0.82
12h 0.60  0.62 0.73  0.85 0.35  0.09 0.14 029 0.63  0.70 012 0.69 0.51 048 045  0.54
MAPE-log NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN
1h 42,6 175 177  14.4 49.5 1860 191 143 18.0  16.3 225 155 263 142 224 111
2h 46.0 212 256  17.6 96.3 215 212 16.1 230 181 277 11.8 249 179 21.0 140
3h 352 253 36.3 215 77.8 26,5 285 18.8 28.7 205 335 203 289 188 252 172
6h 56.2 383 444 282 63.5 387 470 283 389 253 385 333 36.7 311 339 317
12h 65.5 427 59.8 389 55.6  57.8 889  52.8 540  36.9 754 39.0 49.3 511 563  51.8
RMSE NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN
1h 147 71 7.2 6.2 119 72 7.4 4.5 4.4 4.1 6.8 3.0 5.2 4.8 3.9 3.2
2h 147 9.5 105 8.1 19.7 9.3 9.7 4.2 4.1 4.5 122 34 6.8 6.0 4.9 3.9
3h 162 109 139 9.4 147 10.6 8.7 5.2 5.1 5.1 1.1 4.0 9.0 5.7 5.5 4.9
6h 234 153 139 89 18.5 122 141 6.4 5.5 5.5 11.8 57 109 10.5 9.2 8.4
12h 244 165 16.8 123 205 174 21.0 127 7.6 7.0 140 69 212 217 217 197
TABLE A.5 Forecasting errors comparison: Buoy 42056 (mean results)

42056 Winter Week Spring Week Summer Week Fall Week

r NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN
1h 0.96  0.95 0.96  0.97 0.90 093 0.89  0.95 0.90  0.95 093  0.97 0.92 091 093  0.94
2h 0.94 093 0.94  0.95 0.88  0.91 0.87  0.93 091 0.95 092 0.95 0.82  0.90 0.90  0.93
3h 0.88  0.92 0.90  0.93 0.88  0.88 0.78  0.90 091 0.95 0.90  0.95 0.86  0.88 0.88  0.90
6h 0.87 0.87 0.87  0.87 071 0.72 0.66  0.75 0.87  0.93 0.86  0.87 0.78  0.82 0.79  0.84
12h 0.68  0.66 0.60  0.67 046  0.51 0.37  0.40 0.64  0.90 0.70  0.84 0.70  0.75 0.70  0.69
MAPE-log NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN
1h 133 1206 124 101 222 172 20.7  10.1 272 165 238 123 141 144 128 12.2
2h 142 1441 147 129 182 19.2 21.8 127 330 164 2277 156 733 168 158  15.4
3h 244 159 192 16.0 17.6  21.2 312 154 240 167 432 147 357 194 19.0  18.7
6h 231 217 233 223 251 281 382 247 374 17.8 434 275 46.6 287 295 269
12h 331 336 347 31.6 431 39.7 593 451 589 213 53.6 242 444 421 381 418
RMSE NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN
1h 0.90 091 0.83  0.78 0.59 038 042 0.27 0.54 033 0.39  0.27 2.87 319 2,70 2.52
2h 103 1.05 .01 0.95 0.52 042 0.50  0.34 0.66  0.31 0.38  0.34 6.15  3.61 342 2.85
3h 1.44 117 128 113 0.49 047 0.61  0.42 052 0.32 0.47  0.39 479 418 372 3.37
6h 149 146 149 147 0.78 0.71 0.88  0.69 0.89  0.37 0.53  0.67 576 5.48 535  4.61
12h 226 232 241 221 1.69  1.52 1.97  1.70 2.01  0.50 0.81  0.78 743 741 6.74  7.02
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TABLE A.6 Forecasting errors comparison: Buoy 44014 (mean results)

44014 Winter Week Spring Week Summer Week Fall Week

r NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN
1h 0.84 093 0.82 097 0.81 0.89 0.31 0.97 0.92  0.84 091 0.91 093 091 093  0.93
2h 0.82 092 0.89  0.94 0.74  0.88 040  0.93 0.86  0.79 0.84  0.84 090  0.85 0.90  0.88
3h 0.65  0.88 0.61 093 0.80  0.87 013 0.93 0.75  0.69 0.67  0.73 0.83  0.76 0.87 0.84
6h 0.59  0.82 0.30  0.84 0.65 0.83 035  0.86 049  0.53 036 0.53 0.62  0.50 070 0.72
12h 0.52 0.65 -0.30 0.68 0.55 0.73 018  0.80 0.32  0.45 027 041 039 0.16 036 0.51
MAPE-log NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN
1h 22.4 18.7 191 13.8 684 287 49.2 19.2 18.4  26.1 16.1  15.8 314 266 37.7 215
2h 107.4 220 219  18.6 50.7 33.1 584 26.1 219 279 236 217 374 340 330 29.0
3h 1331 268 307 23.6 54.7 36.8 685  35.1 26.1  30.1 31.6 268 46.3 424 664 39.0
G6h 95.7  39.4 55.0 395 92.3 51.2 94.6 52.2 323 365 398 33.3 74.7 63.8 709  57.2
12h 1140  54.0 81.4 579 1134 63.9 130.0  68.8 391 429 440 433 1047 948 975 849
RMSE NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN NN RBNN SVR CNN
1h 126 9.8 122 5.8 332 311 98.8 15.0 0.4 0.6 0.4 0.4 3.7 4.1 3.7 3.7
2h 178 9.2 11.6 6.6 37.1 32.6 73.5 18.2 0.6 0.7 0.6 0.6 4.8 5.6 4.8 5.0
3h 19.5 10.9 164 6.7 350 316 1185  20.5 0.7 0.8 0.9 0.7 6.4 7.4 5.6 5.9
6h 17.6 10.3 226 8.9 40.5 34.4 2492 28.9 1.0 0.9 1.3 1.0 10.5 11.2 9.1 8.6
12h 23.7 14.5 41.0  10.6 44.7 39.4 229.5  36.1 1.2 1.0 1.3 1.2 17.5 19.3 16.7 129
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