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Abstract

By 2050, global population growth will lead to a significant increase in demand for animal-
based products, including seafood. Aquaculture is a key solution to meet these needs
while reducing pressure on wild aquatic stocks. However, its environmental footprint and
energy demand remain open concerns. This study explores the co-location of offshore
aquaculture with a wave energy converter—WaveRoller—as a renewable power source.
Using a 44-year dataset from the Portuguese coast near Peniche, the analysis evaluates the
survivability and operation of the WaveRoller, long-term percentile trends, seasonal energy
production, extrapolated extreme events using probabilistic modeling, and confidence
intervals for energy costs. A scenario-based range of energy demand is constructed from
a baseline blue mussel production of over 400 tons/yr. The K-Means clustering method
is applied to reduce data size while maintaining its representativeness. Results show that
a 600 kW WaveRoller is similarly suited to operational wave conditions compared to a
1000 kW device, though it excels when aquaculture energy demand peaks in Summertime.
The probability that a single WaveRoller fails to meet annual aquaculture energy needs is
nearly zero, though, during Summer, it can become statistically significant. The opposite
is verified on survivability during Winter, under harsher wave conditions. The Levelized
Cost of Energy is calculated for different expenditure scenarios, with minimum values
slightly under 200 EUR/MWh being reported only under ideal conditions. Future work
should include climate change scenarios and life cycle assessments to better evaluate
environmental impacts and techno-economic viability.

Keywords: offshore mussel aquaculture; marine renewable energy; oscillating wave surge
converter; extreme value analysis; annual energy production; Levelized Cost of Energy;
K-Means clustering

1. Introduction
By 2050, the global population is expected to reach 9.2 billion, increasing the demand

for animal-based products by 95% compared to 2010 [1]. However, commercial marine pop-
ulations have been declining, particularly due to climate change (CC) and overfishing [2,3].
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Aquaculture has, therefore, emerged as an alternative to meet food requirements while
avoiding overexploitation of wild aquatic ecosystems. It is estimated that global aquatic
animal production could reach 205 million tons by 2032, of which 111 million would come
from aquaculture [4]. Nevertheless, aquaculture can be controversial due to issues such as
inadequate wastewater treatment, which leads to environmental pollution [5,6]. On the
other hand, integrated multi-trophic aquaculture (IMTA) and certain cultivated species,
such as algae and bivalves, can mitigate eutrophication and restore habitats for various
marine species [7]. To limit negative impacts, European legislation imposes strict standards,
particularly concerning the use of antibiotics, waste discharge, and farming density [8–10].
In the context of increasing seafood demand and the need to develop sustainable practices,
offshore aquaculture in Europe appears as a promising solution. It also helps avoid the
saturation of coastal and onshore areas already heavily used for other activities [5,11].
Nonetheless, to enhance animal welfare and reduce environmental impacts, it is necessary
to select species adapted to the aquaculture site. Many factors influence species viability,
including temperature, salinity, and chlorophyll content [12,13]. Selecting species accli-
mated to the aquaculture location would amplify their viability. Offshore infrastructures,
though, face additional technical, environmental, and economic challenges. They also
require energy to operate [12], making it relevant to explore renewable energy sources.

Global electricity demand was estimated at around 31,153 TWh in 2024, a 4.3% increase
compared to 2023 [14], and is expected to continue growing with population growth and
the arrival of energy-intensive technologies like Artificial Intelligence. It becomes essential
to consider energy input from renewable sources [15], and developing co-located offshore
aquaculture and marine renewable energy could limit CC impacts on these sectors [15].
Oceans and seas represent a significant renewable energy resource due to thermal and
salinity gradients, currents, tides, and waves, which could theoretically provide over
90,000 TWh/yr (thermal and salinity gradients), along with an additional 26,000 TWh/yr
(tides/currents) and 29,500 TWh/yr (waves) [16,17]. Wave Energy Converters (WECs) are
not yet fully technologically mature [18–20], but companies such as Oscilla Power (Triton),
CorPower Ocean (C4), Wave Dragon ApS (WaveDragon), and AW-Energy (WaveRoller)
have reached a high Technology Readiness Level. These WECs can typically be located at
intermediate depths where a relevant wave energy resource is present that can coincide
with aquaculture zones (e.g., the coasts of Penghu, Puerto Rico, or Peniche [12,21,22]).

The energy produced by WECs could power aquaculture farms, but it should be
verified whether it is sufficient to meet aquaculture needs throughout the seasons. CC and
local variability could also affect WEC performance, making it relevant to study the long-
term evolution at the deployment site [23]. WECs also face technical challenges, as they
must withstand storms. Hence the need to analyze extreme waves [24] and compare them
with the converter’s design tolerances, as recommended by international standards [25,26].
Additionally, studying the distribution of wave heights and frequencies is important to
schedule maintenance activities [27]. Given the economic challenges faced by WECs, one
must also estimate their Levelized Cost of Energy (LCoE) [28]. Considering the uncertainties
of both expenditures and energy output, the introduction of scenarios and probabilistic
modeling (e.g., confidence intervals) provides better insights toward decision-making
processes than deterministic approaches, as seen in other fields of research—from coastal
protection to offshore wind [29,30]. Recently, Bru et al. [31] also employed probabilistic
modeling to LCoE estimates of solar photovoltaic for the North Sea. A stochastic defini-
tion of the LCoE terms was employed alongside Monte Carlo simulations, detailing their
variability, sensitivity, and contributions toward the final energy costs. As such, there
is a risk that the wave energy sector can lag behind this mindset change, making it less
competitive and reliable. Finally, to reduce dataset size for simulations—particularly for
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farm optimization with wave propagation models (WPMs)—, clustering algorithms can be
used, with the resulting data being checked for statistically significant differences [32,33].

In existing wave energy literature, deterministic approaches are still prevalent, while
statistical/probabilistic techniques are somewhat fragmented across distinct studies. Works
on co-located wave energy and offshore aquaculture are gaining traction [12,34,35] but remain
limited. Hence, conjugating the aforementioned techniques and exploring synergetic opportu-
nities between the two sectors can provide frameworks for other researchers to systematically
replicate in their studies. Though guidelines for WEC development, such as those provided
by DNV and Ocean Energy Systems, exist [26,36], they assume a somewhat generic profile,
which can be consolidated by implementing the techniques applied in this paper.

In detail, this paper applies advanced statistical and probabilistic techniques to a
case study of a co-located Mytilus edulis aquaculture facility with an AW-Energy Wa-
veRoller device off the coast of Peniche, Portugal. This coastal nation has an intensive
wave energy resource [37] and is one of the largest consumers of seafood—including
bivalves—averaging 60 kg/yr per capita [38]. This makes offshore aquaculture powered by
WECs particularly interesting for the country, as it could meet local needs while mitigating
emissions. This work also extends beyond the limited number of local case studies found
in the literature [39], as well as those that address co-located offshore aquaculture with
wave energy in Portugal. Uncertainty-based estimates of energy supply, demand, and costs
are provided in detriment of more rigid deterministic ones, while co-location opportunities
and limitations for the Peniche site are also discussed. Being a realistic case study area,
it yields a dual contribution toward the development of these strategic “Blue Economy”
markets, which can assist decision-making processes by involved stakeholders. Further-
more, the proposed approach not only leverages dispersed yet consolidated techniques
that incorporate uncertainty—a matter of increasing importance in modern industries,
but lacking in the wave energy sector—but also employs recent/novel methods, such as
K-Means and confidence intervals (CI), respectively. As a result, an innovative approach
is implemented based on a combination of probabilistic and statistical methods, and its
potential is demonstrated for an equally promising case study: co-location of offshore
aquaculture with wave energy.

The aims of this paper are to (i) compare the energy output of a WEC with aquaculture
energy requirements for the Peniche case study, where both sectors operate; (ii) analyze
the local wave climate to estimate survivability, operation, and long-term trends, based on
robust statistical and probabilistic techniques; (iii) propose a dataset reduction approach to
facilitate follow-up WPM studies while maintaining representativeness; and (iv) estimate
the LCoE of energy produced under various capital (CapEX) and operational (OpEX)
expenditure scenarios while accounting for uncertainty.

The paper is structured as follows:

• Section 2 describes the methodologies applied to the case study, the marine species
considered, and the aquaculture energy demand scenarios.

• Section 3 presents the results obtained, including the survivability assessment, dataset
reduction, energy production estimation, comparison with energy needs, and eco-
nomic evaluation.

• Section 4 concludes the study, summarizes the main outcomes, and proposes future
study paths.

This study not only provides insightful outcomes for co-located offshore aquaculture
with wave energy, particularly for the involved stakeholders at the Peniche site, but also
provides an in-depth probabilistic analysis to be reproduced by other researchers. Though
the work finds that achieving competitive LCoE for the Peniche site can be difficult, it
also demonstrates the need for further verifying clustering techniques upon the selection
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of representative sea-states. It also showcases the sensitivity to “worst-case scenarios”,
such as the Summer (peak demand, low energy production). Furthermore, it highlights
the importance of long-term trends, which can affect the productivity of a WEC; in this
study, the lower percentiles of significant wave height and wave energy period exhibit an
increasing trend, which can lead to an enhancement of the energy yield of the WaveRoller.

2. Materials and Methods
2.1. Characterization of the Case Study

In this paper, the maritime area around the city of Peniche, located in Western Portugal
(Figure 1), was studied. This site was ideal for the study, as it hosts a Mytilus edulis
aquaculture facility [40] south of Peniche, and the ONDEP project north of the city [41]
(Figure 2). AW-Energy aims to install a 2 MW wave energy farm with four WaveRoller
converters, and a first 350 kW prototype was successfully tested on this site in 2019 during
the FOAK project [42] (Figure 3). This extends from Portugal’s investments in marine
renewables, with an expected installed capacity of 2 GW by 2030, according to the Allocation
Plan for Offshore Renewable Energy, or PAER [43].

In order to analyze the wave data for the site where the farm is located, a study
point was established at longitude 9.3081◦ W, latitude 39.3896◦ N, and bathymetry 15.23 m
based on the coordinates delimiting the space occupied by the WaveRoller during the
FOAK project [46]. This point provides information on the incident wave before the data
is significantly altered by bathymetry while remaining close enough to the WEC to have
limited propagation. Using these coordinates and a pre-validated high-resolution SWAN
numerical model [37], 44 years of data were obtained and analyzed for this study.

Furthermore, one of the main objectives of this paper is to determine whether the
energy output can meet the needs of offshore aquaculture (see first aim in the Section 1). To
do this, it is necessary to know the power matrix of the WaveRoller. It uses an articulated
panel, anchored to the seabed, which is moved by the movement of the waves. The power
rating ranges from 350 kW to 1000 kW [47], thus justifying the selection of (two) distinct
power matrices (Figure 4). Both correspond, originally, to a 1000 kW WaveRoller [48], but
the second matrix [49,50] was downscaled to 600 kW to correspond to the FOAK project.

Figure 1. Map of Portugal showing the location of Peniche, followed by a map of Peniche showing
the aquaculture site (red, south) and the FOAK project site (yellow, northeast).
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Figure 2. Mytilus edulis [44].

 

Figure 3. WaveRoller wave energy farm installation in Peniche, Portugal (2019) [45].

 

Figure 4. Representation of the two matrices with a colorimetric index ranging from 0 to 1000 kW, with the
significant wave height Hs (m) as a function of the wave energy period Te (s) and peak wave period Tp (s).
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For the downscaling, Froude similarity was used, following the methodology pro-
posed in [19,50]:

Fr =
v√
gL

(1)

where Fr is the Froude number as a function of gravity g, flow velocity v, and characteristic
length L.

Then, the second matrix was adjusted to an axis identical to the original one by linearly
interpolating the values (2) and adding a correction factor to avoid loss of information:

y = y1 +
(x – x1)(y2 – y1)

(x2 – x1)
(2)

To validate this transformation, the overall and relative bias and Root Mean Square
Error (RMSE) were calculated. However, since it is expected to observe some error given
that the objective is to reduce the power levels, the normalized values of the two ma-
trices were also compared to verify the fidelity of the 600 kW model compared to the
1000 kW model. For this purpose, the power values of both matrices were scaled to a
dimensionless scale (3).

P∗ =
P

Pmaxre f
(3)

where P∗ is the normalized value, P is the power, and Pmaxre f is the maximum
reference power.

2.2. Aquaculture: Species Selection and Energy Requirements

The selected species was Mytilus edulis, with an ideal temperature range between
11 ◦C and 18 ◦C. This tends to correspond to the temperature of the site, which generally
fluctuates between 13 ◦C and 18 ◦C. Furthermore, this is also an area with a sufficient
silicate concentration for this species (0.5–0.9 µmol/L), since the marine area studied near
Peniche has a rate of 0.72 µmol/L. However, the chlorophyll-a concentration is quite low
(0.36 µg/L) compared to the needs of mussels (6.3–10 µg/L) [13]. This is clarified in
Section 3. The energy requirements also need to be known in order to be compared with the
WEC’s energy output. To ensure more generalizable results applicable to different farms,
several cases with varying energy demands were analyzed. These requirements were
determined based on the estimated order of magnitude of the studied farm’s consumption,
as well as on a 2012 SARF study [51].

In order to obtain the magnitudes and value range, publicly available details on
the Peniche aquaculture farm [52] and the literature related to the operation of mussel
farms [53–57] were used, as well as technical documentation of commercialized products
necessary for the operation of the aquaculture farm. Figure 5 shows the dimensions of the
mussel farming sector studied in this paper.

Based on this data, a reference annual consumption of 186.4 MWh for a produc-
tion of 432 tons/yr of mussels was obtained. However, annual energy consumption can
vary greatly depending on the level of mechanization, operation, remoteness of the site
(offshore aquaculture), and type of aquaculture [58,59]. Thus, and based also on the mag-
nitudes surveyed in the SARF report [51], a range of 100 to 500 MWh/year was chosen.
Figure 6 and Table 1 show the distribution of energy expenditure calculated for the case
study. Figure 6 was presented in this way to facilitate visualization and comparison with
other studies, particularly the SARF study [51].
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Figure 5. Representation of mussel farming in the sector studied, according to the parameters
indicated by Portugal’s Directorate-General for Natural Resources, Safety and Maritime Services,
or DGRM.

 

137.2 MWh
74%

49.2 MWh 
26%

Consumption per year

Vehicles and generators Other services

Figure 6. Representation of the distribution of annual energy requirements for the blue
mussel farming.

Table 1. Details of estimated energy expenditure for the blue mussel farming.

Other Services (MWh) Vehicles and Generators (MWh)

Declumpimg 3.5 Barge 38.4
Debyssing 3.0 Winch 89.5
Analysis ≈0 Vessel 6.9
Storage 7.4 Tractor 2.4

Depuration 24.6
Classification 6.4
Conditioning 1.0

Brushing 0.3
Lights 3.0

To analyze seasonal differences, the various activities contributing to annual consump-
tion were associated with the seasons according to the operational calendar. Components
related to harvesting (including purification, classification, packaging, storage, washing,
lighting, and part of the sea trips) were grouped together and then divided between May
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and July, which was considered the harvesting period [53]. Interventions requiring the
winch were shared between the different seasons according to the reason for the trip. For
example, 40% of the energy expenditure of these trips was exclusively distributed between
Autumn and Winter (non-harvest interventions). The other items were assigned to the
remaining seasons according to their frequency. Then, the seasonal shares obtained were
applied to different annual consumption scenarios (100 to 500 MWh) (Table 2).

Table 2. Estimated energy expenditure for mussel farming for different annual requirements.

Needs (MWh/Period)

Case 1 2 3 4 5

Annual 100 200 300 400 500

Summer 36.1 72.2 108.3 144.4 180.5
Autumn 22.5 45.0 67.5 90 112.5
Winter 22.5 45.0 67.5 90 112.5
Spring 18.9 37.8 56.7 75.6 94.5

2.3. Selection of Methods for Analyzing Wave Energy Converters
2.3.1. Survivability and Operationality

Starting with survivability at sea, it is essential to have detailed information about
the local wave climate. Hs, Te, and wave direction Dir, obtained from the SWAN WPM
for the period between 1 January 1979 (00:00) and 31 December 2022 (22:00) were used.
Each measurement was taken at bi-hourly intervals. However, data from 1 January 1979
was truncated due to the presence of potential outliers in the data attributed to the original
calibration from buoy data. Given the size of the dataset, their removal has a negligible
impact on non-survivability aspects.

Using a Python script (Version 3.13) and relying on the 44-year dataset, resource
matrices corresponding to the expected annual average resources were generated. These
indicate the number of hourly occurrences per sea-state (Hs − Te bins) and were combined
with the corresponding WEC power matrices. By calculating the theoretical converted
energy per sea-state, the annual energy production (AEP) can be computed.

As previously mentioned, aquaculture energy needs are not constant over the year,
with mussel farming showing a peak consumption during Summer harvest. Hence the
need to analyze the resources available per season, especially since Portuguese waters
show a seasonal trend, where Summer is generally the least favorable season for wave
energy production [37]. For this purpose, another Python script was used to split the
data by meteorological seasons: December–February for Winter, March–May for Spring,
June–August for Summer, and September–November for Autumn.

To further assess WEC survivability, extreme event exceedances that could damage
the device were analyzed. The average number and duration of extreme event occurrences,
which were defined as waves with heights or periods exceeding the upper matrix limits
(see Figure 4), were determined. To check for seasonal patterns, a histogram of the number
of events per month was plotted in Python.

Another key aspect is the occurrence of weather windows, allowing safe access to the
device for maintenance operations. These were defined, in a simplified format, as periods
with waves below 1.5 m for at least 120 consecutive hours [27]. A similar Python script
was used to determine their duration and seasonality. Still, waves below 1.5 m may also
indicate conditions too calm for the WaveRoller to produce energy (lower limits of the
power matrices). Therefore, the number of events with Hs < 1 m was also analyzed in order
to obtain additional information on WEC availability.
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To study WEC survivability over time, data was sampled using the Block Maxima (BM)
and Peaks-Over-Threshold (PoT) methods. The extreme events were then extrapolated
according to distinct return periods using a Generalized Extreme Value (GEV) distribution
and a Generalized Pareto Distribution (GPD), respectively. These are reliable probabilistic
approaches often used in coastal engineering, including in wave energy conversion [24,60].
To use them, the Python libraries pyextremes and scipy.stats were employed [61]. For
sampling extreme heights using PoT, a limit of 5 m was imposed, which corresponds to the
minimum Hs that could damage the WaveRoller and, as seen in Section 3, ensures GPD
parameter stability. The minimum temporal interval tr between each peak was defined
based on the analysis of extreme events (about 70 h). For sampling by BM, the maxima
for each year were taken. Note that for BM, the last maximum was disregarded, given its
likelihood of being an outlier (Hs near 2.5 m). Its removal improved the distribution fitting
and provided more realistic and conservative extrapolated Hs values.

Since long-term effects, like CC, could influence the frequency and/or intensity of
extreme events and the WEC’s energy production, monthly, seasonal, and annual trends in
wave characteristics were investigated. Dir, Te, and Hs were analyzed by dividing the data
into three periods: 1979–1993, 1994–2008, and 2009–2022. For each period, percentiles
(P1, P5, P10, P25, P50, P75, P90, P95, P99) were compared. Graphs were smoothed
using Pandas DataFrame.rolling with a 15-point window. Because Dir is circular data, it
was necessary to convert it into sine and cosine components to enable percentile anal-
ysis. A directional efficiency coefficient was assigned, ranging from 1 for the optimal
direction—wave front parallel to the WaveRoller—to 0—wave front perpendicular to
the device (i.e., fully misaligned with the single rotational degree of freedom). The ref-
erence direction was considered to be 323◦ (mean Dir) or its opposite, 143◦, assuming
that the WaveRoller would be optimally oriented. Finally, to verify whether these char-
acteristics changed over time, temporal trends in percentiles were analyzed using the
Mann–Kendall hypothesis test to assess the presence or absence of trends on annual,
monthly, and seasonal scales.

2.3.2. Dataset Reduction Approach

Another objective is to propose a reduction in the dataset which would diminish the
computational effort in WPM simulations while maintaining sea-state representativeness.
For this study, the data was clustered with a K-Means clustering algorithm. The goal was
to find the minimum number of clusters that would yield a mean absolute percentage error
(MAPE) (4) under 5–10% for all three sea-state parameters [32,62]:

MAPE =
1
n

K−1

∑
k=0

∑
i∈Ck

∣∣∣∣Ok − Ri
Ri

∣∣∣∣ (4)

where n is the data size, K the number of clusters, Ck the set of points belonging to cluster k,
R the actual value, and O the cluster centroid value.

Since the K-Means clustering algorithm is not well-suited for circular data such as
Dir, a similar transformation as previously described for the percentile-based analysis
was used: the direction was converted into its sine and cosine components. However,
unlike the percentile method, a directional efficiency coefficient was not applied here.
The directional profile of the clusters was plotted on a wave rose diagram to show that
the directional values are well aligned with those of the site directions. To improve the
clustering performance, the data were standardized through division by the respective
means of Hs and Te, depending on the chosen power matrix, as well as the means of the
cosine and sine of the Dir. This standardization method yielded better clustering results
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than other approaches tested, including standardization using the median, normalization
to the [0, 1] range, and pre-processing with StandardScaler, RobustScaler, and MinMaxScaler.

The clustering algorithm was run using the K-Means tool from the Scikit-learn library,
and the parameters chosen included initialization by k-means++, a variable number of
clusters, and a “seed” of 0. This yielded the cluster centroids and a new dataset based
on them, after reversing the standardization and reconstructing the angles from the Dir
cosines and sines. In order to verify this reduction in the dataset, the estimated AEP and its
confidence intervals were compared with the original data for the two power matrices. To
do this, a paired Student’s t-test (5) was performed at a confidence level of 95%:

t =
x
√

n
sd

(5)

where is x the average difference and sd the standard deviation of differences.
In addition, the AEP averages and confidence intervals were calculated using the z and

t distributions, and the percentage error was analyzed. To verify that the distribution can
be approximately normal, histograms, Q-Q plots, and P-P plots were created. Furthermore,
to improve the results of the AEP calculation for the reduced data, values outside the limits
of the power matrix studied were truncated, in line with the survivability assessment. The
method proposed above was then used for clustering. Yet, even without this removal, the
MAPEs remained below 10%.

2.3.3. Formulation for Energy Production and Costs Estimates

Finally, the final objective required estimating the AEP and its cost, in order to deter-
mine whether the energy needs of aquaculture are covered and the LCoE is competitive. As
such, the AEPs per matrix were calculated, both for the original and K-Means reduced data.
Then, for each case and based on the sample of 44 AEPs, an average AEP and its confidence
interval were estimated, assuming a standard normal distribution. Additionally, the proba-
bility that a WaveRoller unit cannot meet the mussel farm’s needs was calculated, namely
by computing the AEP distribution z-score and comparing it with the energy demands.

Lastly, the LCoE (6) was estimated according to different CapEX and OpEX costs.

LCoE =
CapEX × CRF + OpEX

AEP
(6)

CapEX between EUR 1.5 million/MW and EUR 5 million/MW was assumed in
increments of EUR 500,000/MW and OpEX between 6% and 10%. To calculate the capital
recovery factor (CRF) (7), an interest rate r of 5%, 7.5%, and 10% has been set over a period
of 20 years. This followed on the approach used in [63]:

CRF =
r(1 + r)n

(1 + r)n – 1
(7)

3. Results and Discussion
3.1. Converter Survivability and Production over Time

Starting with the energy yield estimates, by combining the resource and power ma-
trices, the average AEP converted by the WEC (Figure 7) was obtained. This combined
matrix also allows the identification of the sea-states for which the energy conversion is
greater. As explained previously, the second power matrix was obtained through Froude
similarity and a correction factor. In order to verify this transformation, the bias and RMSE
were calculated and reported in Table 3. Finally, the normalized bias of −2.3% shows
that the 600 kW model is well-calibrated and exhibits only a small overall offset, and the
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overall bias indicates that the 600 kW model tends to underestimate reality. However,
the normalized RMSE shows that local variations may exist, particularly for significant
power levels. Thus, while the 600 kW model accurately reproduces the overall trend of the
1000 kW matrix and allows for a comparison of the two matrices proposed in this article,
the RMSE reveals the existence of local discrepancies that may reflect dynamic effects not
captured by Froude similarity, which could be addressed in future research. Still, the RMSE
discrepancies exhibit their own limitations here, and a fairer basis of comparison should
be done with commercial equivalents. The scaling approach was employed precisely to
circumvent the absence of a 600 kW variant, so a direct comparison with the 1000 kW
variant is not as fair as it would be with an actual commercial variant of equal rating.

 

Figure 7. Mean annual energy produced, calculated from 44 years of data for each of the
two power matrices.

Table 3. Table showing the bias, the RMSE, and the relative RMSE between the initial power matrix
of 1000 kW and the reduced power matrix of 600 kW for overall and standardized values.

Bias RMSE Relative RMSE (%)

Overall −69 kW 227 kW 165
Standardized −2.3% 23% 52

Despite the fact that the theoretical power absorbed by the WEC is greater for waves
above 4 m, the converter generates more energy for Hs between 1 m and 4 m, which can be
explained by the prevalence of waves within this range.

As expected, there is also a disparity between seasons, with a wider range of heights
and periods in Winter. Hs above 5 m and Te around 14 s are more frequent than in other
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seasons (Figure 8). Conversely, in Summer, the majority of waves are less than 3 m high,
with a Te mostly under 9 s. Thus, an increase in energy production was expected in Winter,
given the enhanced overlap with higher values of the WEC power matrix. These seasonal
disparities can be observed for each power matrix (Supplementary Materials S1), which,
although expected, raise concerns regarding excess energy storage, demand coverage and
operational efficiency.

  
 

  
 

Figure 8. Average seasonal energy produced, calculated from 44 years of data for the first power
matrix studied.

While a WEC designed for smaller waves may be able to convert sufficient energy, it
may also be more sensitive to extreme waves. From a survivability perspective, while the
first power matrix shows that the converter appears to be designed for waves reaching 6 m,
the 600 kW converter could be affected by Hs beyond 5 m, which warrants an investigation
into the occurrence frequency of such “extreme” events.

Considering extreme waves as Hs above 6 m, 168 h spread over 11 exceedance events
were observed (Figure 9), suggesting that these are rare events with a low probability of
being observed several times per year (average of about one event per 4 years). However,
these waves could damage the 1000 kW converter (Figure 4), which is not designed for
these wave heights. Furthermore, some occurrences last more than 24 h, resulting in
prolonged extreme loads on the WEC and requiring suitable durability. As for Hs beyond
5 m (second matrix), there were 1724 h (Figure 10), with some events lasting several days.
Furthermore, these are mainly observed during the Winter, though some recordings exist
in early Spring and late Autumn. Therefore, the 600 kW variant should be more susceptible
to extreme events, given their greater frequency.
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Figure 9. Graph showing the number of events where Hs exceeded 6 m, according to their duration—
associated with a histogram illustrating the distribution of these events throughout the year.

  

Figure 10. Graph showing the number of events where the Hs exceeded 5 m, according to their
duration—associated with a histogram illustrating the distribution of these events throughout
the year.

Despite the major role of Hs, waves with a high period could also affect the WaveRoller,
as it is not designed to produce energy beyond 15 s. Yet, there were 692 h where the site
was exposed to such wave periods, namely between October and March (Figure 11).
Nevertheless, it is likely that some of these waves are coupled with extreme heights, which
can be evaluated by more complex approaches, such as copulas or environmental contours,
as recommended in international standards [25].

Figure 11. Graph showing the number of events where the Te exceeded 15 s, according to their
duration—associated with a histogram illustrating the distribution of these events throughout
the year.

Using the same threshold exceedance process, weather windows required for instal-
lation, access, and maintenance operations were determined. There were 3154 suitable
days for these activities, spread throughout the year but mostly concentrated around the
Summer (Figure 12), as expected from the more moderate wave climate during this season.
Furthermore, as the WaveRoller produces almost no energy at heights below 1 m, approxi-
mately 32,000 h during which this lower threshold was not exceeded were identified. This
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can last several days and occur at any time of the year, though less often in late Winter and
early Spring, given the harsher wave climate (Figure 13).

  

Figure 12. Graph showing favorable weather windows, based on their duration—associated with a
histogram illustrating the distribution of these windows throughout the year.

 

Figure 13. Graph showing the number of events where the Hs was less than 1 m, according to
their duration—associated with a histogram illustrating the distribution of these events throughout
the year.

In order to further study WEC survivability, the probability and intensity of future
events have been modeled. To do this, using the methods described in Section 2, the
expected maximum for the Hs and Te over 10, 50, and 100-year return periods after 2021,
the last year used from the dataset, was extrapolated.

To determine the tr, necessary for parameterizing the PoT method, the preceding
results were used. However, the graphs showed that these extreme events did not last more
than 70 h. Therefore, to promote event uniqueness, the parameter tr = 70 h was imposed.
This also promotes statistical independence, in order to adjust the model and obtain a
better extrapolation.

With the GPD, after sampling by PoT, the model predicts a baseline maximum Hs of
6.48 m for a 100-year return period (Table 4). By comparison, over the 44-year dataset, a
maximum Hs of 6.50 m was observed. Though plausible, this model may be providing a
low estimate, which is corroborated by visualizing the observed values. Despite the good
agreement seen in the Q-Q and P-P plots, the actual values are on the upper end of the CI,
leaving a small margin of error (Figure 14).

With BM sampling and GEV distribution, a similar model was obtained. Nonetheless,
the maximum Hs assumed in a 100-year return period is 6.51 m, slightly higher than the
observed value, which is more consistent. In addition, the CI is further from the observed
extremes, offering better margins and a more conservative outcome. There is also a slight
improvement in Q-Q and P-P plots results.
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Table 4. Summary table showing the maximum Hs and CI range estimated using the GPD/GEV
models under different return periods.

Estimation of Extreme Events (Hs > 5 m)

Period (Years) Expected Value (m) Mimimum Value (m) Maximum Value (m)

10 6.23/6.19 6.10/6.00 6.33/6.34
50 6.44/6.45 6.28/6.28 6.51/6.56

100 6.48/6.51 6.31/6.32 6.58/6.69

 

Figure 14. Graphs showing the Hs analysis of the models using the GPD (PoT sampling, left) and
GEV (BM sampling, right), respectively.

Overall, both models predict extreme Hs values close to those already observed.
Thus, although these extrapolations do not anticipate significant increases, they remain
based on historical data. While local wave climate, water depth, and bathymetry may
condition the maximum Hs, follow-up studies should integrate RCP CC scenarios and
evaluate their impact. Note also that parametrization was done by resorting to the
Maximum Likelihood Estimation built into pyextremes, which yielded location, scale, and
shape values of 5.35, 0.60, and 0.45 (GEV) and 5.00, 0.86, and −0.55 (GPD), respectively.
The shape parameter indicates a Fréchet family for the GEV distribution, but no special
case for the GPD.

As with Hs, fitting maximum Te with GPD and GEV has been studied for identical
return periods. Given that the maximum observed period was 18.27 s, the 18.10 s (Table 5)
expected over a 100-year return period, as predicted by the GPD, may be underestimating
reality. This is confirmed by visualizing the actual values, which shows an underestimation
of extreme Te, particularly above 10 s, in the Q-Q plots, with very wide CIs (Figure 15).
The second model, using GEV, seems to better predict an increase in Te, with an estimate
of 18.56 s under a 100-year return period. In addition, the GEV suggests a value between
17.85 s and 19.13 s, a smaller range than that of the previous model. Furthermore, analysis
of the Q-Q plot shows that the second model provides better agreement at higher quantiles
while retaining a good fit in the P-P plot. Therefore, the GEV is again favored for predicting
extreme values.
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Table 5. Summary table showing the maximum Te and CI range estimated using the GPD/GEV
models under different return periods.

Estimation of Extreme Events (TE > 15 s)

Period (Years) Expected Value (s) Mimimum Value
(s)

Maximum Value
(s)

10 16.60/16.74 16.24/16.30 17.16/17.08
50 17.65/18.02 17.05/17.39 18.57/18.51
100 18.10/18.56 17.40/17.85 19.18/19.13

 

Figure 15. Graphs showing the Te analysis of the models using the GPD (PoT sampling, left) and
GEV (BM sampling, right), respectively.

To complement, the stability graphs of Hs and Te following the GPD were plotted
(Figure 16). The observed parameters seem to have become unstable after 5.5 m and 15.5 s.
This reinforces the 5.0 m threshold selection, as the GPD extrapolation becomes less accurate
for extreme values exceeding these thresholds.

 
Figure 16. Stability graph of parameters Hs (left) and Te (right), referring to the GPD.

In order to analyze the evolution of wave parameters in greater detail, different
percentiles over three time periods have been studied, as mentioned in Section 2. The
results are presented in Figures 17–19. When comparing the periods, little variation in
Hs during the Summer was observed. However, there are significant differences between
January and February, particularly for extreme values, with higher Hs and a concentration
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around the Winter months, during the latter time period. Changes are also observed
between March and April for those values with a lower Hs and between October and
November for the highest 25% of values, where a peak of extreme values appears to have
moved from October to November. Conjugated with the January–February patterns, this
points toward more intense and concentrated extreme events, which can be hazardous for
WEC survivability and maintenance. Finally, between November and December, variations
were observed in the lowest values with an increase in wave height, which could eventually
allow more energy to be produced.

  

  

Figure 17. Hs percentiles over 44 years of data, followed by a smoothed comparison of the percentiles
for the three time periods, represented by dotted lines that thicken over time and a solid line for the
most recent period.

  

  

Figure 18. Te percentiles over 44 years of data, followed by a smoothed comparison of the percentiles
for the three time periods, represented by dotted lines that thicken over time and a solid line for the
most recent period.
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Figure 19. Percentiles of Dir coefficients over 44 years of data, followed by a smoothed comparison of
percentiles for the three time periods, represented by dotted lines that thicken over time and a solid
line for the most recent period.

For Te, variations are mainly observed for the lowest 25% of values between the second
and third months with higher values. Extreme periods appear to undergo little change,
but a positive variation can be noted in February and November for the most extreme
1%, which could indicate a future increase in extreme periods. This would be consistent
with the predictions made with the BM-GEV. Lastly, the Dir seems to change little overall,
with 90% of values having a coefficient greater than 0.9, meaning that the direction does
not hinder the WEC’s performance consistently or significantly. However, looking at the
P1 and P5 percentiles, a drop in WEC efficiency to 20% caused by the Dir is sometimes
observed. Still, when comparing time periods, the tendency is for higher coefficients with
lesser variability, which is desirable.

To further investigate long-term trends, the Mann–Kendall hypothesis test is employed,
examining annual, monthly, and seasonal variations in Hs. Thus, when comparing years,
a general trend was observed where small waves seemed to be gaining strength, with their
height and period increasing (Tables 6 and 7).

Overall, p-values were <0.05 up to the median, which may indicate a slight upward
trend. The Hs trends are also visible on a monthly and seasonal basis. This is in contrast
to the period, which only has its smallest 1% values increasing significantly on a seasonal
basis (Supplementary Materials S2). Thus, the trend observed for Hs, which is detected
at different scales for the same percentiles, is significant and visible at several scales. By
contrast, the trends detected for Te, which are mainly at the annual scale, show a more
diluted evolution over time, masked at smaller scales. These remarks can be impactful in
terms of AEP, given the expected shift of occurrences in the wave resource matrix towards
higher Hs and, less so, Te. This may be favorable, should the shift overlap with higher
values from the corresponding sea-states of the wave power matrix. It also showcases the
potential non-stationary nature of the dataset, though essentially at lower percentiles. For
higher ones, no increments were deemed significant, which can also be beneficial from a
survivability perspective. These results reinforce the GPD and GEV analyses performed
for Hs. In contrast, the GEV model applied to Te revealed a trend towards increasing
extreme values. Furthermore, Te increases were observed for the most extreme waves (P99)
during certain months. Thus, this absence of a significant annual trend for these periods
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could rather suggest the occurrence of seasonal extreme wave events characterized by
increasingly significant Te values.

Table 6. Table showing the values obtained with the Mann–Kendall test to determine the presence of
annual trends in Hs.

Percentiles Trend p z τ

1 Increasing 0.01 2.46 0.26
5 Increasing 0.02 2.28 0.24

10 Increasing 0.03 2.11 0.22
25 Increasing 0.03 2.15 0.23
50 No trend 0.09 1.69 0.18
75 No trend 0.66 0.43 0.05
90 No trend 0.48 0.70 0.07
95 No trend 0.88 −0.15 −0.02
99 No trend 0.75 −0.31 −0.03

Table 7. Table showing the values obtained with the Mann–Kendall test to determine the presence of
annual trends over the Te.

Percentiles Trend p z τ

1 Increasing 0.01 2.56 0.27
5 Increasing 1.44 × 10−3 3.19 0.33

10 Increasing 2.04 × 10−3 3.08 0.32
25 Increasing 0.02 2.25 0.24
50 No trend 0.06 1.89 0.20
75 No trend 0.30 1.06 0.11
90 No trend 0.93 0.09 0.01
95 No trend 0.55 −0.60 0.06
99 No trend 0.92 −0.09 −0.01

In terms of direction, no significant annual change was observed, though P5 to
P50 exhibit relatively low p-values (Table 8), which may indicate a slight upward trend.
However, for the first half (Supplementary Materials S3), there is a monthly and seasonal
upward trend, sometimes very pronounced, particularly for the first percentiles. This shows
a more localized evolution over time, masked on an annual scale. This agrees better with
the outcomes in Figure 19. These observations suggest that the energy converted by the
WEC may increase over time, without any significant extreme value increase. Nevertheless,
even if no trend is observed for extreme events, rare and more severe events than those
already observed may occur. Still, as also suggested by the GPD and GEV models, their
magnitude should not increase considerably.

Table 8. Table showing the values obtained with the Mann–Kendall test to determine the presence of
annual trends in the coefficients of Dir.

Percentiles Trend p z τ

1 No trend 0.19 1.30 0.14
5 No trend 0.09 1.71 0.18

10 No trend 0.06 1.86 0.20
25 No trend 0.07 1.82 0.19
50 No trend 0.08 1.75 0.18
75 No trend 0.34 0.95 0.09
90 No trend 0.34 −0.94 −0.03
95 No trend 1.00 0.00 0.00
99 No trend 1.00 0.00 0.00
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3.2. Dataset Reduction

To reduce datasets for a more efficient application of complementary analysis, such as
WPMs, a K-Means clustering algorithm was used. In order to obtain a MAPE score ≤ 10%
for a minimum number of clusters, an iterative approach was carried out, resulting in
11 clusters (Table 9) with a MAPE of 10.0% for Hs, 8.2% for Te, and 4.0% for Dir with the raw
data that was not adapted to the matrices. Nonetheless, MAPEs can be slightly reduced
by removing data corresponding to waves outside the WEC production limits, which are
given by the two power matrices (Supplementary Materials S3, Table 9).

Table 9. Table representing the MAPE (%) obtained after each clustering by K-Means according to the
number of clusters, and the associated power matrix in the case of the last two columns (truncated
matrix limits).

Number of Clusters 3 5 10 11 12 15 11-1 11-2

MAPE Hs (%) 18.6 15.2 10.2 10.0 9.4 8.5 8.0 8.5
MAPE Te (%) 15.0 11.3 8.9 8.3 8.1 7.3 7.5 7.6
MAPE Dir (%) 4.0 4.0 4.0 4.0 4.0 4.0 3.7 3.8

The literature analysis implied running the algorithm iteratively, with different pa-
rameters and numbers of clusters. After selecting the parameters, different numbers of
clusters were tested. The results and method presented in this paper correspond to the
parameters that yielded the best results. As the MAPE fell below 10% for each parameter
between 10 and 15 clusters, 11 clusters yielded the best result with the fewest clusters.
Furthermore, the clustering on Dir was very stable, with the MAPE changing very little
and remaining below 5%. Since most directions were grouped around 323◦ with limited
variability, this was expected. Also, even when clustering is performed only on sea-states
within the power matrix range, the Dir MAPE varies slightly, decreasing (11-1 and 11-2).
This could be explained by the removal of outlying values that deviate far from the average
ones, though with a negligible impact. This consistency in Dir is reassuring for energy
production, as it allows the WEC to be placed in a fixed direction while ensuring a high
and consistent direction-bound conversion coefficient.

In order to verify the directional profile of the clusters compared to that of the original
dataset, the cluster values were superimposed on a wave rose diagram, Figure 20. The
centroids revolved around a direction of 324◦, being well aligned with the site’s wave
rose diagram.

Figure 20. Wave rose diagram at the Peniche site.



Energies 2025, 18, 5934 21 of 29

In the clustering obtained, group 5 (Figure 21) has few elements compared to the other
groups. However, it remains necessary, since it represents sea-states with extreme wave
heights (Figure 22).

  

Figure 21. Distribution of clusters obtained with the K-Means clustering algorithm and representation
of MAPEs for each parameter relative to the 5% (green) and 10% (orange) limits.

Figure 22. Data distributed among the 11 clusters, after using the K-Means clustering algorithm.

In order to verify the significance of this clustering, a Student’s t-test was performed by
comparing the AEPs obtained from the K-Means clustering with those calculated from the
original data. For a confidence level of 95%, a critical t-value of 2.017 was obtained, while
for the AEPs in both power matrices scores well above it were obtained (Table 10). Thus,
there are statistically significant differences between the K-Means adjusted and original
data AEPs. From a practical point of view, though, for the first matrix, the effect is moderate
(≈4% difference), while for the second, the significance is stronger (16% difference).
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Table 10. Results obtained for the mean of the differences between the AEP obtained with the initial
and reduced data x, the standard deviation of the differences sd, the t-score and the p-value.

t-Test

1 2

x 44.87 197.65
sd 67.15 39.49
t 4.43 33.20
p ≈0 ≈0

The CIs are similar with the z (or normal/Gaussian) and t distributions (Table 11),
which suggests a sufficient sample size for assuming a normally distributed AEP. The good
agreement of the Q-Q and P-P curves supports this hypothesis. Regardless, significantly
different results are observed between the studied matrices. In detail, K-Means tends to
overestimate the AEP—mainly for the 600 kW variant—which suggests sensitivity to the
wave power matrix and warrants caution upon using K-Means instead of the original data.
Even so, this can be attributed to the cumulative discrepancies inherited from the Hs and Te

MAPEs, as reported in [32] and given the physical relationship between wave power, height
and period. Lastly, the initial data AEP ranges are similar for both WaveRoller variants,
though slightly benefiting the first matrix. Nevertheless, for a fairer basis of comparison,
the LCoE estimates are addressed next.

Table 11. Results obtained for the average AEP, with the initial and reduced data x, and the confidence
intervals from the z and t distributions.

Matrix AEP ¯
x CI (t) CI (z)

1
Initial 1256.5 47.0 45.6

K-Means 1301.4 40.0 38.9

2
Initial 1221.4 34.9 33.9

K-Means 1419.1 34.4 33.4

3.3. Energy Production and Levelized Cost of Energy

The final objectives of this paper involve estimating the WEC’s capacity to meet
the energy demand of the offshore aquaculture site, assuming that a single WaveRoller
is sufficient. This was evaluated based on Section 2’s assumptions, and seasonal needs
were calculated according to the stages of mussel development, equipment used, and
the different annual expenditures (Table 2). Summer expenditures are higher due to the
harvesting period. Then, for each power matrix and scenario, the AEP was calculated using
the initial and K-Means reduced data. Based on the AEPs, the normal distribution’s z-score
(Supplementary Materials S6) was calculated to determine the probability that a single
WaveRoller would not meet the aquaculture energy needs. The ensuing results showed
that, for each case, the probability of the energy demand exceeding the WEC’s output
tends towards 0 (Table 12, Supplementary Materials S4). For this probability to be 2.5%,
the demand must be at least 954 MWh/yr (first power matrix), almost double the range
maximum value.

Recalling that demand is higher in Summer, during the harvest season, it became per-
tinent to estimate the same probability adapted to the Summertime. For the second matrix,
a p-value of up to 0.27 is observed (Supplementary Materials S4), becoming significant for
the highest needs. As for the first matrix, the demand exceedance probability increases,
with a p-value of 0.76 for seasonal needs of 180.5 MWh (Table 13). Consequently, while a
single unit is likely to cover the annual energy demands, the Summer season may require
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additional units for a full coverage—mainly if the first WEC variant is selected—or assume
a partial demand coverage.

Table 12. Probability that the AEP of a WaveRoller unit, with the first power matrix, will be less
than the annual energy requirements of mussel farming for different scenarios and based on initial
(zi and pi) and reduced data (zk and pk).

Probability that AEP ≤ Need with One WEC (First Power Matrix)

Need (MWh) zi Value zk Value pi pk

100 −7.49 −9.13 ≈0 ≈0
200 −6.84 −8.37 ≈0 ≈0
300 −6.19 −7.61 ≈0 ≈0
400 −5.54 −6.85 ≈0 ≈0
500 −4.9 −6.09 ≈0 ≈0
954 −1.96 −2.64 0.025 0.004

1043 −1.38 −1.96 0.08 0.025

Table 13. Probability that the Summer energy production of a WaveRoller unit, with the first power
matrix, will be less than the Summer energy requirements of mussel farming, for different scenarios.

Probability Summer Energy ≤ Need with One WEC (First Power Matrix)

Need (MWh) zi Value pi

35.1 −4.02 ≈0
72.2 −2.82 0.002

108.3 −1.64 0.05
144.4 −0.47 0.32
180.5 0.70 0.76

Thus, while the average AEP of the 1000 kW WaveRoller is slightly greater than that of
the 600 kW variant, the latter would produce more, in Summer, than the first variant. This
can be explained by the presence of smaller waves during this season, which overlap better
with the second power matrix. By contrast, the first matrix yields more power at higher
Hs − Te sea-states, which are less frequent in Summer.

Adding to the outcomes of the percentiles and Mann–Kendall test analysis, it becomes
evident that resource variability should not be ignored for a device such as the WaveRoller.
Firstly, its power matrix has limits which can be surpassed either at its upper or lower
thresholds. This relates to availability, as in some periods the WEC may not be converting
any energy due to extreme conditions or insufficient wave-induced motions. As these
periods can vary between years and seasons, for example, it is pertinent to develop a
system that mitigates consistently these threshold exceedances (e.g., by promoting a good
overlap between the wave power matrix and the wave resource matrices throughout the
years/seasons, as feasible). Secondly, the percentiles and Mann–Kendall point toward
a potential increase of the AEP through a better overlap between future sea-states, at
lower percentiles, and higher wave power matrix values. This would not be detected in a
deterministic approach, by default. Another positive trend comes from the Dir, as there
seems to be no consistent trend. For a device like the WaveRoller, which is sensitive to
the orientation of waves given its rotational single mode of oscillation, having a limited
dispersion of the Dir attenuates eventual energy conversion losses due to misalignment
between the WEC and the incoming waves. Thirdly, the seasonal variability can cause
“worst-case scenario” situations with reduced AEP and increased energy demand, as seen
for the Summer. Consequently, should a single unit exhibit a significant risk of not meeting
the energy requirements, it may be necessary to either develop a more suitable variant,
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re-scaling it, or consider a second unit, as a backup system and to increase the probability
that the energy demand targets will always be met.

It is equally insightful to compute the LCoE values associated with the different power
matrices examined in order to assess the economic interest of incorporating the WaveRoller.
To do this, the main CapEX and OpEX are summarized into scenarios, after which the LCoE
values are calculated based on the discount rate and the AEP per matrix, using the initial
and reduced data (Tables 14 and 15 and Supplementary Materials S5).

Table 14. Table showing the LCoE produced according to the r, CapEX, and OpEX taking into account
the average AEP calculated using the initial data for the first matrix.

LCoE (EUR/MWh)

OpEX (%) r (%)
CapEX (M€/MW)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

6
5.0 162–174 215–232 269–290 323–347 377–405 431–463 485–521 539–579
7.5 182–196 243–261 304–326 364–392 425–457 486–522 546–588 607–653

10.0 204–220 273–293 341–366 409–440 477–513 545–586 613–659 681–733

8
5.0 185–199 246–265 308–331 369–397 431–463 492–529 554–596 615–662
7.5 205–221 274–294 342–368 410–441 479–515 547–588 615–662 684–735

10.0 227–245 303–326 379–408 455–489 531–571 607–652 682–734 758–815

10
5.0 208–223 277–298 346–372 415–447 484–521 554–595 623–670 692–744
7.5 228–245 304–327 380–409 456–491 532–573 609–654 685–736 761–818

10.0 251–269 334–359 418–449 501–539 585–629 668–718 752–808 835–898

Table 15. Table showing the LCoE produced according to the r, CapEX, and OpEX taking into account
the average AEP calculated using data reduced by clustering for the first matrix.

LCoE (EUR/MWh)

OpEX (%) r (%)
CapEX (M€/MW)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

6
5.0 157–167 209–222 262–278 314–333 366–389 419–444 471–500 523–555
7.5 177–188 236–250 295–313 354–376 413–438 472–501 531–563 590–626

10.0 199–211 265–281 331–351 397–422 463–492 530–562 596–633 662–703

8
5.0 179–190 239–254 299–317 359–381 418–444 478–508 538–571 598–635
7.5 199–212 266–282 332–353 399–423 465–494 531–564 598–635 664–705

10.0 221–235 295–313 368–391 442–469 516–547 589–626 663–704 737–782

10
5.0 202–214 269–286 336–357 403–428 471–500 538–571 605–642 672–714
7.5 222–235 296–314 369–392 443–471 517–549 591–628 665–706 739–785

10.0 243–258 324–344 406–431 487–517 568–603 649–689 730–775 811–861

First, the LCoE calculation highlights the inherent differences between the initial and
reduced AEP data. While the two cost ranges overlap quite well in the first matrix, they
show slightly larger deviations for the second matrix (Supplementary Materials S5). Indeed,
an average error around 14% was found for the LCoE of the second matrix for different
combinations of CapEX, OpEX, and r, compared to an error between 3% and 4% for the
first matrix. This confirms the significant statistical differences discussed before, further
illustrating the caution that should be taken when using K-Means. Furthermore, it could
show that the first matrix has better data correspondence. Additionally, the highest costs
are found with the second matrix (initial data), which is explained by a lower estimated
AEP with this matrix (Table 11), thus increasing the LCoE. For the K-Means data, the order
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is reversed, always in line with the AEP patterns. Still, the magnitudes are similar overall
across the two matrices.

More importantly, from an economic viability perspective, only scenarios on the lower
end of CapEX, OpEX and r yield promising values (below 200 EUR/MWh), while very few
provide LCoE under 150 EUR/MWh. By comparing them with IRENA’s recent report of
energy costs [64] and the electricity prices practiced by the Iberian market—MIBEL—the
LCoE of the WaveRoller remains likely high.

3.4. Aquaculture: Species Selection

Although temperature is often the most impactful criterion on aquaculture species,
and therefore the most decisive aspect for choosing species adapted to the site, there
are other important elements to take into account, such as phytoplankton availability
(e.g., via chlorophyll-a concentration) [13,65]. In this study, the local waters are oligotrophic,
with a chlorophyll-a concentration quite low for mussels (0.36 µg/L). However, bivalves
are known for their efficient filtration, which can improve water quality by absorbing
nutrients and organic detritus. But they also feed on phytoplankton, which can then
further reduce the chlorophyll-a concentration. Therefore, small-scale mussel aquaculture
could be considered to avoid large-scale phytoplankton consumption. In fact, the low
measured concentrations may already reflect the impact of the identified mussel farm. In
addition, mussels excrete (pseudo) feces, which, under intensive production, can increase
sedimentation and impact the benthic environment.

It is essential to consider these different aspects and the potential impact that mussel
farming could have on the environment. Nevertheless, one could consider the implementa-
tion of an IMTA to filter mussel waste in association with organisms such as algae, which
would absorb the dissolved elements released by the degradation of this waste [65,66].
Nonetheless, it could be interesting, for a future study, to analyze how to guarantee suffi-
cient availability of phytoplankton for marine mussel farms in open environments, without
altering the ecological balance.

4. Conclusions
This paper presents, based on reference studies in the literature, an extensive assess-

ment of co-located offshore aquaculture and WECs, leveraging a case study conducted
near Peniche, Portugal. The analysis focused on the WEC survivability and variability of
resources over time, as well as a proposal to reduce the sea-state dataset. The LCoE and
energy production of the WaveRoller were estimated, and production was compared to the
energy demands of mussel farming (annual and Summertime).

It was found that a 1000 kW WaveRoller was more adequate for waves above 6 m,
in contrast to the 600 kW variant’s 5 m limit. These extreme waves are sporadic, but they
can last for several days and generate large wave loads, leading to a risk of damage. Still,
the site offers several weather windows conducive to maintenance work, though mostly
in Summer and while being exposed to sea conditions that are too calm for the WEC to
produce energy. Calm sea-states can actually lead to greater energy conversion losses due
to downtimes, and it would be important to consider further re-scaling or power matrix
adjustment through different generators in order to better harness these sea-states.

On extreme events extrapolation, BM sampling combined with a fitted GEV yielded
the most plausible results. Under 10-, 50-, and 100-year return periods, the GEV pointed
to expected ranges of 6.19–6.45–6.51 m for Hs and 16.74–18.02–18.56 s for Te. These do
exceed the power matrix thresholds of both variants but do not significantly surpass the
maximum recorded values. Given the 8 to 20 m operational range of the WaveRoller, these
values are in line with the limitations imposed by the local water depth. Therefore, they
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can serve as initial design values for WEC survivability design. Coupled with a trend
analysis based on the Mann–Kendall test on data percentiles, no significant increments
of extremes magnitude were identified, though a concentration of occurrences in Winter
may exist. The test also pointed toward a growth in the WaveRoller’s energy conversion
over time, with an increase in the Hs − Te of the smallest waves. This hints toward a
potential non-stationary behavior of the data, at least at lower percentiles, that ought to be
investigated in the future (e.g., with specialized software like Marinetools). This is a key
finding that should be considered in other WEC studies, given its long-term importance.

In terms of dataset reduction, the K-Means clustering algorithm with 11 clusters
resulted in an MAPE of less than 10% for all three sea-state parameters. However, the
t-test and difference percentages indicated a significant deviation, ranging from 4% to
16%. Moreover, the AEP and the probability that a WaveRoller unit would be unable to
meet aquaculture needs were calculated for each hypothesis: close to 0 for annual needs.
By contrast, Summer requires the most energy due to harvesting, and scenarios in which
demand coverage may not be assured by a single unit were identified. It is recommended
to consider the inclusion of storage systems, a backup WaveRoller unit, and/or partial
demand coverage in conjunction with other energy sources (e.g., locally sourced solar or
wind, or through the mainland electricity grid). These would incur additional costs but
also mitigate energy fluctuations, provide redundancy in wave energy conversion, and
enable earnings through excess energy sales to the grid while covering demand in lower
production periods. Finally, the LCoE CIs were calculated, indicating rather uncompetitive
values as low as 145–152 EUR/MWh. These are also somewhat sensitive to the selected
power matrix and the reference data (initial or K-Means reduced), and it will be important
to further confirm whether there is a relevant difference between the original and K-Means
datasets when estimating the AEP and, afterwards, the LCoE. This also applies to the actual
probability distributions of the LCoE and its terms.

Future studies could build on this work to analyze other co-locations. Also, given
the divergence of results from the different assumptions made about the WEC, it would
be interesting to repeat this analysis with more scenarios and case studies. A promising
approach involves incorporating probability distribution functions into the cost and rate
variables, followed by a Monte Carlo simulation. This would yield sample values to better
assess the actual LCoE distribution (t, Gaussian, Reciprocal Normal, or others) as well as its
parameters and CIs. In addition to the survivability and environmental change over time,
the use of RCP scenarios could be considered. Finally, if this co-location meets the needs of
local operators while reducing the environmental impact caused by offshore aquaculture, it
would be pertinent to study in detail the impact these structures would have throughout
their life cycle [4].
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