©*u*merc + ⊘METS

The Economic and Energy Feasibility of Installing Wave Energy Converters in Yakutat, AK (Spring 2019-Spring 2021)

Sept. 14, 2022

Iraluq/B. Bond (Yup'ik)

J.L. Kasper, Ph.D.; S. Jump; P. Duvoy; B. Loeffler

Why Yakutat?

- Fossil fuel based power generation <u>only</u>
- 3 diesel gensets, 2x 900kW, 1300kW
- Max load: 1100kW (September)
- \$2.65/gal fuel (2020)
- 470,000 gal/year
 - Must be barged in
 - \$1,250,000 fuel cost per year
- High wave energy density in the Gulf of Alaska during winter
- Solar resource during summer

https://kcaw-org.s3.amazonaws.com/wpcontent/uploads/2014/12/Yakutat.jpg?x26178

Why use wave power?

- Diesel-only is \$\$\$
- Local topography prevents hydro
- Turbulent winds prevent wind usage
- Renewable energy technologies (RE) are expected to become economically feasible¹

1: Chamberlain, M., 2021, "Techno-economic Investigation and Policy Implications of Renewable Energy Integration into an Islanded Diesel-based Microgrid in Rural Alaska"

Limitations

- Transient responses are unknown
 - Possible electrical ripple from WECs¹
- Power surfaces of WECs are simulated
- Wave simulations tend to underestimate wave energy
- WECs are still very much in development
- Wave simulation/forecasting under 5 mins has problems
- Environmental risks are unknown e.g. sediment transport & marine life

1: Chamberlain, M., 2021, "Techno-economic Investigation and Policy Implications of Renewable Energy Integration into an Islanded Diesel-based Microgrid in Rural Alaska"

Methodology: Simulating WAves Nearshore (SWAN)

- 2 domains: coarse & fine
- Starts from calm sea, simulates over 10 years, 2010-2020
- Pierson-Muskowitz spectrum (steady state)
- Wind & S. wave boundary data sourced from ECMRWF ERA5 reanalysis

Sea states vs WEC boundaries @ 40m

Methodology: HOMER

- Exhaustive search for the most economical system in terms of LCOE
- Energy balance only
- Artificially matched LCOE of solar to WECs
 - Optimizes towards diesel offset
- Lifetime: 20 years
- Solar cells, battery banks, WECs
- Observed: Solar resource, elec. load
- Simulated: wave resource

Results

 $+ \bigcirc$

C

	Base	Solar		Wavebob		Surf		All REs	
		Battery	No battery	Battery	No battery	Battery	No battery	Battery	No battery
Power sources & storage	3 Gensets	25kW solar 300kWh bat.	25kW solar	6 Bob 600kWh bat.	2 Bob	2 Surf 900kWh bat.	2 Surf	75kW solar 2 Surf 2 Bob 900kWh bat.	25kW solar 2 Surf 2 Bob
LCOE \$/kWh	\$0.438	\$0.439	\$0.438	\$0.436	\$0.437	\$0.433	\$0.450	\$0.432	\$0.455
Renewable Energy Fraction	0%	1%	1%	37%	13%	45%	37%	58%	46%

Discussion: RE output

Surfpower

Discussion

- Wavebob & Surfpower are best suited for Yakutat
- Batteries tend to determine feasibility of system
- Synergy exists
- WEC power surfaces & spectrum response non-trivial

Conclusion

- The energy is there
 - Batteries are very important
- No singular source can offset the most diesel
- Differing WEC designs might offer the best full spectrum response
- Different WECs might be needed in other wave environments
- Remember limitations

Acknowledgements

City & Borough of Yakutat

Bryson Robertson, Ph.D.,

Fin.