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Abstract

In the hydro-dynamic coastal field, innovative models validated through experiments are
highly requested nowadays. This work is divided into two main parts:

Firstly, we present the research recently carried out in the preparation of an
experimental wave flume [1] and the corresponding computational simulations by means
of full CFD commercial codes (StarCCM+ and ANSYS FLUENT), whose main objective
is to show the behavior and effect on floating structures such as wave energy converters
(WEC), in the range of intermediate deep waters [2], aiming to provide technical support
to BIMEP (Blscay Marine Energy Platform).

The numerical solution of such fluid flows wusually means a relatively large
computational cost, becoming sometimes even prohibitive [3], either because the size of
the model itself or because of the short time available to obtain an effective solution [4].
In many of these cases the best option is to use "Reduced Order Methods" (ROM), and
more specifically the "Proper Orthogonal Decomposition” (POD) method, which uses a
set of numerical solutions of the whole problem (called "snapshots") to create an
orthogonal base on which to project the equations, fully describing the physical
phenomena [5], requesting much less computational cost. This has been successfully
applied to active techniques in aerodynamic control [6] but its use in WEC’s is also
desirable.
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Abstract

The focus of this talk will be on the hydrodynamical modelling of wave energy parks performed by
the wave energy group at Uppsala University, Sweden. Both analytical, numerical and experimental
modelling will be covered, based on earlier and ongoing work.

In early works by the group, properties of wave energy arrays were studied using the linear
potential flow boundary element software WAMIT. The hydrodynamical output from WAMIT was
used in a time-domain model where irregular waves was used as input. The waves at the group’s
offshore test site at the west coast of Sweden are continuously measured and analysed using a
commercial Datawell Waverider buoy. Arrays with 9-64 wave energy converters with different
array geometries, spacing, wave directions etc were studied and evaluated as functions of power
production and power fluctuations.

To enable modelling of large parks and many parameter configurations, an analytical model
was developed based on multiple scattering between devices. In a first step, a point-absorber
approximation was made, implying that the method was computationally very fast and could be
used to study parks with over 1000 devices. The method was later extended to full hydrodynamical
interaction and used to study parks with over 100 devices. In current work, the model has been
coupled with a genetic algorithm and used for multiple parameter optimization of wave energy
parks, and has also been extended to model devices with different buoy geometries and topologies.
Ongoing work also includes developing the time-domain model to incorporate control methods,
optimizing power take-off in a park using an active set algorithm, and using artificial neural
networks in wave power control applications.

Experimental work is performed both in wave tank in collaboration with Plymouth University,
UK, and offshore at the group’s test site. In the talk, planned array experiments in both wave
tank and offshore will be described.

Whereas the focus of the talk will be on the modelling of device arrays, I will also review briefly
the numerical and experimental modelling of wave energy converters in extreme waves.
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Abstract

Extraction of wave energy from the oceans has been studied since the 1970s. In the last
decade, energy high prices and the need of new energy sources have motivated recent
Marine Renewable Energies (MRE) developments. Most of them are still focused on a
wide variety of different technologies and physical principles.

The diversity of technologies need to be tested at reduced scale and proved throughout
sea trials prior to become a commercial product. However, both approaches need to be
supported by adequate numerical tools. Wave energy numerical modeling it is an
essential tool towards design optimization. Laboratory experiments and sea trials are
very expensive methodologies, because of that numerical models are a crucial
engineering tool at every design phase.

Nevertheless both, advanced CFD models and the more simplified potential theory based
numerical models, need to be calibrated and validated prior to become a trustable tool.
All the numerical approaches used in wave energy engineering have physical
assumptions and simplifications that need to be proved first. Moreover, most of the wave
energy converters (WEC) technologies already under development, show physical
principles that yields in design strategies different from other marine sectors like ship
designing. Some wave energy converters are designed for high rates of roll or pitch, in
contrast with ship designing best practices which limits the maximum roll up to safety or
comfort limits (6 degrees in merchant ships, NORDFORSK, 1987).

The present talk will analyze the risks of non-validated numerical models. It will also
propose a hybrid modeling strategy where physical and numerical models cooperate from
the very early stages of a wave energy concept design. A hybrid modeling strategy takes
the most from numerical models and physical experiments, reducing numerical model
uncertainties and design risk.
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Abstract

Survivability is fundamental to the design and success of wave energy converters whether on
fixed or floating platforms. Progress has been made on improving energy capture to reduce
LCOE and we have a particular development of a multi-body floating system known as M4 at
Manchester. There has been extensive experimental testing and linear diffraction modelling
showing that such modelling can be accurate in extreme as well as operational conditions, for
non-breaking wave conditions[1,2]. Breaking occurs in shallow and intermediate depths and can
occur in deep water and is likely to magnify loading and response markedly[3]. SPH is well
suited to predict loading and response in breaking waves [4] however it is expensive
computationally. This may be reduced through computer architecture, idealisation of physics,
and novel numerics. Idealisation of physics is attractive and the Froude-Krylov assumption with
linear added mass and radiation damping has proved remarkably effective [5]. There is the
question of the extent of generality. The use of GPUs is expanding rapidly for both 3-D WCSPH
and ISPH where the Poisson solver is the major issue. Hybrid schemes with SPH applied local
to the body with an efficient far field solver are under development. A particular development
here is combining Eulerian (high accuracy) SPH with Lagrangian for the free surface [6].
Finally in extreme waves the interface with breaking waves is generally two-phase as water
becomes aerated affecting loads in a complex way. This has been investigated for some
idealised cases [7] also using hybrid schemes [8] where it is shown how the air phase can
reduce forces (cushioning) [7] or magnify due to trapped air [8]. The question is show to
package for general use and progress is being made on all these fronts.
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Abstract

For the past decade we have developed the Direct FEM Simulation (DFS) methodology [4, 3] with
a and FEniCS-HPC software framework [1] for automated solution of general partial differential
equations (PDE), with successful application to predicting gross quantities in turbulent flow at
high Reynolds number [2].

Our methodology is based on a piecewise linear approximation in space and time and with a
numerical stabilization in the form of a weighted least squares method based on the residual, which
acts as a parameter-free implicit model of the unresolved subscales. Goal-oriented error estimates
based on an adjoint solution automatically optimize the mesh for mean-value outputs such as drag.

We here present an extension of the methodology and software to multiphase flow with marine
renewable energy applications in mind by directly solving the variable density incompressible
conservation equations, with an initial condition on the density modeling the different phases.
Shock-capturing is used to stabilize the sharp phase interface, and a mass-conservative phase-
separation term is added to the density equation to enhance preservation of the sharp interface for
long times, with results for the MARIN benchmark [5] comparable to the state of the art.

We describe applications of the DF'S methodology in our collaboration with Tecnalia on simula-
tion of floating wind turbines in the ICERMAR Basque government project. Recent developments
in coupled rigid-body modeling, and a prototype for parallel-in-time computation, with the possi-
bility of fast scalable computation of long time intervals, are also presented.
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Abstract

Using vertically averaged models for the hydrodynamic equations (full Euler equations, nonlinear
shallow water or Boussinesq equations), the pressure exerted on the immersed part of a floating
body can be expressed as a Lagrange multiplier associated to the constraint on the water elevation
under the body. The resulting model is of mixed compressible (in the free surface region) and
incompressible (under the body) structure. We will show how to handle this coupling. An analysis
of the pressure term allows moreover an efficient formulation of the equations for the solid motion.
This approach can also be implemented at the numerical level and several simulations will be
shown.
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Abstract

The OWC spar buoy is possibly the simplest concept for a floating oscillating water
column (OWC) wave energy converter [1]. It is an axisymmetric device consisting
basically of a submerged vertical tail-tube-fixed to an axisymmetric floater that
oscillates essentially in heave. The air flow displaced by the water motion inside the
tube drives a self-rectifying biradial air turbine.

This work presents a new detailed wave-to-wire model based on a diffraction-radiation
hydrodynamic model in a 6 degrees-of-freedom time-domain simulation of the spar-buoy
OWC including a non-linear model of the self-rectifying biradial turbine and the
mooring lines. The spar-buoy OWC geometry selected to be used in the current work is
the result of an optimization procedure [2].

The hydrodynamic model has been calibrated based on an extensive 1:16 tank testing
developed in NAREC. Turbine and generator models have been calibrated from 1:3 and
1:1 laboratory testing and include optimized feedback control [3, 4].

Numerical results are presented for device’s performance in irregular waves for linear
and non-linear tank calibrated device hydrodynamics. This analysis will permit to assess
the influence of non-linearities in the WEC performance.
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Abstract

Potential flow theory has been widely successful at predicting many aspects of the dynamics of
water waves prior to the point of breaking. Most models based on potential flow make assump-
tions of small steepness or amplitude of the waves which may not agree with experiment for highly
nonlinear waves near structures of practical importance, such as wave energy converters. These
approximations are a result of the difficulty of solving the Laplace equation on complex geometries,
whereas this can be done with the boundary element method (BEM) [1]. The use of the BEM,
although in principle straightforward, has seen numerous advancements in recent years, with the
widespread use of parallelization, the use of different element types, and the application of meth-
ods to accelerate calculations, like the fast multipole method [2]. Results will be presented for
wave propagation and wave-body interactions, given typical structures used for offshore renewable
energy.
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Abstract

In this talk, an overview of recent years research related to advanced computational hydrodynamics carried out at
Department of Applied Mathematics and Computer Science, Technical University of Denmark. The research have
emphasized fundamental scientific computing aspects to enable progress on the development of new general-purpose
fully nonlinear marine hydrodynamics models for wave propagation and wave-body applications. The main research
challenges have been to research robust high-order numerical methods to significantly improve cost-efficiency [3],
designing fast iterative solvers with minimal memory footprints and carrying out high-performance implementations on
modern - possibly heterogeneous - many-core hardware systems for fast, scalable and portable execution across the
system chain from desktop-sized workstations to the largest super clusters [1,4]. Recent breakthrough in the use of the
general Spectral Element Method framework for discretization [2] have made it possible to introduce geometric
flexibility and expand opportunities for efficient and accurate prediction of wave propagation and wave-body
interactions in geometries of engineering relevance. The research seek to address practical aspects that makes it possible
to increase the range of possible applications whether it is large-scale computations for realistic marine areas, marine
energy systems and improving the engineering analysis capabilities via improved turn-around-times for the simulations.
Highlights of current and ongoing research will be given together with results of benchmarking. The research and
development contributes to make it possible to target a broad range of practical applications in marine engineering.
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Abstract

Shao & Faltinsen (2012, 2014a) has initiated the development of a new FNPF model
based on a novel harmonic polynomial cell (HPC) method. The computational domain is
discretized by overlapping cells. Within each cell, the velocity potential is represented
by the linear superposition of a complete set of harmonic polynomials, which are the
elementary solutions of Laplace equation. The original HPC method of Shao & Faltinsen
(2012, 2014a) works on structured grid and has been verified and validated by idealized
cases. The structured grid has been found to limit the application of the HPC method in
general wave-structure analysis. Recent development of the HPC method is focusing on
handling complex structure geometries and deforming free surfaces. To achieve that,
several strategies have been proposed. Among others, the immersed boundary (IB)
approach has been proposed by Hanssen et al. (2015, 2017) looks more powerful in terms
of modelling complex geometries.

The general idea of the IB approach is to utilize the continuous representation of the
flow variable (the velocity potential) within each cell in the HPC method. In practice, we
operate with ghost nodes and ghost cells, where the velocity potential is extended out of
the physical computational domain. However, this has no implication for the solution
inside the fluid domain. Another consequence of the HPC formulation is that it is easy to
couple different solution domains directly, where communication points between grids
can be considered as IBs in the respective solution regions. The figure below illustrates
a practical example where the IB approach is combined with an overlapping-grid method
to simulate the flow due to a heaving cylinder. To the left, an Earth-fixed background
grid with a relatively coarse discretization is shown. The red square indicates the outer
boundaries of the body-fixed grid, with details shown to the right. Here, boundary
conditions at the body surface are taken into account in the grey-shaded ghost cells. The
free surface, indicated with blue markers, is treated as an IB in both domains. In both
grids, the red circles indicate communication nodes where the velocity potential from the
other grid is given as a boundary condition.

The obvious advantages of the IB approach is that we can operate with structured grids
that are easy to generate and that do not deform with time, even in the case of complex
surface geometries. The overlapping-grid approach represents a further enhancement of
the IB method, which enables grid refinement close to body boundaries without having
to stretch the grid and independent of the surface’s position.
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Fig. 1 The grid systems used for a semi-submerged heaving circular cylinder
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Abstract

WEC-Sim (Wave Energy Converter SIMulator) is a time-domain numerical model that has been jointly
developed by the National Renewable Energy Laboratory and Sandia National Laboratories and funded by
the US Department of Energy Water Power Technologies Office to promote and support the wave energy
industry. WEC-Sim is developed to simulate wave energy converter systems that are comprised of rigid
bodies, power-take-off systems, and mooring systems, with a focus on system power performance prediction
and design optimization.

WEC-Sim is a radiation, diffraction based numerical model that solves the equation of motion for each body,
about its center of gravity, based on Cummins’ equation, using hydrodynamics coefficients typically
obtained from a frequency-domain potential flow model and empirically obtained viscous damping
coefficients [1]. This type of linear, or possibly weakly nonlinear, method assumes small amplitude motion
and wave elevation, and relies on experimental measurements or computational fluid dynamics simulations
to determine the relevant viscous damping coefficients. However, because WECs are typically made up of
multiple bodies and are designed to maximize their power output at dominant sea states as resonant devices,
this often leads to more complex interactions between the wave forces and the system dynamics [2]. To
better understand and more accurately predict the WEC system response, WEC-Sim has been used to
simulate a wide range of WEC designs, where the simulation results were compared to those obtained from
other numerical models and measurements from experimental tests [1,3—5]. This presentation will cover a
series of verification and validation studies including the experimental wave tank test specifically designed
to validate the WEC-Sim model. The presentation will also include a discussion on the challenges and
complexity of verifying and validating the numerical models, which depends on the geometry of WECs, the
mooring configuration and the complexity the power take-off drivetrain, and will include lessons learned
from these studies.
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Abstract

To increase the amount of energy absorbed by a WEC, an energy maximising control system
essentially tunes the WEC dynamics to resonate with the incident waves. The resulting large am-
plitude resonant motions of the WEC, challenge the validity of many of the linearising assumptions
which traditional hydrodynamic models are based upon. Therefore, evaluating the performance
of a WEC under controlled conditions using linear hydrodynamic models would be misleading,
and predictions likely biased towards unrealistically high amounts of power absorption, due to the
absence of nonlinear effects such as viscous damping.

In this presentation I will discuss using computational fluid dynamics (CFD) based numerical
wave tank experiments to evaluate energy maximising control systems for WECs. The high fi-
delity treatment of the fluid structure interaction provided by CFD, enables a realistic simulation
environment for assessing the performance of a WEC under controlled conditions. Implementa-
tion details, using a coupled OpenFOAM-MATLAB environment will be discussed, and examples
given showing the discrepancy between the predicted controller performance evaluated using linear
hydrodynamic models versus the CFD experiments. Current research, focussed on implementing
adaptive controllers using CFD experiments, will be presented, whereby an adaptive algorithm is
used to estimate the control model in real-time, based on measured values of position, velocity,
wave elevation or control force. The on-line estimation of the WEC model, used by the controller,
will therefore estimate the best representative model of the WEC’s dynamical behaviour under
controlled conditions, capturing nonlinear hydrodynamic effects present in the CFD simulation.
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Abstract

Devices for harnessing energy from ocean waves, namely Wave Energy Converters (WECs), are
currently investigated by the scientific community and technology developers in order to
optimise their design and make this source of renewable energy cheaper and competitive if
compared to fossil-based sources as well as other renewables, such as onshore wind and solar
energies. Given the environment in which they are inserted, the design of WECs must consider
the interaction between fluid and structure (Fluid Structure Interaction, FSI). Error and lack of
accuracy in the modeling of the FSI may lead to underestimate and/or overestimate power
production, forces, displacements and tensions on the devices affecting the survivability of the
system and/or the profitability of the investment.

It is evident that different models for representing the hydrodynamics of WECs should be
considered by the designers, depending on the specific characteristics of the devices, the wave
climate, the seabed characteristics as well as the level of accuracy required by the technology
readiness level (TRL) of deployment of the project. In this presentation, therefore, most of
these methods —linear and nonlinear potential flow models, semiempirical viscous loss based
models, numerical solutions to full Navier Stokes equations, etc...- , will be reviewed as in [1]
based on the experience of Tecnalia R&I, briefly detailing their characteristics and
computational challenges as well as their impact on accuracy; moreover, as a reverse
engineering process, a review of methods on how to interpret the lessons learnt in an
experimental campaign in order to validate the numerical models will be presented. Finally,
analytical and semi analytical models for studying the FSI in an array of WECs will be
reviewed.
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Abstract

While the use of linear radiation/diffraction models remain the tools of the trade for wave energy
application, there is an ongoing paradigm shift towards more complete numerical models. The
trend is driven by the fact that point absorbers in the resonance region have clear nonlinear motion
response, and that overtopping, slamming and green water are expected to occur at extreme events.
In this talk I will discuss our work on coupled mooring simulations using a in-house high-order DG
mooring dynamic solver and the OpenFOAM VOF-RANS solver with focus on verification and
validation techniques.
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