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1  |   INTRODUCTION

Wave energy has the capacity to supply total energy demand 
of the world.1,2,3 Wave energy evaluation comes under two 
categories. The first category focuses on the climatological, 
that is, wave data, and the second category considered the 
configuration and efficiency of wave energy converter,4,6 
infrastructure, cost, and other constraints with climatolog-
ical factors.7 In the past few years, numerous studies have 
been done to evaluate the wave energy around the world.8,9,10 
Among others, Lin et al11 carried out a study to determine the 
more eligible location for wave energy production in China. 

Chakraborty et al12 develop a model to identify the best suit-
able location for obtaining the maximum utilization potential 
of a wave energy converter. In another study, conducted by 
Zanous et al,13 wave energy potential and the suitable loca-
tion selection for installing the wave energy converter were 
also investigated using European Centre for Medium-Range 
Weather Forecasts (ECMWF) along the southern coast and 
islands of Iran. Among all the studies mentioned, the impact 
of extreme events on the wave energy converter has not been 
included.

However, as with the other alternative sources of en-
ergy, variations in regular climatic pattern due to the global 
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warming affect the wave energy potential and average wave 
power level3 of a region. The wave energy potential of a 
region depends on height of the waves which again depend 
on speed, duration, and fetch of the wind flowing in that 
region.14,15,16 According to Sisco et al,17 changes in cli-
matic trend have impacted the normal pattern of climatic 
parameters such as wind speed and its duration in many 
parts of the world. As a result, potential of wave energy 
has also changed on those locations.18,19 Many papers had 
highlighted different indication of change in characteristic 
of the ocean due to the change in regular pattern of the cli-
matic parameters. If ocean characteristics changes, then it 
will impact the wave height and subsequently wave power 
level of the region.

The climatic trends of significant wave height (SWH) and 
wave power density (WPD) have a significant impact on the 
wave energy development.20,21,22,23,24 The long-term trend of 
SWH also has a close relationship with the extreme events 
and climate change.25,26,27,28,29,30

The studies described in previous paragraphs depicted 
that due to the change in climate, in recent years, different 
physical, chemical, and hydrodynamic characteristics of 
the ocean have changed.31,32,33,34,35,36 As a result, the ne-
cessity of numerical models, developed for the estimation 
of wave height, specially during the occurrence of extreme 
events and simulation of response from the wave converters 
installed for utilization of wave energy potential, has raised 
significantly.

The extreme sea state is defined as the amalgamation of 
the extreme wave, wind, and current events which are gen-
erally the input parameters of device response models. The 
extreme event is identified by the recurrence interval or 
return period of the events which is also the inverse of the 
probability of occurrence of that event. Generally, 30 or more 
years of data are collected from the in situ measurements of 
historical records and for each event the return period is esti-
mated. Each wave energy converter (WEC) is designed for a 
specific return period after which the survivability as well as 
reliability of performance diminishes. Although there is no 
specific guideline but considering the average lifetime of a 
WEC device, such systems are designed for an extreme event 
which can return only after 50 years.37

In recent years, many studies have used cognitive clas-
sifiers,38 vector maps, K-mean clustering, etc. for the iden-
tification of the extreme event and to estimate its chance of 
occurrence. However, as prediction of extreme sea state and 
the response of WEC depend on multiple factors,37 high-
fidelity numerical models validated by physical experiments 
are mostly used for the determination of the extreme events 
and its response by the converters which creates the need to 
develop a model which can predict the atrocities on a WEC 
due to an extreme events. Section 1.1 describes the objective 
and novelty of the present investigation.

1.1  |  Objective and novelty
The modeling of either the wave energy potential or the re-
sponse from the WEC lacks accuracy due to the multiple fac-
tors that control these phenomena. Again, not all the factors 
are equally sensitive in the estimation of such phenomena. 
In case of wave energy prediction, a minimum variation in 
steepness of the wave will have a large variation on energy of 
wave either at the peak or crest. The direction of the wave in-
cident upon the WEC also has an impact on the response re-
ceived from the WEC but not as acute as in case of a change 
in the “wave height-to-wave length” ratio. Failure in mechan-
ical, electrical, and civil component of the PCC will yield 
different responses from the converter for different failures in 
the same converter. Such multifactor variations are complex 
to design and result in the inaccuracy of the developed simu-
lation framework. As a result, multi-indicator index-based 
models are nowadays gaining popularity in the estimation of 
outcome from a device response framework which depends 
on multiple parameters.

As UEF is the result of impact from multiple relevant pa-
rameters, the estimation of utilization by this function is more 
accurate compared to any numerical or CFD model. But to be 
ensured about the reliability of the results from UEF, the out-
put was tested by physical experiments. The accuracy level 
of the PNN model for the estimation of UEF was found to be 
equal to 98% which encouraged the authors to apply the same 
UEF to depict the impact of extreme events on utilization ef-
ficiency of a converter for a specific location.

That is why the main objective of the present investigation 
was to estimate and analyze the impact of extreme events on 
utilization efficiency of the WEC for a location. The study 
will also try to examine the potential of UEF in the estima-
tion of impacts from extreme events. Section 2 describes in 
detail the chronological development of sea state models and 
its approximations.

2  |   LITERATURE REVIEW

Frequency domain dynamic response models are usu-
ally used for the determination of sea state and device re-
sponse. Although such models are successful in prediction 
of sea state during regular sea condition, it fails to estimate 
the nonlinearities involved in an irregular wave spectra. As 
a consequence, many numerical models were designed and 
implemented for device response and sea state estimations. 
These models were successful in prediction of nonlinearities 
including irregular wave patterns but were unsuccessful in 
simulating the viscosity and wave breaking phenomena. As 
a result, high-fidelity computational fluid dynamics (CFD) 
models were developed which were able to estimate irreg-
ularity and nonlinearity in the wave spectrum and device 



      |  3443CHAKRABORTY and MAJUMDER

response (which include the difficulties of large variation in 
wave amplitude, wave breaking, viscosity, and nonlinearities 
in the power conversion chains (PCC) for which electrical 
and mechanical failures often occur during the operational 
phase of a WEC). But for CFD models also, the need of vali-
dation of the results requires comparison with physical mod-
els where real-life conditions were replicated in laboratory or 
regulated environment.

In case of physical models, downscaling of independent 
factors of the physical phenomena determines the accuracy 
of the results from an experimental setup developed to rep-
licate the phenomena. Generally, the Froude's scaling factor 
is used for the estimation of the ratio of downscale. The me-
chanical friction, stiffness, viscosity, and air compression 
cannot be represented by Froude's scaling equation. For that 
reason, the physical model is required to be adapted by con-
sidering the impacts of factors which cannot be downscaled 
by the Froude's scaling. However, prediction of wave energy 
potential by employing multiparametric indicators was also 
attempted by various authors where selection of location with 
respect to converter efficiency and available wave energy po-
tential of the region was the main objective.

Such studies include the index proposed by Ghosh et al39 
for the selection of suitable location for the installation of 
wave power plants considering multiple factors excluding the 
role of WEC. Although locations were selected for the in-
stallation of wave power plants based on wave height, wave 
period, and many other factors, load on the converters and 
their nonlinearities was not included in the study. As a result, 
the suitable locations can be identified but conversion effi-
ciency of WEC cannot be ensured. In 2015, Ghosh et al tried 
to classify the suitable locations with the help of wave cli-
matic parameters including ocean depth. The result from the 
study concluded that the wind speed is the most significant 
parameter compared to other climatic parameters and depth 
of ocean in selection of location for the installation of wave 
power plant. In this study also, the role of WEC was not in-
cluded. Therefore, in 2017, Chakraborty and Majumder tried 
to identify the location for the installation of wave power 
plant considering the role of the converters. Not only the non-
linearities of the WEC were represented by the inclusion of 
relevant factors but also the cost required for the installation, 
operation, and maintenance of the converters on the location 
was included in the decision making. Here, prediction of 
the index from its variables was made by polynomial neural 
network (PNN) which was a better architecture compared to 
feedforward neural network12 for automating the predictive 
framework. The index was named as utilization efficiency 
function (UEF).

The sea state and converter efficiency prediction models 
depend on multiple factors which can be classified into loca-
tion dependent, converter design, and cost factors. Wave cli-
mate and ocean depth vary with locations and so is the wave 

power level. This variation includes the breaking and viscos-
ity properties of wave and also represents the impacts due to 
the change in steepness of waves. The nonlinear dynamics in 
PCC and survivability of WEC can be represented by its de-
sign parameters such as efficiency of the mooring structure, 
hydraulic system, turbine and generators, and shape and size 
of the buoy. The cost required for the installation, operation, 
and maintenance of the WEC was included under the cost 
factors.

Swells created by south/northwesterly can propagate a 
long distance. Such swells are detrimental for the installa-
tion of WEC. The swell generated will have definite impact 
on the wave energy extraction from a potential location by 
a WEC.20,40,41 Swell has the potential to change the wave 
height, period, and regularity in the wave climate which may 
result in the irregular pattern of energy production. That is 
why all these factors or indicators were augmented to pro-
duce the utilization efficiency function42,43 which was used to 
determine the capacity of converters in utilization of potential 
wave energy from the selected region. Section 3 explains the 
procedure adopted to represent the impact of extreme events 
on the capacity of WEC in extraction of available potential.

3  |   METHODOLOGY

In the present investigation, a four-step methodology was 
adopted to attain the objective of the current analysis. At the 
first step, the type of converter, location, time slabs, and the 
climate model were selected. In a previous study, conducted 
by the authors of the present study (2017), identified Mighty 
Whale Oscillating Water Column (OWC)44 type of WEC 
(Section 3.1.3) in the Kochi location of Kerala (Section 3.1.2) 
to have the highest utilization capacity among the locations 
considered in that study. That is why the same location with 
the same type of converter was utilized in the present investi-
gation for analyzing the extreme event impacts.

The determination of utilization efficiency of converters 
in extreme sea state impacted by the change in climate is a 
multifactor approach. The nonlinearities and dynamics in-
volved in such prediction were represented by considering the 
aggregated function of the relevant indicators selected based 
on the locational irregularities, nonlinear dynamics in device 
response, and cost effects. The aggregate function, which is 
the UEF, was also designed in such a manner that it will in-
clude the influence of the indicators as per their significance 
on device response. Section 3.1 gives a brief description of 
the UEF model.

The future climatic data were collected from the HadCM3 
model for A2 and B2 scenario of IPCC for three future 
time slabs, that is, 2010-2030, 2031-2070, and 2070-2100. 
Section 3.1.1 depicts a discussion on the selected climate 
model along with the justification of utilizing the model for 
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attaining the objective of the present objective. Table 1 depicts 
the data collection and calculation followed for deriving the 
data for the indicators for both present and future scenarios.

The wave height depends on speed, duration, and fetch of 
wind flowing through the region and thereby representing the 
impact of swell in the ocean. The climate models, which are 
developed to estimate the magnitude of climatic parameters 
for the future time slabs, do not predict wave height as it is 
not a climatic parameter. That is why in the second step of 
the present investigation, a simulation model was developed 
to estimate the wave height as a function of wind speed. The 

data (Table 1) of the baseline scenario or the current time 
slab were used to train the model, and the input data from the 
future time slabs as predicted by the selected climate model 
were fed into the simulation model which predicted the mag-
nitude of wave height for the same time slabs. Duration and 
fetch were assumed to be constant and equal to the observed 
monthly value of the baseline scenario measured in the se-
lected region. The results from the simulation model were 
validated with the help of the projection of wave height data 
from inverse FORM technique.45 Section 3.2 portrays a brief 
explanation of the model.

T A B L E   1   Description and source of data collection of the indicators considered in the present investigation for both present and future time 
slabs

Name of parameter Source/Method for data collection

Locational aspects

 Significant Wave Height (m)(w1)
a Present (2009-17): http://www.buoyweather.com 

Future (2019 to 2070): http://worldclim.org/ (IPCC A2 and B2 Scenario)

 Wave Amplitude (m) (w2) The magnitude of energy transported by a wave is associated with the amplitude of the 
wave. A high energy wave is distinguished by a high amplitude; a low energy wave is 
recognized by a low amplitude. The energy transported by the wave is directly proportional 
to the square of the amplitude

 Wave Period (w3)
a Present (2009-17): http://www.buoyweather.com 

Future (2019 to 2070): http://worldclim.org/ (IPCC A2 and B2 Scenario)

 Depth of the Ocean (w4) Present (2009-17): http://www.buoyweather.com 
Future (2019 to 2070): http://worldclim.org/ (IPCC A2 and B2 Scenario)

 Shipping Density (w5) Rank using the Density Map (http://www.marinetraffic.com/en/p/density-maps). A constant 
shipping density was assumed for the future scenarios

 Percentage of Regular Waves (w6) The ratio of average of unidirectional wave and average of total number of wave in every 
6 h was used for calculation of percentage regular waves. The data for baseline or 2009 to 
2017 were retrieved from Buoyweather, and the future data (2019 to 2070) were estimated 
from World Clim data of Wind direction for both A2 and B2 scenarios

 Direction of Wave (w7) The direction of wind speed as given in Buoyweather was assumed to be the direction of 
wave. A scoring system was used to quantify the indicator. The direction of wave perpen-
dicular and toward the location was assumed to be the most sought-able direction for the 
production of wave energy and was assigned the maximum score of 10 and for each degree 
away from the perpendicular direction there will be a change of 1/9 points which will 
ultimately become zero when the direction of wave will be tangential to location of interest. 
The clockwise and anticlockwise change in direction was assumed to be assigned the same 
change in score as the impact of wave energy production does not change by the change in 
direction of waves from north to east or west. Wave direction for present or baseline scenario 
was collected from BuoyWeather and for the future scenario World Clim data were used

 Average Wave Power Level of the Sea (w8) After collection of wave height (Hs) and period (Te) data, Equation 4 was used for calcula-
tion of average wave power level (Pw), Pw =

�g2

64�
TeHs

2 [4]

 Corrosion (w9) Rating given by the group of experts out of a maximum score of ten where ten indicates 
maximum corrosive effect on the converter and zero indicates no corrosion. The experts 
analyzed the data of salinity of the location to decide about the score

 Survivability (w10) Rating given by the group of experts out of a maximum score of ten. The survivability is 
maximum when the score is ten and minimum when the score is zero. The experts analyzed 
the number of extreme events, heavy rainfall, storm surges, wind gusts, tsunami waves, 
etc., uncertainties to decide about the score. It can be assumed that more the frequency of 
these uncertainties, less will be the score for that location

(Continues)

http://www.buoyweather.com
http://worldclim.org/
http://www.buoyweather.com
http://worldclim.org/
http://www.buoyweather.com
http://worldclim.org/
http://www.marinetraffic.com/en/p/density-maps
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Identification of the extreme events for the selected loca-
tion was the third step of the present investigation. “In most 
cases, extreme events are defined as lying in the outermost 
(‘most unusual’) 10 percent of a place's history”.46 But the 
definition of “extreme event” varies with disciplines. In a 
study conducted on the definition of the extreme event, the 
authors47 discussed in detail about this difference for dis-
ciplines such as “climatology, earth sciences, ecology, en-
gineering, hydrology, and social sciences.” As the present 
investigation is related to engineering discipline, identifica-
tion of the extreme event was conducted as per the defini-
tion of the extreme events for engineering aspects and the 
procedure for the identification of extreme phenomena which 
can impact engineering designs followed by the methodol-
ogy delineated by the authors for designing engineering in-
frastructures. Section 3.3 discusses about the identification of 
the extreme event with respect to the objective of the present 
investigation.

The results (estimated value of UEF) from the extreme event 
analysis were also validated with the help of an experimental 
setup (physical model) where a medium-scaled model48 was 
developed having a Froude's scaling of 1/20 as the fourth step 
of the present study. All the relevant indicators were replicated 
into a laboratory flume following the same scaling to find the 
power output from the converter and the output was compared 
with the UEF to validate the interpretation from the value of 

the index. The experimental setup is shown in Figure 3A,B, 
and a brief description about the setup is included in Section 
3.4. Figure 4 depicts the schematic of the methodology adopted 
in the present investigation for the analysis of extreme event 
impacts on utilization efficiency of selected WEC.

3.1  |  Feature selection and data collection

In the present investigation, 24 indicators were used to esti-
mate utilization efficiency function (UEF) for a wave energy 
converter (WEC). UEF is the index which represents the ac-
tual utilization of the wave energy potential of a location by 
a WEC.

The equation for the determination of UEF is depicted in 
Equation 1.

when 0<Wn <1, Wn ∈ R and m,n ∈ I
where Wn = priority value of tenth indicator representing the 
degree of positive influence by the indicator on the utilization 
efficiency of WEC.

Wm = priority value of the mth indicator depicting the 
degree of negative influence on the utilization efficiency of 
WEC.

(1)UEF Index=

∑

Wnbn
∑

WmNbm

Name of parameter Source/Method for data collection

Design aspects

 Size and Shape (Diameter, Draft, 
Displacement, Stroke Length, Height) (w11)

Specifications depicted in Brooke5

 Mass of the Buoy (w12)

 Thickness of the Material Used(w13)

 Efficiency of Wave Rotor/Generator (w14)

 Efficiency of Turbine (w15)

 Efficiency of Energy Storage System (w16)

 Efficiency of Hydraulic System (w17)

 Power Conversion Efficiency at Constant or 
Nearly Constant RPM (w18)

Cost aspect

 Installation Cost (INR) (w19) Specifications depicted in Brooke5

 Operation and Maintenance Costs (INR) (w20)

 External Costs (INR) (w21)

 Pre-Installation Cost (INR) (w22)

 Taxes (INR) (w23)

 Rate Per Unit of Electricity (INR) (w24)
aDue to the impact of northerly or southerly wind, ocean waves of long length and steep height are found to be created in the ocean which are popularly known as a 
swell.20,40,41 As both wave height and wave period are included as a parameter in the UEF, the swell created in the ocean can be represented by both of these two 
parameters. 

T A B L E   1   (Continued)
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bn = magnitude of the nth indicator representing the de-
gree of positive influence by the indicator on the utilization 
efficiency of WEC.

Nbm = magnitude of the mth indicator depicting the de-
gree of negative influence on the utilization efficiency of 
WEC.

m and n depict the maximum number of indicators con-
sidered in the study for the estimation of UEF, which have, 
respectively, positive and negative influences on the func-
tion, and R and I are the sets of real and integer numbers, 
respectively.

A PNN architecture with GMDH training algorithm was 
used to develop the predictive model for the estimation of 
UEF as a function of selected indicators. Equation 2 depicts 
the model equation. The detailed procedure of develop-
ment of the model was described in the published work by 
Chakraborty and Majumder.42,43

The PNN model utilized for the estimation of UEF has 1 
output, 83 numbers of hidden layers with 1011 nodes, and 
24 numbers of inputs. Np is the number of submodels of the 
polynomial neural network topology identified by the GMDH 
algorithm (Equation 2c).

where a1 = −2.76416; a2 = 0.0887725; a3 = 0.0999995, 
and N1009 and N3 can be found from Chakraborty and 
Majumder.56,57

Here, Equation 2a and 2b depict the beneficiary (b) and 
nonbeneficiary functions (Nb), which include the indicators 
which have, respectively, positive and negative influences on 
utilization efficiency of the converters. The P-function is the 
PNN function which was identified by the PNN architecture 
for the estimation of UEF by the input indicators. p indicates 
the maximum number of submodels of the PNN architecture 
identified by the GMDH algorithm for the estimation of the 
UEF with maximum reliability.

The input indicators of UEF comprise many factors 
which are sensitive to climatic parameters of a region. Like 
in the present study, all the location indicators (w1 to w10) 
except w4, w5, and w9 are sensitive to the climatic parame-
ters. Similarly, among all the cost indicator, w20 is sensitive 
to the climatic phenomena. The design indicator is not di-
rectly affected by the climatic parameters but is required to 
be adjusted as a response to the changes induced by a vari-
ation in the regular pattern of the climate or for the extreme 
events such that the utilization capability of the converters 
is not compromised. In case of the cost indicators, not only 

w20, remaining indicators were also affected indirectly by 
the “climate change.”

The present study aims to analyze the impact of extreme 
events of the future on the actual utilization of wave energy 
potential by a WEC. But presently, there is no framework for 
the estimation of wave height in a location during the future 
time slabs. That is why in the present investigation, a simula-
tion framework was developed to estimate wave height from 
wind speed as there are many models which is known as cli-
mate models which gives estimates of this climatic parameter 
for the future time slabs. Section 3.1.1 describes about one 
such climate model which is developed for the estimation 
of climatic parameters including wind speed in the location 
selected in the present study for impact analysis of extreme 
events on the utilization capacity of WEC.

3.1.1  |  Climate prediction model: HadCM3
HadCM3 model was developed by Gordon et al49 at the 
Hadley Centre in the United Kingdom which considered 
the influence of both atmospheric and oceanic parameters 
and includes the impact of aerosol on the climate. The 
model was widely used for different predictive studies 
such as estimation of climate change impact on ground-
water recharge in arid regions of Iran,50 water availability 
for different types of consumption in Tanzania,51 water re-
sources and soil erosion in Burkina Faso, West Africa,52 
paddy irrigation water requirements in Sri Lanka,53 estima-
tion of future distribution of plant species in the European 
continent,54 and change in Arctic sea ice thickness and 
area for the future time slabs.55 HadCM3 does not include 
flux adjustment due to its stable control climatology. The 
prediction of climate model is conducted for different cli-
mate change scenarios such as IPCC A1, A2, A1B, B1, and 
B2 as described in the third assessment report published 
by IPCC. As these scenarios were found to be more self-
consistent compared to that of IS92 scenario, the prediction 
from HadCM3 was collected only for IPCC Special Report 
on Emission Scenario A2 and B2 scenario. The reason for 
exclusion of A1, A1B, and B1 and their subscenarios was 
due to the uncommonness of the scenarios with respect to 
the objective of the present study. Section 3.1.1.1 explains 
the scenarios A2 and B2 which were used in the present 
study for collection of predicted climatic data from the 
HadCM3 model.

IPCC A2 and B2 scenario
IPCC in its third assessment report has proposed four new 
scenarios which are more realistic and reliable compared to 
the earlier IS92 scenarios with respect to “socio-economic 
and emissions structure” which makes them more policy 
relevant compared to the previous scenarios.56 In total, four 
main scenarios and two subscenarios were conceptualized 

(2)UEF=P(Np,bn,Nbm)

(2a)bn =F(w1to w24 except w5,w9,w19 to w23)

(2b)Nbm =G(w5,w9,w19 to w23)

(2c)N2 =a1+N2
1009

×a2+N3×a3
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by the IPCC. In A2 scenario, heterogeneous world with in-
creased industrialization was proposed and in case of B2 sce-
nario increase in environmental stability was considered. The 
A1 and B1 scenarios predict an integrated and united world 
where industrialization and environmental stability are, re-
spectively, encouraged. All these scenarios consider the con-
tinuous growth in population where rate of growth in A is 
higher compared to B-type scenarios.

In recent years, climatic data are generated based on 
the IPCC SRES scenario and used in various studies like 
for projecting future climate changes over upper Indus 
river basin,57 to find the impact of future climate change 
on regional crop water requirement,58 the analysis of im-
pacts of climate change on various renewable energy re-
sources,59,60,61,62,63,64 and many other studies involving 
climate change impact analysis. In the present investigation, 
the impact of extreme events was analyzed for a location 
situated in Southern Indian peninsula. The geographical and 
climatic description of the selected location is described in 
Section 3.1.2.

3.1.2  |  Study area
Kerala is located in the southern peninsula of Indian sub-
continent. The state is surrounded by Karnataka in the 
north, Tamil Nadu in the east, and LakshaDweep Islands 
in the west. The state is located in the tropic region and 
has humid tropical wet climate. However, a dry climate is 
observed in the east and wettest region in Kerala includ-
ing entire south India was observed in the southern part 
which is known as Malabar coastal region (MCR). The av-
erage annual rainfall of the state of Kerala was found to 
be 3107 mm. The coastal region of Kerala experiences a 
wind speed of 9.656 to 15.289 km/h, and maximum wind 
speed is generally observed within the month of May to 
October. The sampling region of the present study falls 
under Kochi (Figure 1) which is one of the windier places 
in India where the average wind speed varies between 7.564 
and 12.392 km/h. The state has about 590 km long coastline 
in the country. The power potential per meter of wave crest 
was found to be equal to 20 KW in Kochi (100N, 760E) 
using the wave power equation proposed in Chakraborty 
and Majumder.42,43 Figure 1 shows the location of the sam-
pling points of the case study area.

The WEC selected for the analysis was Mighty Whale 
which is a type of oscillating water column (OWC) converter 
and utilized for electricity production in many places such as 
Japan, Norway, Scotland, Spain, Italy, India, and many other 
coastal region with a rigid shoreline structure. This type of 
converters is also most researched, and maximum number 
of modified prototypes is deployed in different oceans of the 
World.65 Section 3.1.3 depicts a brief description about the 
Mighty Whale OWC WEC.

3.1.3  |  Mighty whale wave energy converter
Mighty Whale [EMEC] is used as the prototype WEC for the 
present study.44 This is a floating oscillating water column 
(OWC) type of wave energy converter device (Figure 2). It 
consists of an air turbine which is able to absorb the wave 
energy and convert to compressed air. The speed of this com-
pressed air flow of air turbine drives the generator to convert 
the wave energy into electrical energy. Section 3.3 describes 
about the identification and selection of the extreme event 
impact of which will be analyzed with respect to the selected 
WEC, that is, Mighty Whale OWC WEC.

As depicted previously, a new simulation model was de-
veloped to estimate significant wave height as a function of 
wind speed. The procedure adopted to develop the model is 
explained in Section 3.3.

3.2  |  Development of the simulation model 
used for the estimation of wave height
The significant wave height (SWH) was predicted with the 
help of a PNN model, trained with the GMDH algorithm, 
where input variable was selected as the function of wind 
speed. The function was derived from the inter-relationship 
of the parameter with the SWH. The data for training the 
model were collected from the wind speed and SWH data 
of the selected location for the last ten years. The mean 
monthly wind speed and SWH data were collected from 
the location. After normalization of the data set, the same 
is fed for training the model. 60% was used for training 
and 40% was utilized for testing or validating the model. 
After training, a 5-hidden layer with the same number of 
nodes was found to be the best topology for the estimation 
of the single input single output (SISO) model having an 
accuracy of 98% when compared with the projected data 
of SWH from the FORM technique.45 Equation 3 depicts 
the governing equation of the model as estimated by the 
selected PNN architecture.

where SWH is significant wave height (output variable) and 
A5 is the function (input variable).

M = 0.00000000000226245; N = 0.00000000000427604; 
O = 0.2868; P = 0.491071, Q = 0.508929.

The accuracy of the climate prediction varies with spatial 
resolution. That is why there are two types of climate predic-
tion models, global and regional circulation models (GCM 
and RCM). The accuracy of the RCM is better compared to 
GCM due to the sharper spatial resolution of the former type 
of models. The applicability of RCM varies with locations 
or grids. In case of Asian grids, HadCM3 models are widely 
used and as the selected case study location is in the Asian 
continent, the future wind speed data were used in the present 

(3)SWH= [M+{(A5×N)×O+ (−M+ (N+A5×O)×1)×Q}]
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study to predict SWH by Equation 3. Section 3.3 describes 
about the climate model, and the climatic scenarios A2 and 
B2 are explained in Section 3.3.1.

3.3  |  Identification of the extreme events
Among all types of WEC, it was found that a converter 
has a maximum lifetime of 25 to 30 years.37 That is why in 
the present investigation the return periods were selected 
in such a way that two events each have a return period of 

more and less than 30 years, respectively, and one event 
was selected with 20 to 30 years of return period. Here, 
the events, which have more than 30 years of return pe-
riod, fall below the 10% threshold for the identification of 
the extreme events, proposed in the definition by NOAA. 
The two events, which fall below the 30 years of return 
period, can be classified as common event and fall above 
the 10% threshold of all the events in the selected loca-
tion. The event, which has 20 to 30 years of return period, 
falls within 10 to 30% of all the events. The reason for 

F I G U R E   1   Figure showing the case 
study location

F I G U R E   2   Schematic diagram of 
selected WEC (Source: International Energy 
Agency, 2018)
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considering two common events along with two extreme 
events is to compare the impact of the extreme event with 
respect to the common events. The phenomena, which have 
20 to 30 years of return period, were included in the study 
because any WEC has a lifetime of 30 years and a replace-
ment is necessary when a converter is used for more than 
that period. That is why the impact for the events having 
20 to 30 years of return period is important for practical 
conclusion of the impact analysis.

In the present investigation, the extreme event was cal-
culated from the data of wind speed, retrieved from the se-
lected climate model for both A2 and B2 scenarios. The 
event of wind speed was arranged in descending order of 
magnitude, and the return periods were calculated consid-
ering the variation to be normally distributed for each of 
the scenario. The events with 1 to 10 years, 10 to 20, 20 to 
30, 30 to 50, and 50 to 60 years, were identified for each of 
the scenarios and fed to the simulation model (Equation 3) 
for the estimation of SWH. The wave period, direction of 
wave, and percentage of regular waves were estimated from 
the wind direction data retrieved from the World Clim cli-
matic data center. Average wave power level for the future 
scenarios was estimated from the data of wave height and 
period of the future scenarios by Equation 4 (Table 1). 
Thus, five different UEF can be estimated for each of the 
A2 and B2 scenarios from the ten events collected from 
both A2 and B2 scenarios having a return period ranging 
from 1 to 60 years.

Once the extreme events were identified, the analysis was 
conducted by first predicting the UEF for the selected ex-
treme events for both A2 and B2 scenarios. The UEF for the 
present condition was retrieved from the previous study of 
the authors of the present investigation. The predicted UEF 
was validated by a physical model where an experimental 
setup was developed to replicate the selected extreme events 
and monitoring the power output produced for such events. 
The entire procedure is depicted in Section 3.4.

3.4  |  Experimental setup validation of the 
results from the impact analysis
The experimental setup was prepared to develop a physical 
model for validation of predicted UEF retrieved for different 
extreme events. Although the UEF index was compared with 
average wave power level of the selected locations for pre-
sent climatic conditions,42,43 the results were not validated for 
future climatic predictions, especially for the extreme events. 
In case of present scenario, available wave power data were 
used to validate the results from the UEF. But for the future 
time slabs, there are no primary or historical data for wave 
power and mostly estimation from simulations is used for 
decision-making considerations. That is why an experimental 
setup was established to validate the predicted UEF. In this 

aspect, a flume was designed as the base of the experiment. 
A piston was fixed at one end to act as the simulator of sce-
narios, and the dynamos were used to produce power and act 
as the output of the experiment. The detailed description of 
the experimental setup is depicted in 3.4.1.

3.4.1  |  Description of the experimental setup
The entire experimental setup can be divided into flume, 
piston, and dynamos (Figure 3A). The dimension of the 
flume was 2 m × 2 m × 1 m. A piston was attached at the 
source end of the flume. Two concentrators were fixed in 
the left- and right-hand wall of the flume to channel the 
waves onto the dynamos. Three dynamos were arranged 
in series and placed at the focus of the concentrators. The 
waves, generated by the movement of the piston, flow 
into the concentrators and rotate the dynamos to produce 
power. After rotating the dynamos, water leaves the flume 
from the sink side and was recirculated by a motor to the 
source side. The same water is then used by the piston to 
generate waves. Three 100w dynamos were used in series 
to produce power due to the waves generated by the piston 
movement. The output of the dynamos was measured by a 
multimeter attached at the end connection of the last dy-
namo. The reason for using three dynamos was to multiply 
the power output from the dynamos. The loss due to resist-
ance and reactance was included at the time of calculating 
efficiency which was assumed to represent the w14 to w18 
indicators of the UEF. The wake effect due to the position 
of three dynamos in the flume was also included for the 
determination of efficiency.

Wave height and wave period that can be generated by 
the frequency of piston movement can be represented by 
Equations 5a and 5b in terms of the displacement in piston 
(xp) and its capacity to generate waves of height H within a 
time t.

where H is the wave height, k=

√

3H

4d
, and celerity, 

c = 
√

g (d+H), xp (t) is the displacement of the piston, d is 
the depth, �= d

k

The percentage of regular wave, direction of wave, and 
average wave power level was also regulated by the pis-
ton. The percentage of regular waves can be estimated from 
the frequency of movements in the piston. The direction 
of the waves will be perpendicular to the direction of the 
piston movement. The average wave power level can be cal-
culated by Equation 5 where the heights and period of the 
waves generated in the flume were used to determine the 

(5a)xp (t)=
H

k

(

tanh x (t)+ tanh
k

d
�

)

(5b)x (t)=
k

d

(

ct−xp (t)−�
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average wave power level. The depth of the ocean waves 
was assumed to be equal to the depth of the flume which 
can be maximum of 1 m. The shipping density was kept 
at constant. Tax amount is also kept as constant. The di-
mension of the dynamos along with the concentrators 
was assumed to be representing the size and shape of the 
WEC. Here, dimension of the concentrator was equal to 
0.5 m × 0.75 m × 0.05 m and made of steel in such a man-
ner that minimum possible absorption of energy can be 
maintained.

The cost of the installation of flume, concentrators, 
dynamos, and the motor was considered as the installa-
tion cost. The cost incurred during the operation of the 
piston and dynamos including the expenditures due to 
maintenance was assumed to be equal to the operation 
and maintenance cost of the WEC. The cost of electricity 
charged by the local electricity regulator was assumed to 

be the rate of selling cost per unit electricity generated 
from the WEC (representing w24 indicator). The indicator 
tax was assumed to be constant. The indicators of UEF 
and its analogy in the experimental setup are depicted in 
Figure 3B.

The test was performed for five different frequencies of 
pistons replicating the wave height of five different extreme 
events. At first, the wind speed is converted to wave height 
by Equation 3. Then, the Equations 3a and 3b were used to 
find the frequency of piston movement required to generate 
the same wave height. Accordingly, this was operated, and 
the power generated due to the piston movement was noted 
from the multimeter for each of the scenarios. Corresponding 
UEF was also calculated and compared. The UEF was also 
compared with the power potential for these scenarios by 
the wave power equation proposed by Tucker and Pitt.66 The 
three-phase validation of the UEF for the future time slabs 

F I G U R E   3   (A) Figure showing the 
experimental setup (B) Schematic diagram 
of experimental procedure
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ensured reliability of the UEF estimations of the future time 
slabs.

The procedure adopted for replication of the events in 
the experimental setup is shown in Figure 3B. Section 4 de-
scribes the results retrieved following the methodology dis-
cussed in Section 3.

4  |   RESULTS AND DISCUSSION

The objective of the present study was to estimate the im-
pact of extreme events of the future on the utilization of 
wave energy potential by the selected WEC for a specific 
location. In this aspect, UEF was selected from the repre-
sentation of the impact. The Kochi region of the Kerala 
coastal peninsula was identified as the location where 
Mighty Whale WEC was used as the WEC. Sections 4.1 
to 4.4 give the results and discuss about the results re-
trieved from the steps: feature selection and data collection 
(Section 4.1), simulation model for SWH estimation from 
wind speed (Section 4.2), identification of the extreme 
events (Section 4.3), and lastly the prediction of UEF by 
Equation 2 followed by the validation of UEF by the physi-
cal model described in Section 4.4. A discussion on the 
impact of extreme event is included in Section 4.5.

4.1  |  Results from the feature selection and 
data collection
The features or indicators selected for the present investiga-
tion are depicted in Table 1. All these indicators were se-
lected for the estimation of UEF. The data for the indicators 
were collected for the selected case study area and WEC. The 

data were retrieved for the time slabs of 2009 to 2017 repre-
senting the current scenario and for the time slabs of 2019 
to 2040 and 2040 to 2070 as the future scenario. Source and 
procedures of data collection are shown in Table 1.

The data for the future scenario were collected for both 
IPCC SRES A2 and B2 scenario and the same time slabs. 
As the climate models can estimate the climatic parameters 
only, the SWH was estimated from wind speed data collected 
from the HadCM3 model with the help of the simulation 
model. Results from the simulation model are described in 
Section 4.2.

4.2  |  Results from the simulation model 
for the estimation of SWH from wind speed

Table 2 depicts the performance parameters of the poly-
nomial neural network model developed with the help 
of GMDH training algorithm for the estimation of SWH 
from wind speed. The same estimation was conducted 
with the help of Quick Combinatorial training algo-
rithm. Training data of the input and output were col-
lected for the selected study area and from the Indian 
Meteorological Department (IMD) and Buoyweather, re-
spectively, for the monthly average wind speed and wave 
data of 2009 to 2017. That is, 120 sets of data were used 
for the development of the SISO model. From the perfor-
mance parameters, it can be clearly concluded that the 
GMDH-trained PNN model was better compared to QC-
trained PNN model for the estimation of SWH. That is 
why the former model was used in the estimation of SWH 
from wind speed data.

The data for SWH were predicted for the future scenar-
ios and compared with the data generated by the FORM 

F I G U R E   4   Schematics of the 
methodology adopted in the present study 
to analyze the impact of extreme events on 
utilization efficiency of WEC in a specific 
location
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technique. The relative difference between the PNN-predicted 
SWH and FORM technique was found to be equal to 7.56%, 
and as this difference was below 20%, the model output was 
decided to be reliable.

4.3  |  Identification of the extreme events
The extreme event for the present investigation was found 
by following the procedure recommended by McPhillips 
et al47 The events were identified for both A2 and B2 sce-
narios. As discussed in Section 3.3, a total of five different 
extreme events were selected having a return period from 1 to 
60 years. Table 3 depicts the percentage change in UEF and 
average wave power level (AWPL) from the UEF and AWPL 
of the current scenario with respect to the five extreme events 
identified for this study.

The most extreme events were found in 2060-2070 
and 2050-2060, respectively, for the A2 and B2 scenarios. 
Table 3 displays that the AWPL decreases from the AWPL 
of the current scenario for both A2 and B2 scenarios with 
respect to all the five extreme events. The UEF value is also 
decreasing in both the scenarios. Maximum reduction of fu-
ture UEF and AWPL in case of A2 scenario was identified 
in the year 2060-70 and was for the extreme event having a 
return period of 50 to 60 years. It was found that both UEF 
and AWPL will reduce by 15.10% and 61.39%, respectively, 
with respect to the current UEF and AWPL of Kochi region. 
The minimum decrease was found for the extreme event 
having a return period of 31 to 50 years where a reduction 
of 40.77% and 7.97% was found, respectively, for the AWPL 
and UEF compared to the current AWPL and UEF.

In case of B2 scenario, the maximum and minimum de-
crease of UEF and AWPL with respect to the current UEF 
and AWPL were found for the extreme event having a return 
period of 1 to 10 years. The amount of uppermost and low-
ermost reduction in UEF and AWPL was found to be equal 
to 10.38% and 50.71% and 6.67% and 40.45%, respectively.

The results clearly indicate that the increase in the return 
period of extreme events will decrease the UEF and corre-
sponding AWPL for both A2 and B2 scenarios. However, 
magnitude of change will be more in A2 compared to B2 sce-
nario. The reason can be attributed to the strict environmental 
policy considered in B2 scenario which will ensure a slow 
degradation in utilization by the WEC.

Once the extreme event was identified and the UEF was 
predicted by the UEF model (Equation 1), the predictions 
were validated by an experimental setup as described in 
Section 3.4. The results from the experimental analysis are 
depicted in Section 4.4.

4.4  |  Results from the experimental 
validation of the UEF predicted for the future 
time slab
The power output from the medium-scaled physical model 
developed replicating the identified five extreme events 
along with the predicted UEF and AWPL for the scaled-
down condition is shown in Tables 4 and 5, respectively, for 
the extreme events of A2 and B2 scenarios, which are identi-
fied in Section 3.3.

The change in UEF, wind speed, wave period, and SWH 
for the scaled-down physical model is shown in Figures 5 and 

Error measure 
(Absolute)

GMDH training algorithm
Quick combinatorial 
training algorithm

Model fit Prediction Model fit Prediction

RMSE 1.43E-12 1.45 E-12 1.42 E-12 1.45 E-12

Correlation 1 1 1 1

Coefficient of 
determination

1 1 1 1

T A B L E   2   Performance parameters of 
the polynomial neural network model 
developed with the help of GMDH training 
algorithm for the estimation of SWH from 
wind speed

T A B L E   3   Table showing the change in UEF and AWPL for the five extreme events identified for the present investigation from both A2 and 
B2 scenarios

Return period of the 
extreme events (year)

A2 B2

% change in AWPL % change in UEF % change in AWPL % change in UEF

51-60 (−ve) 61.39 (−ve) 15.10 (−ve) 40.45 (−ve) 6.67

31-50 (−ve) 40.77 (−ve) 7.97 (−ve) 49.31 (−ve) 8.81

21-30 (−ve) 48.81 (−ve) 11.29 (−ve) 49.80 (−ve) 8.85

11-20 (−ve) 49.23 (−ve) 9.11 (−ve) 49.95 (−ve) 8.98

1-10 (−ve) 49.59 (−ve) 9.12 (−ve) 50.71 (−ve) 10.38
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6, respectively, compared to the magnitude of the indicators 
with respect to the scaled-down model of the current sce-
nario. Here, also maximum amount of change was observed 
in A2 scenario compared to B2 scenario which indicates that 
the predicted UEF for the future scenario is coherent with 
that of the scaled-down physical model. When the predicted 
UEF is scaled up, the average relative difference with the 
predicted UEF for all the five extreme events was found to be 
3%, 42%, 43%, 41%, and 45%, respectively, for A2 and 19%, 
0.5%, 41%, 42%, and 45%, respectively, for B2 scenarios.

The coherency and relative difference between the pre-
dicted UEF and scaled-down UEF indicate reliability of the 
prediction by the PEF model, and thus, impact analysis of 
the extreme event was conducted with the predicted UEF of 
the future and current scenario and is depicted in Section 4.5.

4.5  |  Impact analysis of extreme event on the 
utilization of wave energy by the selected WEC
The magnitude of UEF was predicted with the help of the climatic 
data retrieved from the HadCM3 model collected for the IPCC 
SRES A2 and B2 scenario and is described in Section 3.1.1.

According to the results for the A2 scenario, there is a 
reduction of 15.1% in the UEF at A2 scenario. The highest 
percentage reduction in the UEF was found in the time slab of 
2041 to 2070. The UEF was found to be degrading in B2 sce-
nario also, and the maximum degradation of 10.38% was ob-
served in the time slab of 2019 to 2040, although the intensity 

of the change is about 1.5 times less in B2 compared to A2 
scenario. IPCC B2 scenario considers a divided world with 
strict environmental and ecological policy. The less decrease 
in UEF in B2 scenario compared to that in A2 scenario indi-
cates the significance of the environmental restrictions which 
can result in greater utilization of the wave power potential 
by the WEC.

4.6  |  Scientific benefits of the study
The UEF considers all the most significant indicators, which 
affect directly or indirectly the utilization efficiency of the 
converters, and as per their contribution, the evaluation of the 
magnitude of UEF helped to analyze the impact of extreme 
events on the “utilization efficiency” of the WEC by a single 
index only. The single-index evaluation reduces both time 
and cost of decision making. Another novel feature of the 
present study is the procedure of validation of the decision 
adopted based on the single-index method by a laboratory-
based wave simulator specifically designed for the present 
investigation which can replicate the impact of extreme 
events on the WEC and compare with the modeled impact 
predicted by the UEF. This real-life validation of the model 
results increases the reliability of the present procedure pro-
posed in the investigation. The novelty of the present study 
also includes the pioneering application of PNN model for 
the estimation of the impact of extreme events which was not 
adopted in any of the previous related studies.

T A B L E   4   Table showing the experimental validation of UEF predicted for A2 scenario

Return period of the 
extreme events Wind speed (m/s) SWH (m)

UEF at 
the wind 
speed

Frequency of 
displacement 
(50 mg/s)

Power output from 
dynamo (mVA) AWPL (kw/m)

51-60 4.31 2.77 1.21 7.75 0.015 5.80

31-50 4.01 2.57 1.12 7.23 0.013 3.45

21-30 3.99 2.56 0.86 7.20 0.013 3.35

11-20 3.99 2.56 0.95 7.19 0.013 3.48

1-10 3.96 2.54 1.15 7.15 0.012 3.28

Current scenario 4.85 2.89 1.05 8.09 0.025 5.98

T A B L E   5   Table showing the experimental validation of UEF predicted for B2 scenario

Return period of the 
extreme events Wind speed (m/s) SWH (m)

UEF at 
the wind 
speed

Frequency of 
displacement 
(50 mg)/s

Power output from 
dynamo (mVA) AWPL (kw/m)

51-60 4.04 2.17 1.12 6.12 0.010 4.80

31-50 3.94 2.76 1.01 7.75 0.015 5.95

21-30 3.93 2.57 1.11 7.23 0.013 3.49

11-20 3.93 2.56 1.05 7.20 0.013 3.46

1-10 3.91 2.56 1.148 7.19 0.013 3.26

Current scenario 4.85 2.89 1.05 8.09 0.025 5.98
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5  |   CONCLUSION

The present investigation is a novel approach where the impact 
of extreme events on the utilization of wave power potential in 
a region by a WEC was analyzed. In this aspect, an index was 
selected which can represent the utilization of wave energy 
available in a location by a specific type of WEC. The index, 
UEF, is a function of 24 indicators most of which are affected 
by climatic parameters. As a result, if there is a change in 
the regular climatic pattern, the utilization of wave energy 
potential by the WEC will also be affected. That is why the 
study uses the UEF to depict the impact of extreme events on 
the utilization of wave power potential. The extreme events 
were identified for the A2 and B2 scenarios of future world 
as conceptualized by IPCC SRES. Before using UEF for the 
estimation extreme event impact, the future predictions were 
conducted by UEF model developed with the help of PNN 
architecture. The future prediction was validated with the help 
of a medium-scaled physical model where identified extreme 
events were replicated. Another model was developed to com-
putationally simulate the SWH as a response to wind speed. 
As existing climate models predict future pattern of climatic 
variables only, the requirement of a new model for the estima-
tion of SWH from the climatic parameters becomes essential 
for impact analysis of climate change. PNN architecture was 
again used to develop the model. After all the data for cur-
rent and present scenarios of the 24 indicators were collected, 
UEF was estimated for the five different extreme events for 

both A2 and B2 scenarios. According to the results of the 
prediction, utilization by WEC will be reduced in the future 
time slabs; however, the degradation will be much higher in 
A2 compared to B2 scenario, which shows the importance of 
environmental restriction on industrial activity that ensures 
milder degrading impact on the utilization of wave energy po-
tential by the WEC. The maximum degradation was found in 
the time slab of 2041 to 2070 in A2 scenario, but for B2 sce-
nario, the highest decrease in UEF was observed in the initial 
years of strict environmental restrictions, that is, in the 2019 
to 2040 time slabs. As later on, the situation improves and so 
is the decrease in utilization. Although a physical model is 
used to validate the model predictions, due to the large num-
ber of inputs, collection of pertinent data and impact of all 
the inputs may reduce the usability of the model. However, 
a sensitivity analysis or activating self-selection capability of 
GMDH algorithms can separate essentially from optional in-
puts and thereby decreasing the time required in preprocess-
ing of the predictive procedure and can increase the accuracy 
of the model.

ORCID

Mrinmoy Majumder   https://orcid.org/0000-0001-6231-5989 

REFERENCES

	 1.	 ATMOCEAN. The Potential of Wave Energy; 2018. Retrieved from 
https://atmocean.com/the-potential-of-wave-energy/

F I G U R E   5   Figure showing the 
change in SWH, wave period, wind speed, 
and UEF with respect to the scaled-down 
model of A2 scenario compared to scaled-
down model of current scenario

0.00 

10.00 

20.00 

30.00 

40.00 

50.00 

60.00 

70.00 

2057 2045 2067 2019 2021 

Ch
an

ge
 in

 p
er

ce
nt

ag
e  

Return Period 

Wind speed (% Change) 

Wave Period (% change) 

Significant Wave Height ( % 
change) 

% change in UEF 

F I G U R E   6   Figure showing the 
change in SWH, wave period, wind speed, 
and UEF with respect to the scaled-down 
model of B2 scenario compared to scaled-
down model of current scenario

0.000
5.000

10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000

2070 2052 2067 2055 2021

Ch
an

ge
 in

 P
er

ce
nt

ag
e

Return Period

Wind speed (% Change)

Wave Period (% change)

Significant Wave Height ( % 
change)

% change in UEF

https://orcid.org/0000-0001-6231-5989
https://orcid.org/0000-0001-6231-5989
https://atmocean.com/the-potential-of-wave-energy/


      |  3455CHAKRABORTY and MAJUMDER

	 2.	 A comprehensive annual overview of the state of renewable energy 
(2019). REN 21 “Renewables 2018-Global status report.”

	 3.	 Owusu PA, Asumadu-Sarkodie S. A review of renewable en-
ergy sources, sustainability issues and climate change mitigation. 
Cogent Eng. 2016;3(1):1167990.

	 4.	 Ransley EJ, Greaves D, Raby A, Simmonds D, Hann M. 
Survivability of wave energy converters using CFD. Renew Energy. 
2017;109:235‐247.

	 5.	 Brooke J. Wave Energy Conversion, Vol. 6. Amsterdam, 
Netherlands: Elsevier; 2003.

	 6.	 Wang W, Wu M, Palm J, Eskilsson C. Estimation of numerical 
uncertainty in computational fluid dynamics simulations of a pas-
sively controlled wave energy converter. Proc IME M J Eng Marit 
Environ. 2018;232(1):71‐84.

	 7.	 Hughes MG, Heap AD. National-scale wave energy resource as-
sessment for Australia. Renew Energy. 2010;35(8):1783‐1791.

	 8.	 Aboobacker VM, Shanas PR, Alsaafani MA, Albarakati AMA. 
Wave energy resource assessment for Red Sea. Renew Energy. 
2017;114:46‐58.

	 9.	 Re CL, Manno G, Ciraolo G, Besio G. Wave energy assessment 
around the Aegadian Islands (Sicily). Energies. 2019;12(3):333.

	10.	 Sasmal K, Webb A, Waseda T, Miyajima S. Wave energy resource 
assessment: A comparative study for two coastal areas in Japan. 
In Advances in Renewable Energies Offshore: Proceedings of the 
3rd International Conference on Renewable Energies Offshore 
(RENEW 2018), October 8-10, 2018, Lisbon, Portugal, p. 67. CRC 
Press; 2018.

	11.	 Lin Y, Dong S, Wang Z, Guedes Soares C. Wave energy assessment 
in the China adjacent seas on the basis of a 20-year SWAN simula-
tion with unstructured grids. Renew Energy. 2019;136:275‐295.

	12.	 Chakraborty T, Majumder M, Khare A. Application of AHP-
VIKOR and GMDH framework to develop an indicator to identify 
utilisation potential of wave energy converter with respect to loca-
tion. Int J Spatio-Temporal Data Sci. 2019;1(1):98‐113.

	13.	 Zanous SP, Shafaghat R, Alamian R, Shadloo MS, Khosravi M. 
Feasibility study of wave energy harvesting along the southern 
coast and islands of Iran. Renew Energy. 2019;135:502‐514.

	14.	 Castelle B, Dodet G, Masselink G, Scott T. Increased winter-mean 
wave height, variability, and periodicity in the Northeast Atlantic 
over 1949-2017. Geophys Res Lett. 2018;45:3586‐3596.

	15.	 Zheng CW, Gao ZS, Liao QF, Pan J. Status and prospect of the 
evaluation of the global wave energy resource. Recent Patents Eng. 
2016;10(2):98‐110.

	16.	 Danovaro R. Climate change impacts on the biota and on vulner-
able habitats of the deep Mediterranean Sea. Rendiconti Lincei. 
Scienze Fisiche e Naturali. 2018;29(3):525‐541.

	17.	 Sisco MR, Bosetti V, Weber EU. When do extreme weather 
events generate attention to climate change? Clim Change. 
2017;143(1–2):227‐241.

	18.	 Acuna LG, Vasquez Padilla R, Mercado AS. Measuring reliabil-
ity of hybrid photovoltaic-wind energy systems: a new indicator. 
Renew Energy. 2017;106:68‐77.

	19.	 Liu G, Li M, Zhou B, Chen Y, Liao S. General indicator for techno-
economic assessment of renewable energy resources. Energy 
Convers Manage. 2018;156:416‐426.

	20.	 Zheng CW, Wang Q, Li CY. An overview of medium-to long-term 
predictions of global wave energy resources. Renew Sustain Energy 
Rev. 2017;79:1492‐1502.

	21.	 Reguero BG, Losada IJ, Méndez FJ. A global wave power re-
source and its seasonal, interannual and long-term variability. Appl 
Energy. 2015;148:366‐380.

	22.	 Seneviratne SI, Nicholls N, Easterling D, et al. Changes in Climate 
Extremes and Their Impacts on the Natural Physical Environment. 
Cambridge: Cambridge University Press; 2012.

	23.	 Ulazia A, Penalba M, Ibarra-Berastegui G, Ringwood J, Saénz J. 
Wave energy trends over the Bay of Biscay and the consequences 
for wave energy converters. Energy. 2018;141:624‐634.

	24.	 Wabnitz CC, Lam VW, Reygondeau G, et al. Climate change im-
pacts on marine biodiversity, fisheries and society in the Arabian 
Gulf. PLoS ONE. 2018;13(5):e0194537.

	25.	 Zheng CW, Li C, Wu H, Wang M. Climatic trend and prediction of 
the wind energy in the Gwadar Port. In: 21st Century Maritime Silk 
Road: Construction of Remote Islands and Reefs. Singapore City: 
Springer; 2018:35‐57.

	26.	 Jiang L, Yin Y, Cheng X, Zhang Z. Interannual variability of 
significant wave height in the northern South China Sea. Aquat 
Ecosyst Health Manage. 2018;21(1):82‐92.

	27.	 Mori N, Shimura T, Yasuda T, Mase H. Multi-model climate pro-
jections of ocean surface variables under different climate sce-
narios—future change of waves, sea level and wind. Ocean Eng. 
2013;71:122‐129.

	28.	 Nguyen XH, Dinh VU, Tran VT. Impacts of climate change 
on wave regimes in the east sea. Vietnam J Sci Technol Eng. 
2017;59(1):88‐92.

	29.	 Regos A, Clavero M, D‘amen M, Guisan A, Brotons L. Wildfire–
vegetation dynamics affect predictions of climate change impact on 
bird communities. Ecography. 2018;41(6):982‐995.

	30.	 Ruffato-Ferreira V, da Costa Barreto R, Oscar Júnior A, et al. A 
foundation for the strategic long-term planning of the renewable 
energy sector in Brazil: hydroelectricity and wind energy in the 
face of climate change scenarios. Renew Sustain Energy Rev. 
2017;72:1124‐1137.

	31.	 Hillebrand H, Brey T, Gutt J, et  al. Climate change: warming 
impacts on marine biodiversity. In: Salomon M, Markus T, eds. 
Handbook on Marine Environment Protection. Cham: Springer; 
2018:353‐373.

	32.	 Hoegh-Guldberg O, Bruno JF. The impact of climate change on the 
world‘s marine ecosystems. Science. 2010;328(5985):1523‐1528.

	33.	 IEA. World Energy Outlook; 2017. Retrieved from https://www.
iea.org/weo2017/ on 13 October 2018.

	34.	 IMHEN. Applying Norwegian earth system model for Climate 
Change scenario development for Vietnam, monsoon and climate 
extreme studies, Final report, Hanoi; 2014.

	35.	 Kamranzad B, Etemad-Shahidi A, Chegini V, Yeganeh-Bakhtiary 
A. Climate change impact on wave energy in the Persian Gulf. 
Ocean Dyn. 2015;65(6):777‐794.

	36.	 Keigwin LD, Change AC, Climates P. Sedimentary record yields 
several centuries of data. Life. 2018;2:16‐19.

	37.	 Coe RG, Neary VS. Review of Methods for Modeling Wave Energy 
Converter Survival in Extreme Sea States. New Mexico, USA: U.S. 
Department of Energy; 2014.

	38.	 Tu F, Ge SS, Choo YS, Hang CC. Sea state identification based on 
vessel motion response learning via multi-layer classifiers. Ocean 
Eng. 2018;147:318‐332.

	39.	 Ghosh S, Chakraborty T, Saha S, Majumder M, Pal M. Development 
of the location suitability index for wave energy production 

https://www.iea.org/weo2017/
https://www.iea.org/weo2017/


3456  |      CHAKRABORTY and MAJUMDER

by ANN and MCDM techniques. Renew Sustain Energy Rev. 
2016;59:1017‐1028.

	40.	 Ardhuin F, Marie L, Rascle N, Forget P, Roland A. Observation 
and estimation of Lagrangian, Stokes, and Eulerian currents in-
duced by wind and waves at the sea surface. J Phys Oceanogr. 
2009;39(11):2820‐2838.

	41.	 Remya PG, Vishnu S, Praveen Kumar B, Balakrishnan Nair TM, 
Rohith B. Teleconnection between the North Indian Ocean high 
swell events and meteorological conditions over the Southern 
Indian Ocean. J Geophys Res Oceans. 2016;121(10):7476‐7494.

	42.	 Chakraborty T, Majumder M. Application of non-parametric and cogni-
tive modelling for development of location selection indicator for wave 
energy converters. Int J Control Theory Appl. 2017a;10:1‐21.

	43.	 Chakraborty T, Majumder M. Application of statistical charts, 
multi-criteria decision making and polynomial neural networks in 
monitoring energy utilization of wave energy converters. Environ 
Dev Sustain. 2017b;21(1):1‐21.

	44.	 Wu B, Chen T, Jiang J, Li G, Zhang Y, Ye Y. Economic assessment 
of wave power boat based on the performance of “Mighty Whale” 
and BBDB. Renew Sustain Energy Rev. 2018;81:946‐953.

	45.	 Winterstein SR, Ude TC, Cornell CA, Bjerager P, Haver S. 
Environmental parameters for extreme response: Inverse FORM 
with omission factors. Proceedings of the ICOSSAR-93, Innsbruck, 
Austria, 551-557; 1993.

	46.	 NOAA. Extreme Event, National Center for Environment 
Information; 2018. Retrieved from https://www.ncdc.noaa.gov/cli-
mate-information/extreme-events on 19 December 2018.

	47.	 McPhillips LE, Chang H, Chester MV, et  al. Defining ex-
treme events: a cross-disciplinary review. Earth‘s Future. 
2018;6(3):441‐455.

	48.	 Holmes B, Nielsen K. Guidelines for the Development & Testing 
of Wave Energy Systems. Lisbon, Portugal: International Energy 
Agency Ocean Energy Systems; 2010.

	49.	 Gordon C, Cooper C, Senior CA, et al. The simulation of SST, sea 
ice extents and ocean heat transports in a version of the Hadley 
Centre coupled model without flux adjustments. Clim Dyn. 
2000;16(2–3):147‐168.

	50.	 Ghazavi R, Ebrahimi H. Predicting the impacts of climate change 
on groundwater recharge in an arid environment using modeling 
approach. Int J Clim Chang Strat Manage. 2019;11(1):88‐99.

	51.	 Kishiwa P, Nobert J, Kongo V, Ndomba P. Assessment of impacts 
of climate change on surface water availability using coupled 
SWAT and WEAP models: case of upper Pangani River Basin, 
Tanzania. Proc Int Assoc Hydrol Sci. 2018;378:23‐27.

	52.	 de Hipt FO, Diekkrüger B, Steup G, Yira Y, Hoffmann T, Rode 
M. Modeling the impact of climate change on water resources and 
soil erosion in a tropical catchment in Burkina Faso, West Africa. 
Catena. 2018;163:63‐77.

	53.	 De Silva CS, Weatherhead EK, Wo Knox J, Rodriguez-Diaz JA. 
Predicting the impacts of climate change—a case study of paddy 

irrigation water requirements in Sri Lanka. Agric Water Manag. 
2007;93(1–2):19‐29.

	54.	 Thuiller W. Patterns and uncertainties of species’ range  
shifts under climate change. Glob Change Biol. 
2004;10(12):2020‐2027.

	55.	 Gregory JM, Stott PA, Cresswell DJ, Rayner NA, Gordon C, Sexton 
DMH. Recent and future changes in Arctic sea ice simulated by the 
HadCM3 AOGCM. Geophys Res Lett. 2002;29(24):28-1 to 28-4.

	56.	 Johns TC, Gregory JM, Ingram WJ, et al. Anthropogenic climate 
change for 1860 to 2100 simulated with the HadCM3 model under 
updated emissions scenarios. Clim Dyn. 2003;20(6):583‐612.

	57.	 Khattak MS, Babel MS, Khan TA, Sharif M, Khalil SA. Global cli-
mate model for projecting future climate changes over upper Indus 
River Basin. Pak J Agri Agri Eng Vet Sci. 2017;33(2):227‐242.

	58.	 Zhou T, Wu P, Sun S, Li X, Wang Y, Luan X. Impact of future 
climate change on regional crop water requirement—a case study 
of Hetao Irrigation District, China. Water. 2017;9(6):429.

	59.	 Carvalho D, Rocha A, Gómez-Gesteira M, Silva Santos C. 
Potential impacts of climate change on European wind energy re-
source under the CMIP5 future climate projections. Renew Energy. 
2017;101:29‐40.

	60.	 Davy R, Gnatiuk N, Pettersson L, Bobylev L. Climate change impacts 
on wind energy potential in the European domain with a focus on the 
Black Sea. Renew Sustain Energy Rev. 2018;81(P2):1652‐1659.

	61.	 de Oliveira Tiezzi R, Vieira NDB, Simoes AF, et al. Impacts of cli-
mate change on hydroelectric power generation–a case study focused 
in the Paranapanema Basin, Brazil. J Sustain Dev. 2018;11(1):140.

	62.	 Hdidouan D, Staffell I. The impact of climate change on the level-
ised cost of wind energy. Renew Energy. 2017;101:575‐592.

	63.	 Mann ME, Rahmstorf S, Kornhuber K, Steinman BA, Miller 
SK, Coumou D. Influence of anthropogenic climate change on 
planetary wave resonance and extreme weather events. Sci Rep. 
2017;7:45242.

	64.	 Sierra JP, Casas-Prat M, Campins E. Impact of climate change on 
wave energy resource: the case of Menorca (Spain). Renew Energy. 
2017;101:275‐285.

	65.	 Falcao AFO, Henriques JCC. Oscillating-water-column wave 
energy converters and air turbines: a review. Renew Energy. 
2016;85:1391‐1424.

	66.	 Brooke J. Wave Energy Conversion System Wave Energy 
Conversion System, Volume 6, Oxford, UK: Elsevier; 2003:27‐32.

How to cite this article: Chakraborty T, Majumder 
M. Impact of extreme events on conversion efficiency 
of wave energy converter. Energy Sci Eng. 
2020;8:3441‐3456. https://doi.org/10.1002/ese3.336

https://www.ncdc.noaa.gov/climate-information/extreme-events
https://www.ncdc.noaa.gov/climate-information/extreme-events
https://doi.org/10.1002/ese3.336

