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A B S T R A C T   

Ocean waves are widely estimated using physics-based computational models, which predict how energy is 
transferred from the wind, dissipated, and transferred spatially across the ocean. Machine learning methods offer 
an opportunity to predict these data with significantly reduced data input and computational power. This paper 
describes a novel surrogate model developed using the random forest method, which replicates the spatial 
nearshore wave data estimated by a Simulating WAves Nearshore (SWAN) numerical model. By incorporating in- 
situ buoy observations, outputs were found to match observations at a test location more closely than the cor
responding SWAN model. Furthermore, the required computational time reduced by a factor of 100. This 
methodology can provide accurate spatial wave data in situations where computational power and transmission 
are limited, such as autonomous marine vehicles or during coastal and offshore operations in remote areas. This 
represents a significant supplementary service to existing physics-based wave models.   

1. Introduction 

Met-Ocean data play a significant role in the design and operation of 
offshore and coastal infrastructure. Wave conditions impact ship navi
gation and fuel-efficient operation (James, 1957; MEPC, 2012). In 
particular, the sea state is a key factor that determines vessel design and 
operational management strategies for autonomous marine systems 
(Johnston and Poole, 2017). For marine renewable energy, offshore oil 
and gas, and offshore aquaculture, wave conditions influence activities 
across the full life-cycle of the infrastructure. Cyclic wave loads impact 
fatigue, reliability, and performance of systems (DNV, 2014), whilst 
continuous wave data are key to determining the “weather windows” 
which govern the accessibility of renewable energy devices (Ardente 
et al., 2008; Balog et al., 2016; Gentry et al., 2017; Reikard et al., 2017). 

Virtually all forecasts and characterisations of wave conditions are 
currently based on deriving time-series of spatial wave conditions using 
phase-resolving physics-based, computational models. A series of 3rd 
generation wave models such as WAM (WAve Modelling) (Günther 
et al., 1992; Komen et al., 1996), WAVEWATCH-III (Tolman, 2009; 
Tolman et al., 2002), and Simulating Waves Nearshore (SWAN) (Booij 
et al., 1999; Ris et al., 1999) have become universal numerical methods. 
These models determine wave conditions based on the energy-balance 

equations, considering energy input from surface winds with processes 
dissipating wave energy. By incorporating the propagation of waves 
across the model domain and modelling interaction with the bathyme
try, spatial wave data sets are created. These models are widely used, 
providing past wave climates and wave forecasts across the world 
(Berrisford et al., 2011; Chawla et al., 2012; Service (C3S), 2017). The 
spatial resolution of these global datasets range from 0.28 × 0.28◦

(about 30 km) to 1 × 1◦ (about 111 km). SWAN was designed as a tool 
for coastal modelling, focusing more on wave propagation in shallow 
water (Booij et al., 1999). It was designed for application in coastal re
gions around the world and has also been widely used to quantify wave 
conditions for offshore renewable energy sites (e.g. Ashton et al., 2014; 
Liang et al., 2014; Wu et al., 2020). 

Physics-based models are commonly validated and calibrated with 
in-situ measurements or remote-sensing data. Presently, global-scale 
modelling assimilates satellite-based remote sensing data e.g. the 
Global Data Assimilation System (GDAS) system (NOAA, 2020). For 
nearshore areas, waves observed by in-situ buoy measurements have 
been used for validation of physics-based models, including the data 
used in this study (Van-Nieuwkoop et al., 2013). 

Combining measured time-series of wave data with physics-based 
models, offers possibilities for deriving spatio-temporal wave data. In 
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the past decade, machine learning methods have demonstrated their 
accuracy in predicting various environmental variables. Research has 
explored forecasting of wave energy flux forecasts based on in-situ 
measurement by machine learning algorithms and have achieved 
similar accuracy to physics-based models in different forecast horizons. 
Specifically, Sánchez et al. (2018) used an artificial neural network 
(ANN) to estimate the wave height at a buoy station with a mean ab
solute percentage error (MAPE) of 5.27%, while Pirhooshyaran and 
Snyder (2020) used long short-term memory (LSTM) and 
sequence-to-sequence networks to forecast significant wave height (Hs) 
and power at multiple buoy stations. Their proposed networks can 
predict Hs with MAPE of 18.2% which outperformed alternate networks 
and a random forest (RF) method, a machine learning alternative. 

The spatial correlations of environmental variables can be captured 
by machine learning methods. Oh and Suh (2018) proposed a hybrid 
model combining empirical orthogonal function (EOF) analysis and 
wavelet analysis with neural network (EOFWNN) that can forecast wave 
heights for the following 24 h at multiple locations with values of 
normalized root mean squared error (NRMSE) between 15.5% and 
26.3%. Li et al. (2011) compared the application of 23 methods, 
including RF, to the spatial interpolation of environmental variables. 
Their work confirmed both the effectiveness and sensitivity of RF to 
predict spatial patterns. This suggests that it is an ideal candidate for 
application to ocean wave data. 

Some research has attempted to make “grey-box” models combining 
a numerical model with a data-driven approach (Ibarra-Berastegi et al., 
2015; Serras et al., 2019). These systems take output from a physical 
model (e.g. European Centre for Medium-Range Weather Forecasts 
(ECMWF) and National Centres for Environmental Prediction (NCEP)) 
as features in a machine learning model. Nencioli and Quartly (2019) 
proposed a synergistic method to combine satellite and in-situ obser
vations to map an area of wave parameters, validated by a global nu
merical wave model. Ibarra-Berastegi et al. (2015) applied RF with a 
physics-based model (WAM), to issue short-term forecasts of wave en
ergy flux from 1h to 24 h at five buoys, with mean absolute 
log-differences of less than 20%–60%. Serras et al. (2019) has also 
combined RFs with physics-based data from ECMWF to forecast wave 
energy flux at the Mutriku Wave Farm up to 24-h ahead with 60% 
MAPE. 

Considering the computational requirements for coastal models such 
as SWAN, surrogate models can reduce the necessary computational cost 
associated with modelling. For example, James et al. (2018) generated a 
SWAN-based machine learning framework model in which a multi-layer 
perceptron method was used for wave height prediction, while a SVM 
method was used to predict wave period. O’Donncha et al. (2018b) 
produced an ensemble model integrating ridge regression and expo
nentiated gradient algorithms as a surrogate of a SWAN model. Subse
quently, their research group aggregated their models to an ensemble 
computationally lightweight machine learning model, applied to a site 
in Monterey Bay, California (O’Donncha et al., 2018a). Their surrogate 
model showed good agreement with a physics-based model, and with a 
five-thousand-fold improvement in computational speed. The RMSE of 
the predicted significant wave height against their SWAN model aver
aged 9 cm and the predicted wave period had an RMSE below 0.1 s. 

The demonstrated accuracy and the low computational cost of rele
vant machine learning systems, when compared to conventional 
physics-based model outputs, demonstrates an opportunity to improve 
accuracy and availability of wave data for a wide variety of applications. 
This paper initiates that research by examining whether, given sufficient 
data, machine learning techniques can capture the spatial patterns 
derived by physics-based models within a surrogate model. Acting as an 
addition to the physics-based model, such a system would have the 
potential to provide low computational cost estimates of wave condi
tions and effectively assimilate measured data. 

In this study, a RF algorithm was used to learn from an existing 
physics-based SWAN wave model output in order to produce an 

operational surrogate model that can provide an immediate, accurate 
estimate of wave conditions across a domain. 

With this in mind, the work presented in this paper addressed three 
principle objectives:  

1) Generate a surrogate model that applied machine learning method 
on the physics-based outputs to learn the spatial relationship be
tween input buoy data at a few locations within the domain to the 
full spatially distributed wave conditions across the domain.  

2) Run the surrogate model using input data from three locations within 
the domain.  

3) Run the surrogate model using wave buoy measurements as input 
and validated against further buoy data measured within the 
domain. This represents using the surrogate model and wave mea
surements for now-casting wave conditions at any point in the 
domain without running a full numerical model such as SWAN. 

2. Physics-based wave model data 

A SWAN spectral wave model was developed for the South West UK, 
longitude 4◦W to 7◦W and latitude 49◦N to 51◦N (Fig. 1) and run for 23 
years between 1989 and 2011, as described by Van-Nieuwkoop et al. 
(2013). This used 3-hourly gridded ECMWF ERA-Interim winds fields, 
subjected to spatio-temporal interpolation to 10 × 22 gridded data 
points, which drove the SWAN wave model over a 1 × 1 km2 grid res
olution, i.e. 219 × 223 cells in the grid. 

This work considers significant wave height (Hs), mean wave direc
tion (mDir), mean zero-crossing period (Tz), and peak wave period (Tp) 
within this region. The simulation time resolution was 1 h, however, due 
to storage constraints, wave parameters were only recorded every 12 h. 
The 12-h interval data from 1989 to 2011 were concatenated to build a 
single data structure in which the first three columns included time, 
longitude position, and latitude position, and the remaining columns 
contained the wave parameters. This dataset is henceforth referred to as 
the original dataset. It includes the training dataset, validation dataset 
and test dataset. 

This SWAN model has previously been validated against a global 
WAM model (ERA-Interim) at individual grid points, but also with 
measurements at three buoy locations at Looe Bay, Penzance, and Per
ranporth. The three buoy locations and corresponding information are 
shown in Fig. 1 and described in Table 1. Each of the buoys is within 
approximately 500 m of a SWAN grid point, which is considered suffi
ciently close in the surrogate model. The comparison between the nu
merical model results and measurement data can be found in the work of 
Van Nieuwkoop et al. (2013), where the relative biases of Hs, energy 
period (Tm-1,0) at Penzance buoy, Looe Bay buoy, and Perranporth buoy 

Fig. 1. Area of study (Cornwall, South West UK) and the positions of validation 
and test measurements from wave buoys. 
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remained < 20%, the RMSE of mean direction remained < 40% The 
comparison plots between numerical results at the Perranporth buoy 
location are shown in Fig. 2, as an example of the validation process. 

3. Methodology: machine learning techniques for surrogate 
regression 

The high-fidelity physics-based model is governed by underlying 
nonlinear equations that relate the wave conditions throughout the 
domain. A RF approach was implemented as a multivariate surrogate 
model to represent the spatial patterns in the wave field predicted by the 
physics-based model. In addition, the RF model was benchmarked 
against a linear regression (LR) model (section 5.1), developed based on 
methods in Hutcheson, (2011). 

3.1. Multivariate random forest regression 

RFs are one of the most effective machine learning algorithms for 
predictive regression and classification purposes (Pedregosa et al., 
2011). It is an ensemble machine learning algorithm proposed by 

Breiman (2001). As an ensemble approach, it consists of multiple, 
aggregated simpler machine learning constructs; the RF therefore uses 
multiple parallel decision tree models to train and predict sample data. 
Each decision tree for regression was a non-parametric supervised 
learning model that indicated a set of rules that were hierarchically 
structured to make decisions in forms of branches and to get real value 
consequences in forms of leaves from each node. In this research, binary 
decision trees were used, splitting each node at most into two. The 
ensemble models and random concepts in RF greatly reduce overfitting 
of individual tree models, increase diversity in the forest and result in 
more robust overall predictions (Hastie et al., 2008). 

The flow chart of RF algorithm is shown in Fig. 3. Before building 
trees, several iterations of bootstrap resampling (random sampling with 
replacement) from the training dataset were applied. The bootstrapping 
process split each sample group into data for training trees called ‘In 
Bag’, and data not included in training trees are referred as “out-of-bag” 
(OOB) for evaluation. The objective of each tree model was to minimize 
the mean squared error (MSE) of the OOB sample. The output included 
ensemble results of K trees. Because each tree is independent and 
identically distributed, the regression result was the average of K trees. 

Table 1 
Details of the locations of wave buoys used in this study.  

Buoy # Name Lon (◦W) Lat (◦N) Depth (m) Nearest SWAN grid point Distance from the nearest SWAN grid point 

Lon (◦W) Lat (◦N) (km) 

Buoy 1 Penzance 5.5030 50.1144 8.84 5.5054 50.1153 0.2835 
Buoy 2 Looe Bay 4.4110 50.3387 10.32 4.4086 50.3402 0.3133 
Buoy 3 Perranporth 5.1750 50.3536 19.97 5.1764 50.3582 0.5330 
Buoy 4a Wave Hub 5.6143 50.3473 35.85 5.6152 50.3492 0.2334  

a Buoy 4 is in a Marine Energy Test Centre Site, which was not included in surrogate model but was used for verification of surrogate model. 

Fig. 2. Observation (blue) and SWAN simulation (orange) data at the wave buoy location close to Perranporth, Cornwall, UK.  
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Hastie et al. (2008) provide a more detailed discussion of the mathe
matical aspects of RF. 

Tsoumakas and Katakis (2007) categorized the solutions to 
multi-output or multivariate problems in two ways: (1) problem trans
formation methods, which transform the problem into several regular 
single-output problems, and (2) algorithm adaption methods, which 
directly adapt algorithm into handling multiple outputs. The multivar
iate RF (MRF) method can be treated as either a series of single-output 
regression trees, or as a multivariate model (Segal and Xiao, 2011), 
and the prediction scores of the two methods are similar. In this paper, 
the MRF regression used for each wave parameter prediction contains Y 
different outputs, each representing one of Y different features (grid 
points). 

3.2. Training datasets 

To implement the machine learning techniques, the original nu
merical results were formulated into a supervised learning framework. 
This required the data to be structured as feature-label pairs with a 
corresponding time index. 

3.2.1. Input 
Considering the training data set to be a two-dimensional N x M 

matrix, input features were represented by columns and time was rep
resented by rows. The input feature matrix was generated using 21 years 
of historical data (January 01, 1989 to December 31, 2009) at the 
selected locations. The historical data therefore consisted of 15,340 time 
samples at 12-h intervals. The SWAN model in question was validated 
against three buoy locations; Looe Bay, Penzance, and Perranporth (Van 
Nieuwkoop et al., 2013). Correspondingly, wave parameters at these 
three locations were used as input features to the surrogate model. For 
each selected location, time series of the four features of interest: Hs (m), 

mDir (◦), Tz (s), and Tp (s), are considered. To train and validate the 
surrogate model, the SWAN model is used exclusively, with model re
sults nearest the buoy locations used to represent synthetic buoy data 
inputs. During the test phase of the model development, however, the 
synthetic data are substituted for real buoy measurements, demon
strating how the surrogate model can initially be built in the absence of 
in-situ data which can then be used in operation. 

3.2.2. Correlation analysis 
Prior to performing the regression analysis, the correlations between 

feature variables were analysed using a heat map of the Spearman’s rank 
correlation coefficient matrix of the input feature variables, which in 
this case were the wave parameters at the three buoy locations (Fig. 4). 
For each wave parameter, correlation between locations was observed. 
The coefficient between the Penzance buoy and the Looe Bay buoy was 
moderately higher. These are along the same section of coastline and 
therefore more spatially correlated. 

3.2.3. Output 
Evgeniou and Pontil (2004) suggested that for multivariate regres

sion, training a model on related features simultaneously rather than 
independently can improve predictive performance. On the other hand, 
if the output features are dissimilar, training separate models indepen
dently for each feature can be more time efficient than taking a 
multi-output approach (Faddoul et al., 2010). In this case, the model 
data showed spatial correlation across the measurement buoys (Fig. 4), 
which indicated that multivariate regression would be of value. Corre
lation between the same parameters at different locations was greater 
than that between different parameters at the same location. As such, 
each state variable (Hs, mDir, Tz, Tp) was modelled separately, while each 
spatially distributed variable was predicted simultaneously. Therefore, 
the outputs for each wave parameter were also in the form of a 

Fig. 3. A flowchart of RF for regression, where “in-bag” means data for training trees, “OOB”, short for “out-of-bag”, refers to data not for training trees. Adapted 
from Guo et al. (2011). 
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two-dimensional matrix, defined as the Y matrix. In the Y matrix, the 
rows represent samples at different times, while each column represents 
the result of a spatial grid point individually. 

4. Model setup and application 

The application of the surrogate model, including data processing 
and implementation, used Python 3.6, including the Python toolkit 
SciKit-Learn (Pedregosa et al., 2011). 

4.1. Pre-processing 

SWAN model results were available in the Network Common Data 
Form (netCDF). During pre-processing, these were transformed to a 
matrix with three indexes; time, longitude, and latitude. These became 
the first three columns of the matrix and wave parameters (Hs, mDir, Tz, 
Tp) at a specific time and location corresponded to the remaining col
umns of the data matrix. Secondly, invalid samples were removed from 
the data. Invalid samples in this model included grid points within the 
computational area that correspond to land. These appeared as “NaN” 
(not a number) values and were removed before generating the cleaned 
dataset. 

The cleaned dataset for 21 years from 1989 to 2009 was randomly 
segmented into a training dataset (80%) and validation dataset (20%) 
(Fig. 3). The data simulated in the year 2010 were held separately and 
processed as the test dataset. Normally, machine learning models 
require cross-validation to ensure a robust algorithm. However, for the 
RF algorithm, the accuracy was evaluated on each OOB sample, which 
was equivalent to N-fold cross-validation and the results were obtained 
directly from the model. 

In the RF model, there is no requirement for feature engineering or 
transformation and normalisation of input features. As an interpretable 

machine learning algorithm, tree-based algorithms can always compare 
prediction with “what-if”-scenarios which makes them work equally 
well with any monotonic transformation of a feature (Molnar, 2020). 

4.2. Evaluation criteria 

In this paper, the accuracy of the surrogate model was quantified 
using the coefficient of determination (R2), RMSE and NRMSE as as
sessments of the uncertainty as well as the mean proportional differ
ences to evaluate bias. 

Coefficient ​ of ​ Determination: R2 = 1 −

∑N
i=1

(

ŷi − yi

)2

∑N
i=1(y − yi)

2 (1)  

Root ​ Mean ​ Square ​ Error: RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(

ŷi − yi

)2
√
√
√
√ (2)  

Normalized ​ Root ​ Mean ​ Square ​ Error: NRMSE=
RMSE

y
(3)  

Mean ​ proportional ​ difference ​ (%): (%)D=
1
N

∑N

i=1

ŷi − yi

yi
(4)  

where N denotes the number of fitted samples, ŷ, y and y represent the 
predicted value by the surrogate model, actual value, and mean of actual 
values respectively. In the initial assessment of surrogate model per
formance over the study period based on the SWAN model, the actual 
value refers to SWAN results, while in the later model validation with 
measured data, the actual value refers to the buoy observations. 

Fig. 4. Input features correlation coefficient matrix, where (|R| ≤ 0.3 indicated a negligible correlation; 0.3 < |R| ≤ 0.5 was a weak correlation; 0.5 < |R| ≤ 0.7 
represented a moderate correlation; 0.7 < |R| ≤ 0.9 denoted a strong correlation; 0.9 < |R| ≤ 1 was fully correlated (Hinkle et al., 2003). 
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4.3. Optimal gridding selection 

Ideally, the surrogate model would represent the same resolution as 
the SWAN model (219 × 223 points in this case), representing each grid 
point as an output feature. However, the original SWAN resolution 
contained 42,500 valid points in the domain, i.e. 42,500 output vari
ables. Using this full resolution, led to a requirement of over 2 TB of 
addressable memory for an 8-year training set. To enable the approach 
using the full 21-years of data, a dimension reduction process was 
implemented, to reduce the spatial resolution. 

The statistics of waves were considered stationary within each 
simulation and homogeneous area over the domain. The surrogate 
model, therefore required an evenly scaled resolution representing a 
smoothed version of the original model that captured the spatial dis
tribution with a good agreement. An effective resolution adjustment 
method was to use bilinear interpolation techniques (Accadia et al., 
2003) to transform the SWAN data to different grid resolutions. 

In order to find an optimal gridding resolution for the surrogate 
model, different scales of horizontal and vertical resolutions were 
assessed and compared. The optimal resolution was affected by several 
factors, including the computational cost and overall accuracy of the 
scaled resolution to represent the high-resolution dataset. 

To assess whether the low-resolution data after the dimension 
reduction (DR) were accurately representing the original high- 
resolution dataset, dimension ascension (DA) was applied to the 
adjusted, low-dimensional data using the same bilinear interpolation 
method. The combined assessment, which went through the DR-DA 
process took the following into consideration (Table 2).  

1) The minimum acceptable spatial resolution was set at 0.125 ◦ ×

0.125 ◦, which resulted in 425 (25 segments longitudinal x 17 seg
ments latitudinal) grid points in the area of study.  

2) The ratio of valid grid points (non-NaN values) after the DR-DA 
process. Selecting different resolutions generates a different num
ber of NaN values at the edges. The ratio of non-NaN values was 
considered an important factor to the subsequent modelling and was 
used to evaluate the resolution selected.  

3) The mapping error after the DR-DA process. The NRMSEs of four 
wave variables associated with each set of interpolated values were 
computed as the average of RMSE at each valid point over the mean 
value of the wave parameter. To avoid seasonal trends of wave 
parameter distributions, 100 timestamps from the 21 years were 
sampled to execute the mapping NRMSE assessment (Fig. 5).  

4) The training time for the surrogate model. In this comparison, the 
time taken to train using 21 years of significant wave height with 
different resolutions was quantified.  

5) The accuracy of the surrogate model, which was evaluated by the R2 

value in the test dataset. 

The 100-sample-averaged NRMSE between interpolation from low 
resolution and the original data did not vary significantly (Fig. 5). When 
varied between 1/2 and 1/8, the NRMSE remained less than 2% of 
spatial average value. For computational efficiency, the scales from 1/4 
to 1/8 were processed for training the surrogate model, with results 
listed in Table 2. The accuracy (R2) of the surrogate model against the 
scaled SWAN model remained stable around 0.957, but the training time 
dropped from 30 min to 6 min. The combined evaluation considered the 
factors including Non-NaN ratio, mapping NRMSE, and training accu
racy. This indicated that the scale of 1/5 performed best. The training 
time for a 1/5th scale surrogate model was around 17 min. As a result, 
the 1/5th scale was used in this work, which transformed the original 
SWAN data to a grid with 43-longitude segments and 44-latitude seg
ments. The resolution change along the transformation is illustrated in 
Fig. 6. 

4.4. Model hyper-parameter setup 

The RF algorithm contains several hyper-parameters including the 
number of estimators, maximum tree depth, maximum features at each 
split and maximum samples. When looking for the best split, all features 
were taken into consideration. In each estimator, the maximum tree 
depth was set to be default, which means the nodes of each estimator 
were expanded until all leaves are pure; the maximum sample was the 
length of the training dataset. Therefore, the number of estimators was 
the key hyper-parameter requiring tuning during model development. 
Generally, the prediction accuracy improved with increasing numbers of 
estimators. However, increasing the number of estimators resulted in 
increased training time. A parameter study of training the Hs surrogate 
model showed diminishing returns when increasing the number of es
timators (Fig. 7). With greater than 200 estimators, the R2 curve and the 
RMSE curve flattened and converged for both the training and test sets, 
while the required computational time continued to increase linearly. 
Based on this with respect to both accuracy and training efficiency, the 
number of estimators used in the present surrogate models was set to 
200. 

5. Results 

5.1. Accuracy of the surrogate model relative to SWAN model 

The surrogate outputs were compared to the equivalent SWAN esti
mates. For each of the wave parameters studied, R2 values exceeded 0.9, 
with the exception of the mean wave direction (Table 3) and scatter 
plots demonstrate this strong correlation (Fig. 8). The relative RMSE of 
Hs and Tp are below 10% of each wave parameter’s average value. Low 
RMSE values within both the validation and test datasets indicated high 
confidence in the model’s ability to replicate the SWAN results. The 
prediction of peak period performed best among the four wave 

Table 2 
Parameters used for assessment of optimal gridding process. Column (10) which takes all the factors into considerations determines the optimal scale. The row 
(resolution scale of 1/5) with bold values means the optimal resolution scale selected for the surrogate model.  

Resol. 
scale 

Long. 
seg. (1) 

Lat. 
seg. 
(2) 

Resol. (3) =
(1) x (2) 

Valid points 
after DA (4) 

Non-NaN ratio 
(5) = (4)/ 
48,837 

Avg. NRMSE of 
100 samples (6) 

Comb. eval. 
(7) = (6)/(5) 

Train 
time 
(min) 
(8) 

R2 (Test) of 
surrogate model 
(9) 

Comb. eval. 
(10) = (6)/(5)/ 
(9) 

Origin 219 223 48,837 42,500 0.8702 0.00% 0.0000    
1/2 110 112 12,320 42,306 0.8663 0.88% 1.02%    
1/3 73 74 5402 42,156 0.8632 0.87% 1.01%    
1/4 55 56 3080 42,004 0.8601 1.15% 1.34% 30.8 0.9577 1.40% 
1/5 43 44 1892 41,830 0.8565 1.09% 1.27% 17.6 0.9575 1.33% 
1/6 37 37 1369 41,697 0.8538 1.31% 1.53% 12.8 0.9574 1.60% 
1/7 31 32 992 41,358 0.8469 1.23% 1.45% 9.1 0.9571 1.52% 
1/8 27 28 756 41,374 0.8472 1.92% 2.27% 6.6 0.9566 2.37% 
1/9 24 25 600 41,041 0.8404 2.12% 2.53%    
1/10 22 22 484 41,075 0.8411 1.65% 1.96%     
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parameters with NRMSE values 5.3% of the average peak period over 
the test data set among the target area. The surrogate prediction results 
of mean wave direction (mDir) had relatively low prediction accuracy 
with the R2 value below 0.9 in all of the datasets, the NRMSE accounted 
for 14.31% of the average direction. The RF model outperformed the 
benchmark LR model, reducing the NRMSE by a factor of approximately 
1.5 for all wave parameters (Table 3), indicating the efficacy of the RF 
algorithm. 

The spatial distribution of the differences between the surrogate and 
SWAN models are illustrated in Fig. 9. The annual averaged proportional 
differences between the surrogate and SWAN model in 2010 were less 
than 1.8% of SWAN values. In the northern area, the surrogate model 
over-estimated Hs, while in the southern area, it underestimated. The 
largest mean proportional difference within the domain was, D(Hs) =
− 2% for the area close to the east of the Isles of Scilly. However, the 
annual averaged value from SWAN at that point was 0.66 m, which 
resulted in a small actual difference of 0.0198 m. Areas closer to input 
positions were more likely to have lower RMSE between the original 
SWAN simulation and the surrogate model in 2010. 

Fig. 5. NRMSE comparison of different resolution scales.  

Fig. 6. Plot comparison among original, dimension reduction and dimension ascension.  

Fig. 7. Parameter study of surrogate model training Hs: Relation between 
RMSE and estimator number (black); relation between R2 and estimator num
ber (red); relation between training time and estimator number (green). 

Table 3 
Surrogate model performance parameters.  

Input location Train set period RF config. Wave 
para. 

Para. 
avg 

R2 

(train) 
R2 

(val) 
RMSE 
(val) 

R2 

(test) 
RMSE 
(test) 

NRMSE 
(test) 

LR NRMSE 
(test) 

Buoy 1 Penzance 
Buoy 2 Looe 
Bay 
Buoy 3 
Perranporth 

21 year (1989-01-01 
00:00–2009-12-31 12:00) 

Estimators =
200 

Hs 1.8086 0.9783 0.9782 0.1680 0.9575 0.1724 9.53% 13.27% 
Tz 5.1897 0.9007 0.9015 0.5137 0.8800 0.5423 10.45% 14.06% 
Tp 7.9756 0.9636 0.9594 0.3705 0.9398 0.4238 5.31% 8.42% 
mDir 231.01 0.8302 0.8279 27.242 0.8171 33.058 14.31% 23.79%  
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5.2. Performance of the surrogate model 

To test the feasibility of the surrogate model for potential deploy
ment applications, a validation stage using measured data both as input 
and output was necessary. The observation data of the three buoys from 
Penzance, Looe Bay, and Perranporth were used as input and the result 
at another buoy location was used for output validation. This validation 
buoy, close to the Wave Hub Marine Energy Test Centre Site, is repre
sentative of an offshore site with a valuable resource for marine 
renewable energy development (Ashton, 2012; Saulnier et al., 2012). It 

is the primary resource for any real-time decisions made for marine 
operations at this offshore renewable energy test site. To compare the 
result from a more accurate location, the DA process was undertaken to 
generate a high resolution spatial data set. The wave buoy data were 
then compared to the nearest high-resolution grid point of the surrogate 
model. 

For all four wave parameters studied, the surrogate model consis
tently matched the real data better than the SWAN model (Table 4 & 
Fig. 10). All R2 and RMSE values comparing the real data and surrogate 
model output were smaller than the equivalent statistics between real 

Fig. 8. The spatially averaged Hs, mDir, Tz, and Tp, from the surrogate model estimates in the test data set, compared with SWAN model runs. Blue lines and 
corresponding equations represent a fitted trend line of scatters. 

Fig. 9. Annual averaged proportional difference, D (left) and annual averaged RMSE distribution (right) of the surrogate estimation after the Dimension Ascension 
(DA) process, compared with the SWAN simulation over the test dataset in 2010. 
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data and SWAN estimates. In particular, the surrogate model’s predic
tion of zero-crossing wave period had a dramatic improvement in ac
curacy compared to SWAN, with an R2 of 0.7205 and an RMSE value half 
of the corresponding SWAN value (Table 4). The surrogate model esti
mated significant wave height R2 value was 0.9067, with an RMSE of 
0.2556 m and NRMSE of around 15%. The NRMSEs of the surrogate 
model against measured data were also below 20% for both Tz and Tp. 
The observations did not provide mean wave direction, so the compar
ison of wave direction was possible. 

5.3. Computational time and requirements 

Training the model for each wave parameter for 21 years was 
completed in 17 min on a laptop with 16.0 GB RAM and an i7-8550U 
processor, using Python 3.6 program in a Windows environment, 
including the steps for data processing. Feeding the surrogate model 
with one set of observation data yielding equivalent estimates of all 
wave parameters for the whole domain took less than 1 s on the same 
machine. As the model architecture for the surrogate produced separate 
independent models for each wave parameter, these can be run in par
allel to make full use of available resources. 

6. Discussion 

This paper has described a method for developing a surrogate wave 

model based on existing phase-averaged spectral wave model output. 
The surrogate model worked on the assumption that the spatial distri
bution of wave conditions created by the physical modelling process (in 
this case SWAN) was well defined and provides an additional service to 
immediately estimate wave conditions across the model domain from 
limited input values. 

These results indicated that the RF based surrogate model represents 
an efficient and accurate method for predicting the spatial wave field. 
When using solely physics-based models, forecasts and associated 
spatial estimates of current conditions rely on models updating every 
6–12 h, which require significant computing resources. This system of
fers a low-cost alternative to estimate spatial model outputs based on 
very limited input data and with significantly improved speed. When 
deployed using data from 3 in-situ wave buoys within the domain, the 
outputs were more accurate than physical modelling equivalents. 
Furthermore, the computational requirement was reduced by approxi
mately a factor of 100. 

In the surrogate spatial estimation, the most time-consuming task 
was loading the machine learning model, which took around 5 min for 
each wave parameter. “Edge computing” (Shi and Dustdar, 2016) 
technology would enable the model to be pre-loaded into memory and 
give rise to nearly instantaneous spatial wave estimation. As such, this 
system that would potentially be accessible using a PC, mobile phone, 
vessel navigation system, or autonomous vessel. 

Machine learning algorithms have been verified in the literature to 
solve the spatial regression problem. For example, James et al. (2018) 
and O’Donncha et al. (2018b, 2018a) used all wave boundary data to 
replicate SWAN outputs. The implementation demonstrated in this 
paper, is different to previous studies, reducing the input data to three 
points within the domain and focusing on providing accurate 
now-casting from measurement assets. This makes direct comparison 
with previous studies difficult. Instead, the work used benchmarking 
with a LR model and validation with measured data to assess the sur
rogate model. Benchmarking demonstrated that the extra complexity of 
RF algorithm improves accuracy. Verification showed that when in-situ 
data were used to drive the surrogate model, the results were improved 

Fig. 10. Comparison of four wave parameters in the year 2010 between SWAN outputs, the surrogate model outputs with real data inputs, and buoy observations at 
Wave Hub. Blue curves represent real buoy data, the orange and green curves represent SWAN and surrogate model outputs, respectively. The time-step for both sets 
of output was consistent with data plotted every 12 h. 

Table 4 
Model performance between the surrogate model and SWAN in 2010.    

R2 RMSE NRMSE 

HS SWAN 0.8521 0.3218 19.01% 
Surrogate 0.9067 0.2556 15.10% 

TZ SWAN − 0.0257 1.3903 23.71% 
Surrogate 0.7205 0.7258 12.38% 

TP SWAN 0.2263 2.4852 26.26% 
Surrogate 0.5558 1.8831 19.89%  
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when compared to physics-based model estimates. This is an important 
outcome as it showed that the combined surrogate model and in-situ 
data have the potential to provide the most accurate description of 
current conditions across the model domain. This makes the system 
highly suited to real-time management for autonomous vehicles or 
marine operations for offshore infrastructure. 

The surrogate modelling process methods demonstrated are addi
tional to physics-based models. This system relies on an accurate spatial 
description of the wave conditions from which the surrogate model can 
learn the spatial distribution of conditions across the area. As such, ac
curate physical modelling remains central to this process. This work 
shows that a surrogate model can offer real-time estimates for wave 
conditions across a model domain. The computational requirements and 
operation from limited real-time measurements mean that higher reso
lution model output could now be implemented as a service, but this 
could be considered as an additional service within the physical- 
modelling architecture. 

For some applications, such a system based on global model data will 
be advantageous, particularly where forecast data are available. The 
spatial correlations quantified using this method could similarly be 
implemented to convert forecast from global models into higher- 
resolution output, allowing a forecast product to be defined with 
similar savings on data input and computational requirements. Further 
development in this area should consider how to effectively combine in- 
situ measurements with this forecast activity. Taking advantage of the 
improved accuracy shown in this work has the potential to create an 
augmented forecast using a surrogate model procedure. 

This work has demonstrated the surrogate system using wave buoy 
data. These data were particularly suited to the application, with ac
curate, long-term data sets. However, the buoys were not deployed for 
the purpose of this study and the system showed excellent results from 
measurements that were not optimally placed within the domain. This 
highlights the potential for the surrogate approach to incorporate 
imperfect data. Further work should establish how such a system can 
work with other data sets. Satellite remote sensing offers global 
coverage, while installed infrastructure, vessels, or autonomous systems 
all have the potential to gather data. Establishing how data that may be 
inaccurate or contain bias can be incorporated in this system has the 
potential to open up significant opportunity for revolutionising met- 
ocean data provision and making real-time access to accurate spatial 
data common in a marine setting. 

7. Conclusion 

In this paper, a novel method was proposed to derive an accurate 
spatial wave data set using in-situ measured wave data from point lo
cations, using a machine learning approach. Based on a physics-based 
wave model (SWAN), this approach used a RF algorithm to evaluate 
the spatial correlation of wave parameters within the computational 
domain. This created a surrogate model, which was an efficient method 
to replicate physical modelling, without the undertaking computation
ally expensive calculations. When using observations within the domain 
as inputs, the surrogate model was more accurate than the corre
sponding estimates from the SWAN model drawing on global model data 
at the computational domain boundary. 

This method supplements a combination of physics-based modelling 
and in-situ observations that form the most common approach to met- 
ocean monitoring. It combines the real-time availability of in-situ data 
with the spatial capabilities of physics-based models and it is easily 
implemented with existing systems. Once developed, the system 
required little computational power for implementation and as such, it 
has the potential to provide real-time spatial data coverage even in sit
uations where data transmission or computational resources are limited. 
This access to accurate real-time spatial data has the potential to 
fundamentally change the way that met-ocean data are used for the 
management and operation of marine infrastructure. 

The system developed was highly flexible and has potential for 
implementation with other marine environmental parameters. 
Continued development will allow combined analysis of a range of in- 
situ monitoring devices and can incorporate measurements of oppor
tunity to create highly detailed and accurate data sets. This will include 
mobile measurements from autonomous vehicles and a built in suit
ability to direct such measurements to improve accuracy and relevance 
of data sets for specific operations. Establishing this system with other 
data sets will create significant opportunity for making real-time access 
to accurate spatial data the new normal in a marine setting. 
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