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Abstract We explored distinct directional variations of multifractal and intermittent characteristics of ebb
and flood flow velocities at nodule point, WA, tidal energy site, and complementary inspection on the East
River, NY using scaling exponents of the structure function, distribution flatness, detrending moving average
(DMA) analysis, multifractal detrended fluctuation analysis (MF‐DFA), and high‐order spectral moments. Our
findings reveal that tidal flow presents higher long‐range dependence (LRD) and intermittent levels for the ebb
flow sections, whereas the flood flow sections exhibit a higher degree of multifractality and greater sensitivity to
larger magnitude of turbulent fluctuations. We demonstrate that long‐range dependence predominantly
contributes to multifractal behavior in both ebb and flood flows, as evidenced by the significantly reduced
multifractal spectrum width for temporally randomly permuted time series. Moreover, spectral kurtosis analysis
uncovers a higher intermittent level across all frequency scales for ebb flow sections and reveals a distinct
pattern of tidal flow intermittency differing from the monotonically increasing intermittent level observed in
wall‐bounded and grid turbulence. Finally, we demonstrate that DMA, MF‐DFA, and high‐order spectral
moments provide more comprehensive insights than structure function scaling exponents and PDF flatness
methods.

Plain Language Summary Tidal currents plays an important role in marine ecosystems, sediment
transport, and renewable energy. However, their complex dynamics, influenced by turbulence and
intermittency, remain poorly understood. We used multifractal detrended fluctuation analysis (MF‐DFA) and
spectral kurtosis to investigate tidal flows at nodule point, WA, and East River, NY, uncovering distinct
directional variations in their multifractal and intermittency characteristics, where its ebb flow showed higher
long‐range dependence (LRD), whereas the flood flow exhibited greater multifractality and susceptibility to
large magnitude of turbulent fluctuations. By employing higher‐order spectral analysis and detrending
techniques to isolate short‐term dynamics, the study reveals unique scale‐dependent intermittency patterns in
tidal turbulence. For the first time, a characteristic tidal intermittency pattern is observed, featuring higher
intermittency levels at midinertial subrange scales and Gaussian‐like behavior in small‐scale events, which
distinct from classical grid turbulence models. These findings advance the understanding of tidal turbulence
patterns by incorporating multifractal dynamics, offering new insights for the design and placement of tidal
turbines to optimize energy extraction. The results align with prior efforts and highlight the value of integrating
multifractal analysis into models to enhance our understanding and utilization of tidal systems.

1. Introduction
Over the last decade, tidal stream energy has demonstrated the reliability of tidal energy conversion (TEC)
technologies through real‐world deployments. These demonstrations show the potential of tidal energy to enhance
the global renewable energy mix. This includes utility‐scale grid‐connected tidal energy projects as well as off‐
grid or distributed systems serving coastal and island communities. Such initiatives offer solutions to meet the
diverse energy needs of these communities particularly those that are off‐grid (Chowdhury et al., 2021; Huckerby
et al., 2016; OES, 2023). The maximum extractable global mean annual tidal power along continental shelves is
estimated to be a fraction of the 2.5 TW (TW) dissipation rate (Egbert & Ray, 2003), ranging from 0.06 TW
(Hammons, 1993) to 1 TW (Kempener & Neumann, 2014). This indicates that fully harnessing global tidal
current energy could significantly contribute to the projected 2050 global mean annual renewable power elec-
tricity generation of 4.8 TW (EIA, 2023).
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As tidal energy deployment scales up, employing simulators to perform life cycle analysis of hydrokinetic tur-
bines becomes necessary to estimate the levelized costs of energy (LCOE) for tidal site selection. One of the most
commonly used approaches is the TurbSim stochastic unsteady turbulent inflow simulator developed by the
National Renewable Energy Laboratory (NREL) (Kelley & Jonkman, 2005). TurbSim is an inflow wind/tidal‐
based simulation tool that offers a variety of turbulence spectrum models, such as the IEC Kaimal Model and the
IEC von Kármán Isotropic Model. It inputs single‐point mean flow speed, turbulence intensity, and integral
length/timescales obtained from field measurements and returns a velocity time series by inverse Fourier
transforming the turbulence spectrum representation (Jonkman, 2009). These simulated time series of velocity
fluctuations are utilized for turbine load analysis, imbalance fault diagnosis, and LCOE estimation (Bashirzadeh
Tabrizi et al., 2019; Malik &Mishra, 2017). Despite TurbSim's effectiveness in aiding turbine design, installation,
operation, and maintenance processes (Byon, 2013; El‐Thalji & Liyanage, 2012; Foley & Gutowski, 2008), the
linear nature of classical spectrum models adopted in TurbSim introduces several limitations, including the
omission of turbulence intermittency and the inability to model multifractal characteristics in the flow (Kelty‐
Stephen et al., 2023).

Intermittency in turbulence significantly affects tidal and wind turbines. Anup et al. (2021) experimentally
demonstrated that small‐scale intermittent structures lead to increased turbine loading. Their findings also
included heavy‐tailed distributions in rotor torque and blade bending moment under more intermittent wind
conditions. Ali and Cal (2019) conducted experimental research on the near wake of a wind turbine array,
uncovering its multifractal characteristics through the second‐order structure function and multifractal detrended
fluctuation analysis. They observed high intermittency at various scales within the turbine array wake potentially
linked to rotor blade vibration modes. Milan et al. (2013) used multifractal analysis on wind farm power output
data, employing scaling exponents of structure functions and the flatness of PDF distributions. They identified
that the fractal scaling of the highly fluctuating electrical power produced by wind turbines closely aligns with
Kolmogorov's log‐normal law of turbulence, attributing the fluctuations to highly intermittent wind gusts. Their
analysis further showed that wind turbines amplify the level of intermittency by up to four times that of the
incoming wind, a characteristic also evident in wind farms where the cumulative farm power significantly de-
viates from a Gaussian distribution.

Tidal flood and ebb flows exhibit distinct characteristics with their asymmetry influenced by bathymetry, channel
geometry, tidal forcing, and external environmental factors and demonstrate the complex interplay of physical
and environmental factors that shape tidal asymmetries, with implications for sediment transport, nutrient cycling,
flood risk management and tidal energy extraction. In general, flood flows show stronger peak velocities and
shorter durations, whereas ebb flows tend to have weaker velocities and longer durations particularly in regions
with tidal distortion (Dronkers, 1986; Jay & Musiak, 1994).

Burchard and Baumert (1998) demonstrated that stratification and vertical mixing caused by tidal currents
significantly alter flood‐ebb flow differences particularly in estuaries with strong freshwater input. Dronk-
ers (1986) highlighted the influence of channel convergence on flood dominance, where narrower channels
amplify tidal flood velocities. Field measurements using Acoustic Doppler current profilers by Fong et al. (2009)
highlight the asymmetry in Reynolds stress over tidal cycles and discuss the challenges in simulating these flows.
Nepf and Geyer (1996) explored intratidal variations in a narrow section of the Hudson River and noted dif-
ferences in mixing between flood and ebb tides. In particular, they noted that active mixing is largely confined to a
near‐bed layer during flood with significant stratification in ebb. MacDonald and Horner‐Devine (2008) explored
the spatiotemporal variability of vertical salt flux in the Fraser River Estuary, British Columbia. They found that
vertical salt flux served as the primary mechanism for salt removal during tidal cycles with ebb tides displaying 2
to 3 times greater flux compared to floods. This disparity was attributed to increased vertical shear of horizontal
velocity and enhanced mixing in regions characterized by channel constriction. Brown and Davies (2010)
examined flood/ebb tidal dominance and its effect on estuarine sediment transport using the Dyfi Estuary, UK.
Observations suggest ebb dominance, leading to net sand transport out of the estuary, whereas flood dominance in
the upper estuary results in up‐estuary transport primarily influenced by channel and sandflat distribution.
Laboratory experiments by Geng et al. (2020) explored the differential impacts of flood and ebb currents on tidal
channel network formation using a sloping tidal‐flat basin model. Findings demonstrate that ebb currents,
intensified by a slight incline that diminishes flood current energy, are more effective at initiating and developing
complex, deeper tidal networks. Conversely, flood‐dominated tides typically form smaller more branched
channels in the upper basin.
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Long‐range temporal persistence in tidal, riverine, and wind turbulence was first observed by Hurst (1951), who
introduced the Hurst exponent H to quantify the extent of temporal long‐range dependence. Following Hurst's
pioneering work, the phenomena of Hurst persistence in various geophysical time series and atmospheric
boundary layer data have been extensively investigated (Dike & Agunwamba, 2012; Hurst, 1951; Lumley, 1981;
Mandelbrot & Wallis, 1968). Recent studies have shown that geophysical processes typically display scale‐
dependent features and are multifractal (Adarsh et al., 2020; Li et al., 2015; Wu et al., 2018; Zhang
et al., 2009), indicating that classical statistical theories of turbulence may be inadequate to fully characterize
these geophysical processes and prompt for multifractal analysis. However, the spectrum in TurbSim does not
capture the Hurst effect and the multifractal characteristics constrained by the linear spectrum models.

The linear classical spectrum models presuppose symmetry over time with stable mean, variance, and autocor-
relation (Kelty‐Stephen et al., 2023). Dias et al. (2018) explored atmospheric turbulence and demonstrated that a
persistence process (i.e., H> 0.5) indicates the absence of a statistically significant integral timescale, indicating
the inaccuracy of velocity time series simulated by classical turbulence spectrummodels. Indeed, the von Kármán
and Kaimal models can only return a flat spectrum in the energy‐containing range because they assume past
processes are independent and do not influence later autocorrelation. This leads to a significant underestimation of
the energy‐containing range power spectra density of tidal flow as shown by Cheng et al. (2024) (refer to their
Figure 15c). Recently, Laudani et al. (2021) introduced two novel spectrum models that incorporate fractal
dimension and Hurst effect through a robust correlation structure using generalized Cauchy and Dagum models.
Their models surpass the widely adopted von Kármán and Kaimal models in atmospheric boundary layer
spectrum modeling, showing less discrepancy between field‐measured spectra across the energy‐containing and
inertial subranges. These results highlight the strong interaction between wind/tidal currents and turbines,
indicating that tidal turbulence significantly affects the fatigue load on turbines (Bossuyt et al., 2016) and cause
large fluctuations in power grids (Milan et al., 2013; Tarroja et al., 2011). There is a need to characterize the
intermittent effects and multifractal characteristics that can be incorporated into future turbulence modeling.

Here, we compare various multifractality and intermittency estimation methods, including the scaling exponents
of the structure function, distribution flatness, detrending moving average (DMA) analysis, multifractal detrended
fluctuation analysis (MF‐DFA), and high‐order spectral moments. Also, using the EMD‐detrend technique, we
demonstrate how the scale‐dependent intermittent behavior of nonstationary tidal velocity time series can be
characterized. The Hurst exponent H and intermittent component c1, obtained via traditional structure function
scaling exponents, are compared with the generalized Hurst exponentHq estimated by detrending moving average
(DMA) and multifractal detrended fluctuation analysis (MF‐DFA). Also, scale‐dependent intermittent levels are
obtained using high‐order spectral moments proposed by Lortie and Mydlarski (2022), which are then compared
with the flatness of velocity probability density function (PDF) distributions.

This framework is applied to field‐measured velocity time series from tidal energy sites to investigate the scale‐
invariant multifractal and intermittent properties across different sections of the flood and ebb flows. The flood
and ebb flow sections exhibit distinct dynamics influenced by regional and site characteristics and geophysical
interference, displaying self‐affine fractal behaviors across multiple timescales. These characteristics have im-
plications for marine turbine inflow condition (Adarsh et al., 2020). The paper is organized as follows: Section 2
introduces the tidal energy sites, Section 3 outlines the methods of analysis, Section 4 provides detailed results of
structure functions, multifractal analysis, and intermittency analysis, discussion is provided in Section 5, and main
remarks are included in Section 6.

2. Tidal Current Data
We examined the multifractal and intermittent properties in two tidal sites: nodule point, WA, and East River, NY.
The first data set was obtained from a single ping Nortek Vector Acoustic Doppler Velocimeter (ADV) operated
at 6 MHz during the spring tide from 17 February to 21 February 2011 with a sampling frequency of fs = 32 Hz
over one hundred hours (4.3 days). The ADV was positioned at the apex of the Tidal Turbulence Tripod, which
was located 4.7 m above the seabed that was 22 m deep at nodule point, located on the eastern side of Mar-
rowstone Island (Figure 1a). For more information on the sampling parameters and Doppler noise, refer to
Thomson et al. (2012), where the need for accurate turbulence intensity measurements is discussed in the context
of predicting fatigue and optimizing tidal turbine design. By focusing on turbulence scales relevant to turbine
components, it may be possible to lower damage equivalent loads (DELs) and reduce costs.
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The second data set was collected using an ADV for a duration of 39 days between 09 June to 17 July 2011 with a
sampling frequency of fs = 20 Hz. The upward‐looking Sontek Flow Tracker ADV was deployed at the Roo-
sevelt Island Tidal Energy (RITE) site, owned by Verdant Power. The RITE Project site is located on the east side
of Roosevelt Island between the boroughs of Manhattan and Queens, New York City. For details on the site
characteristics, refer to Gunawan et al. (2014).

These two sites were specifically selected for their strong potential in tidal energy development. As a step toward
improving the estimation of the levelized cost of energy (LCOE) for tidal projects, we aim to expand upon the
basic tidal flow characterizations presented by Thomson et al. (2012) and Gunawan et al. (2014) by incorporating
Hurst and intermittency effects using the same data set to enable direct comparison.

3. Methodology
We investigated tidal flows in both ebb and flood directions, selecting eight distinct time intervals identified by
zero‐velocity crossing points within the streamwise velocity time series of tidal flows as illustrated in Figure 1.
Each section of the velocity time series was subsequently detrended employing an empirical mode decomposition
(EMD)‐based method (Cheng et al., 2024), resulting in a wide‐sense stationary time series of streamwise velocity
fluctuations normalized to a zero mean (see the noise‐like time series xk in Figure 2g as the detrended time series
for the first ebb section). This facilitates further linear and nonlinear statistical analysis, enabling the charac-
terization of unique intermittent and multifractal features present in both ebb and flood tidal flows.

3.1. Higher Order Spectral Moments—Intermittency

Spectral‐based tools are commonly used to detect bursts or transient events in fault detection of rolling machines
and bearings (Antoni & Randall, 2006; Hu et al., 2019). Higher‐order spectral moments are also used for
analyzing acoustic signals affected by under‐ice noise, which remain undetectable by power spectral densities
owing to their highly impulsive and transient characteristics. Dwyer (1983) used the real and imaginary parts of
the complex third‐ and fourth‐order normalized moments (i.e., the spectral skewness and kurtosis) to identify
transients of under‐ice noise in the frequency domain. Based on this, Pagnan et al. (1994) later proposed the use of
the magnitude of the complex fourth‐order moment to obtain a more complete picture of the transients present in a
signal. Antoni and Randall (2006) undertook a rigorous derivation of the properties of the spectral kurtosis,
demonstrating that this higher‐order moment is particularly well‐suited for the detection of transients in a signal.

Figure 1. (a, b, c) Velocity time series from nodule point, WA. (a) Streamwise velocity u, (b) spanwise velocity v, and
(c) regional map showing the nodule point location. (d, e) Velocity time series from East River, NY. (d) Streamwise velocity
u and (e) regional map showing study site location. The blue color region in (a, d) illustrates positive velocities during ebb flow
sections and the white color regions indicate negative velocities during flood flow sections.
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For a time series x(t) sampled at a frequency of fs, the Welch method is used to separate the entire signal into M
segments of length N to compute the short‐time Fourier transform, where

x(t) = x( [n + N(m − 1)]/fs),n = 0,… , N − 1, m = 1,… , M. (1)

The discrete Fourier transform of each segment is computed as:

X(ωn,m) = ∑
N− 1

k=0
x(k,m)e jkn/N , (2)

where ωn = sπnfs/N and j =
̅̅̅̅̅̅
− 1

√
.

The Short‐time Fourier Transform (STFT) is applied to calculate the discrete Fourier transform (DFT) for each
segment of the time series. To mitigate spectral leakage, a filtering window, wk, is used, resulting in the DFT of
each segment being defined as follows:

X(ωn,m) = ∑
N− 1

k=0
w(k)x(k,m)e jkn/N , (3)

Hamming window of 75% overlap is selected to divide the full‐time series into STFT segments to avoid the
stationary data out‐dominate the transient event (Lortie & Mydlarski, 2022).

Figure 2. (a) Time series sample combining Gaussian white noise x(t)with five transient events y(t). (b) Gaussian white noise
time series x(t). (c) Transient events y(t) featuring various durations and frequencies. (d) Close‐up of a transient event lasting
approximately 40 s. (e) Detail of a transient event with a duration of approximately 0.5 s. (f) Spectral kurtosis evaluated with
different filtering window lengths: 32 (black), 128 (red), and 512 (blue) samples. (g) Detrended velocity fluctuation time series
illustrating a noise‐like structure alongside the corresponding random walk‐like time series generated using Equation 6.
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The spectral skewness, S̃ , and spectral kurtosis, K̃ , are defined as the third‐ and forth‐order moments of the
frequency‐domain PDFs obtained from the short‐time Fourier transform and given as follows:

S̃ (ωn) =

1
M
∑

M
m=1|X(ωn,m)|3

( 1M∑
M
m=1|X(ωn,m)|2)

3/2 , K̃ (ωn) =

1
M
∑

M
m=1|X(ωn,m)|

4

( 1M∑
M
m=1|X(ωn,m)|

2
)
2 .

(4)

The ability to use the high‐order spectral moment to detect transients is demonstrated using a sample signal,
consisting of a Gaussian white noise x(t) sampled at 100 Hz and transients y(t) of varying duration and frequency
that appear at different time instants. The signals x(t) and y(t) are shown in Figures 2b and 2c, and y(t) is defined as
follows:

y(t) = A cos(2πf t)eλ(t− τ)
2
. (5)

Here, A controls the amplitude, f is the characteristic frequency of the transients set as f = 5, 8, 10, 20 and
30 Hz, and λ and τ control the transient duration (i.e., signal decay rate) and temporal offset.

Figure 2f shows the spectral Kurtosis K̃ onto sample signal x(t) + y(t) using various Hamming filtering window
sizes in STFT. This highlights the ability of using higher‐order spectral moments to detect short, intermittent
behavior within a time series even when the transients have a magnitude similar to the white‐noise signal
(Figure 2a), which cannot be detected by typical spectrum analysis and PDF flatness. Figure 2f also shows how
STFT window size affects spectral Kurtosis results, namely that a window size much larger than transient
duration is dominated by the white noise and the K̃ magnitude decreases (refer to the 30 Hz transient for window
size 512 case). The small window size suffers from poor frequency domain resolution and fails to capture low‐
frequency transients (see f ≤ 15 Hz result for window size = 32 samples), highlighting the importance of STFT
parameter selection in computing high‐order spectral moments.

3.2. Long‐Range Dependence

Two methods are used here to evaluate the long‐range dependence (LRD) of the time series, the detrending
moving average and multifractal detrended fluctuations analysis, which are described as follows.

3.2.1. Detrending Moving Average Analysis (DMA)

The detrending moving average (DMA) is a simple yet effective method for examining the scaling characteristics
of the local standard deviation around a moving average. The application of DMA to a time series xk with lengthN
involves the following procedures. First, a random walk‐like time series profile is generated from the noise‐like
detrended time series xk by integrating the time series with mean subtracted (Figure 2g) as follows:

Xi =∑
i

k=1
(xk − 〈xk〉), i = 1,… ,N. (6)

Then, the moving average X̄n(t) of the random walk‐like signal Xi is computed over a range of moving time
windows of length n, given by:

X̄n(t) =
1
n

∑
t

k=t− n+1
Xk, (7)

where t ranges from n to N. Finally, the standard deviation of the detrended signal is calculated by subtracting the
moving average function X̄n(t) from the original series Xi leading to σ2DMA, which is the variance as a function of
window size n, given by:

Journal of Geophysical Research: Oceans 10.1029/2025JC022463

CHENG ET AL. 6 of 18

 21699291, 2025, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025JC

022463 by B
attelle M

em
orial Institute, W

iley O
nline L

ibrary on [02/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



σ2DMA =
1

N − n + 1
∑
N

t=n
[Xt − X̄n(t)]

2
. (8)

After obtaining the standard deviation σDMA,n(t), the Hurst exponent is expected to behave as σn(t) ∼ nH and can
be estimated by a “linear” fit in the log‐log representation of the standard deviation σn versus moving average
window size n.

3.3. Multifractal Detrended Fluctuation Analysis (MF‐DFA)

The type of time series under inspection is often subjected to nonstationarities, including artificial noises and
trends, which may lead to unreliable or even spurious results in data analysis. Multifractal detrended fluctuation
analysis (MF‐DFA) is extensively used to investigate the multifractal properties and scaling behaviors of
nonstationary time series. The first step in MF‐DFA is identical to step one of DMA, involving the generation of a
randomwalk signal from the noise‐like time series xk as shown in Figure 2g. Following this, the randomwalk‐like
profile Xi is divided into nonoverlapping intervals Ns = int(N/s) with equal timescale s. Subsequently, a local
trend forNs segments is determined using a least squares fit method. The variance for each segment v = 1,… ,Ns,
where xv(i) and yv(i) represent the fitting polynomial in the v‐th segment, is defined as:

F2(s,v) =
1
s
∑
s

i=1
{X[(v − 1)s + i] − xv(i)}2. (9)

A third‐order polynomial is typically used in the fitting process. The next step involves averaging the qth‐order
fluctuation function, Fq(s), over all segments expressed as

Fq(s) = {
1
NS
∑

Ns

v=1
[F2(s,v)]q/2}

1/q

, for q≠ 0. (10)

Finally, the slope of the log‐log representation of Fq(s) versus s is calculated. The generalized Hurst exponent
Hq(q), used for multifractal analysis, is taken as the scaling exponent, described by Fq(s) ∼ sHq(q), where
Hq(q = 2) represents the original Hurst exponent for monofractal analysis.

4. Nodule Point, WA Tidal Site Results
4.1. Structure Functions

We examine various orders, n, of structure functions defined as Sn(τ) = 〈|u(t + τ) − u(t)|n〉, where τ is the time
lag. The normalized first, second, and third order structure functions for various ebb and flood intervals
demonstrate distinct exponents and plateau values, implying different fractal characteristics between the ebb and
flood flows, as shown in Figure 3. All sections show structure function slope discrepancy between the ebb and the
flood flow. Here, the second order structure functions S2 of the first and third sections are selected to highlight this

Figure 3. Selected sections of n‐th order structure functions for various ebb flows (solid lines) and flood flows (dashed lines):
(a) Section 1, (b) Section 3, (c) Section 5, and (d) Section 7 (Figure 1), with S1, S2, and S3 represented in blue, red, and black.
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discrepancy between the ebb and flood flow in Figure 4 along with the streamwise velocity spectrum of the ebb
and flood flow sections to compare with the theoretical S2 scaling within the inertial subrange of isotropic tur-
bulence proposed by Kolmogorov (1941):

S2(r) ∼ (ε̄r)2/3 = C1(ε̄r)2/3. (11)

Here, C1 is the Kolmogorov constant. The S2 distributions reveal a “slope” difference within the inertial subrange
that is not captured in the velocity spectrum, highlighting the limitation of a linear model of spectral analysis. The
linear spectral analysis assumes that the irregularity in data has the same form at the beginning, middle, and end of
the time series Kelty‐Stephen et al. (2023), that is, there is no long‐range dependence in the data.

Two types of normalization are employed on S2, as shown in Figures 5a and 5b, as an attempt to collapse the S2
magnitude between different sections of the ebb and flood flows. The first normalization follows the Taylor's
frozen field hypothesis, which allows a linear transformation between spatial separation r and time lag τ, such that
r ≡ ūτ, transforming Equation 11 to S2(τ) = C1(uεr)2/3. The second normalization follows the random

Figure 4. Comparison of ebb and flood flows in the first and third sections (Figure 1). (a) second‐order structure function, S2,
(b) Streamwise velocity spectrum Φu for the first section, and (c) Φu for the third section.

Figure 5. Normalized second‐order structure function for Section 1 (circular symbols) and Section 3 (square symbols) of ebb
(red) and flood (blue) flows (Figure 1) with (a) normalization by Uε̄2/3 following the Taylor frozen field hypothesis and
(b) normalization by urmsε̄2/ 3 following the random sweeping field hypothesis. (c) Averaged second‐order structure function
across all sections for ebb and flood flows.
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sweeping hypothesis and gives S2(τ) = C1(εurmsr)2/3. Our data show that the second normalization provides a
better collapse between the ebb and flood flow sections. This is due to the assumption of Taylor's frozen field
hypothesis that urms/ ū ≪ 1 failing on the detrended velocity fluctuation time series; thus, the eddies advected
past the measurement probe may evolve over the measurement duration.

Despite the normalization based on the random field hypothesis better collapsing the magnitude of S2 between
various flow sections, there are slope deviations within the inertial subrange for different sections of the flow.
Figure 5c shows the ensemble‐averaged S2 of all eight ebb and flood flow sections defined in Figure 1. The slope
discrepancy between ebb and flood sections demonstrates a deviation from the theoretical 2/3 scaling as indicated
in Equation 11. This deviation is indicative of intermittency and multifractality within the flow. The degree of
intermittency and fractality can be estimated using a scaling exponent s defined by Sn(τ) ∼ τs(n). This power‐law
distribution is observed for 0.0625 ≤ τ ≤ 10 s for structure functions up to an order of n = 6. The scaling
exponent s versus order n for selected sections is provided in Figures 6a–6d. The Hurst exponent H and the
intermittency parameter c1 are related to the linear and quadratic coefficients of the fit of the structure function
scaling exponent s(n) to order n (Davis et al., 1994; Frisch, 1995), such that s(n) = Hn − c1n2.

The estimated Hurst component, H, and intermittency coefficient, c1, are depicted in Figures 6e and 6f for all
sections (Figure 1) with the ensemble‐averaged values indicated by dashed lines. Larger values of H and c1 are
observed for the ebb sections, suggesting stronger long‐range dependence and intermittency in the ebb flow
sections. Despite these insights, it is important to note that the Hurst component computed by s(n) does not
account for multifractal behavior. Detailed multifractal analysis and higher‐order spectral moments are conducted
to further explore the long‐range dependence and intermittent characteristics within the flow.

4.2. Multifractal Analysis

Detrending moving average (DMA) analysis is conducted to further explore the scaling behavior of the first ebb
and flood segment at the nodule point tidal site (Figures 7a and 7b). The log‐log representation of σDMA versus
window size n reveals distinct slope scalings for different timescales, demonstrating the multifractal characteristic
of the time series. This indicates that the Hurst exponent estimated by structure functions is insufficient to fully
describe the multifractal characteristics of the time series in tidal flow sections requiring multifractal analysis.

Figure 6. Scaling (slope) of n‐th order structure functions for the ebb and flood flows of selected tidal sections (Figure 1):
(a) Section 1, (b) Section 3, (c) Section 5, and (d) Section 7. (e) Hurst exponentH and (f) intermittency exponent c1 estimated
from structure functions for ebb and flood flow sections, with dashed lines indicating the averaged values across all sections.

Journal of Geophysical Research: Oceans 10.1029/2025JC022463

CHENG ET AL. 9 of 18

 21699291, 2025, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025JC

022463 by B
attelle M

em
orial Institute, W

iley O
nline L

ibrary on [02/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A distinct change at the timescale of approximately one and 5 min is observed for the ebb and the flood flow
section in Figures 7a and 7b. A slight change in scaling slope is also noted for the ebb flood at a shorter timescale
(approximately 1 min), though this change is much less pronounced compared to that of the flood flow. This
highlights a difference in periodicity between ebb and flood flows. The log‐log representation of σDMA(n) versus n
are characterized by two scaling regions. Each of them is fitted to determine a Hurst exponent. Specifically, at the
indicated timescales, the slope (power) values for ebb and flood flow sections are nearly identical on a small scale
(only Section 1 is shown here for brevity), with values of 1.21 ± 0.02 for ebb flows and 1.17 ± 0.01 for flood
flows, suggesting similar periodicity properties. However, the Hurst exponent values at the larger timescale are
0.86 ± 0.03 and 0.23 ± 0.05 for the ebb and flood flow sections. The ebb section, with H> 0.5, demonstrates a
persistent characteristic, whereas the flood section, with H< 0.5, exhibits a significant magnitude change
indicative of antipersistent behavior.

Here, we use MF‐DFA to explore the multifractal characteristics of ebb and flood flow sections. The log‐log
relationship between the q‐th order root mean square fluctuation Fq and scale s is depicted in Figures 7c and
7d. The scaling behavior for segments exhibiting large fluctuations is captured by the general Hurst exponent for
positive q values, whereas negative q values characterize segments with comparatively small fluctuations.
Furthermore, the singularity spectrum D(q) can be derived from the generalized Hurst exponent H(q).

The Fq(s) curves vs. s are fitted using least squares regression for each value of q, resulting in the generalized q‐th
order Hurst component Hq as illustrated in Figure 7c. The varying Hq values highlight the distinct multifractal
behaviors of the flood and ebb flows. Specifically, largerHq values are observed for q≤ 5 in the flood segment. A
smaller difference between flood and ebb flows is noted for higher positive q values, attributable to the plateau
observed in the flood segment for q> 1. Nevertheless, a lower slope in the Hq vs. q plot is evident for positive q
values in both segments. This suggests that the q‐th order RMS is relatively less sensitive to local fluctuations of
large magnitudes in both segments with this effect being more pronounced in the ebbed segments. It is worth
noting that a positive slope is observed in Figure 7c attributed to the significant differences between Fq values at
larger s scales. This result is surprising because the opposite trend is more commonly observed. Namely, larger
segments spanning several local periods, characterized by minor and major fluctuations, are anticipated to
average their magnitude differences.

The q‐th order Hurst exponent, Hq, can be transformed into the multifractal spectrum Dq. The temporal variation
of the local Hurst exponent is presented as a probability distribution in Figure 8a, and the multifractal spectrumDq

Figure 7. Evaluation of the Hurst exponent through the scaling of σDMA vs. window size n for Section 1: (a) ebb flow and
(b) flood flow. (c) q‐th order Hurst componentHq for the first flood and ebb segment, and (d) q‐th order RMS along with their
corresponding regression line calculated using MF‐DFA.
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is shown as the normalized probability distribution in log‐coordinates in Figure 8b. The multifractal spectrum Dh
versus Ht is characterized by α0, the maximum likelihood of the local Hurst exponent; the width/range of the Dh
spectrum, defined as αmax − αmin; and the skewness A of the Dh spectrum, defined by:

A =
αmax − α0
α0 − αmin

. (12)

A value of A> 1 indicates a right‐skewed spectrum, whereas A< 1 indicates a left‐skewed spectrum. The
computed values of α0, range, and A for selected ebb and flood flow segments are presented in Figure 9.

We observe that at the nodule point, WA tidal site a larger α0 for the ebb flows corresponds well with theH values
obtained through the structure function method. Despite the higher Hurst component for the ebb flow, we note a
narrowerDh width. By definition, the width of the multifractal spectrum indicates the range of temporal variation
in the local scale‐invariant structure; hence, a narrower width suggests a lower degree of multifractality for the
ebb flow segments. The ebb flow segments exhibit an A value greater than unity, whereas for flood flows, A< 1.
This implies that ebb flow segments at nodule point are less affected by local fluctuations of large magnitudes,
whereas flood flows show insensitivity to fluctuations of smaller magnitudes. These results align with those
depicted in Figure 7c, demonstrating that Hq for the ebb flow tends to plateau for n≥ 2.

4.3. On the Multifractality in Tidal Flows

Two main sources of multifractality have been identified (Kantelhardt et al., 2002; Movahed et al., 2006): first,
the presence of varying long‐range correlations within the time series for small‐ and large‐scale fluctuations,
where the autocorrelation exhibits a decay rate slower than that of exponential decay, and second, the existence of
nonlinear correlations and intermittent events within the time series, leading to a heavy‐tailed probability dis-
tribution function.

Two sets of surrogate data are generated to verify the source of multifractality. The first set of data is produced by
randomly permuting the temporal order of the raw velocity time series, effectively breaking all temporal cor-
relations. The second type of surrogate data is generated using the iterative amplitude‐adjusted Fourier transform
(IAAFT) algorithm (Schreiber & Schmitz, 1996). This algorithm aims to construct a time series that mimics the

Figure 8. (a) Probability density function (PDF) distribution of local Hurst exponent Ht and (b) the multifractal spectrum Dh
for the first flood and ebb segment.

Figure 9. Characterization of the multifractal spectrum for all Nodule Point, WA sections: (a) α0, (b) αmax − αmin, and
(c) A− quantifying the symmetry of the spectrum.
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best‐fitting linear model of the original series, thereby testing the null hypothesis that multifractality reflects
nonlinear interactions between timescales. The IAAFT algorithm consists of four steps: First, a time series with a
Gaussian distribution is generated, matching the original signal in length, mean, and variance. This is done by
storing the amplitude spectrum of the original series' Fourier transform by their rank order. Second, the series is
randomized to eliminate possible nonlinear dynamics. Third, the amplitude spectrum in the randomized series is
replaced with that of the original series using inverse Fourier transformation. Finally, the rank‐ordered values of
the inverse Fourier series are matched to the rank‐ordered values in the original series. This procedure is repeated
for 25 iterations to mitigate the risk of distorting the amplitude spectrum during the rank‐matching step. The
IAAFT algorithm enables the generation of a surrogate time series that maintains the original series' linear
temporal correlations.

The application of the detrending moving average (DMA) analysis to both permuted and surrogate time series is
presented in Figures 10a and 10b. Distinct scaling characteristics for the ebb and flood flow segments suggest that
different segments likely contribute differently to the source of multifractality. Specifically, the first ebb flow
section, as shown in Figure 10a, reveals an overlapping scaling between the raw and surrogate data. An almost
linear scaling is observed for the permuted ebb time series. Conversely, two scaling ranges are still evident for the
permuted flood flow, whereas it displays a nonoverlapping scaling between the raw and surrogate time series.

The multifractal spectra, Dh, provided in Figures 10c and 10d, show α0 ≈ 0.5 for permuted ebb and flood flow
data. The characterization of multifractal spectra is depicted in Figure 11. As expected, the permuted data exhibits
an α0 slightly lower than 0.5, indicating that the long‐range temporal dependence is almost absent. The Dh
spectrum width of permuted data is significantly reduced, demonstrating that long‐range dependence is the
primary source of multifractality. However, it is crucial to note that nonlinearity and intermittent events also
contribute to multifractality, as the permuted data still show considerable spectrum width and do not become
monofractal. Note that the permuted and surrogate data demonstrated a left‐skewed spectrumwith a much smaller
A< 1 compared to the raw data A values. This suggests that the long‐range dependence on nonlinear events may
be most susceptible to large‐scale fluctuations; thus, indicating that nonlinear interaction across timescales is the
source of multifractal behavior at large scales (i.e., q> 0 in Figures 7c and 7d).

Figure 10. Evaluation of σDMA scaling versus window size n for the raw (black), permuted (blue), and surrogate (red) time
series of (a) the first ebb, and (b) the first flood segment (Figure 1). Multifractal spectrum of the original (black), permuted
(blue), and surrogate (red) time series for (c) the first flood segment, and (d) the first ebb segment.
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4.4. Intermittent Events

Further evaluation of intermittency is conducted by examining the velocity fluctuation time series uʹ and the first‐
and second‐order velocity increments, Δuʹ and Δ2uʹ , as depicted in Figure 12. These increments do not seem to
exhibit more intermittent events than the raw velocity fluctuation time series for ebb and flood flows. This
observation is aligned with the probability density functions of the three quantities, normalized by their respective
standard deviations, shown in Figure 13a. Here, a longer tail is observed for the raw velocity fluctuation, whereas
the velocity increments generally follow a Gaussian distribution. The classical measure of intermittency, flatness
F4, is calculated for all sections to quantify the deviation from the Gaussian distribution. Flatness F4 is defined as
the normalized fourth‐order moment of the PDF, F4 = μ4/μ22, where μn represents the n‐th order moment of
the PDF.

The summary of flatness is shown in Figures 13b and 13c for the ebb and flood flow sections. The probability
density function departs from a Gaussian distribution for uʹ , whereas the velocity increments display a slight
deviation from a Gaussian distribution with a flatness value approaching 3. This finding is quite unexpected,
indicating that the tidal site exhibits more intermittency at larger scales, in contrast to the trend observed in
canonical turbulence studies (Batchelor & Townsend, 1949; Lortie & Mydlarski, 2022), which noted an increase
in flatness factors with higher orders of differentiation. Also, Figures 13b and 13c reveals that the ebb flow
sections have a higher flatness compared to the flood sections aligning with estimations obtained using the
structure function method depicted in Figure 6f.

Figure 11. Characterization of the multifractal spectrum of (a, b, c) ebb flow sections, and (d, e, f) flood flow sections. (a, d)
α0, (b, e) αmax − αmin, and (c, f) A quantifying symmetry of the spectrum.

Figure 12. Sample time series of (a) detrended streamwise velocity fluctuations uʹ , (b) first‐order velocity increment Δuʹ ,
and (c) second‐order velocity increment Δ2uʹ .
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Although flatness is commonly used to indicate the level of intermittency, it does not offer a detailed account of
how intermittent events are distributed across scales. To explore the scale dependency of intermittency events,
higher‐spectral moments are computed using a short‐time Fourier transform (STFT), as discussed in Section 3.1.
Here, the time series of the velocity fluctuations is first detrended (Cheng et al., 2024) before the STFT algorithm
is applied; an example of the detrended data series is shown in Figure 2g. For brevity, only the results for spectral
kurtosis are shown, as the spectral skewness exhibited a similar trend. Figures 13d and 13e display the spec-
trogram obtained from STFT using a relatively large Hamming window of N = 1024 samples. The spectrogram
reveals low‐frequency spikes indicative of the presence of intermittent events, whereas the high‐frequency region
shows minimal energy consistent with the PDF distribution observed in Figure 13a. A detailed view of the low‐
frequency segment for selected times 900 ≥ t ≤ 1100 s is shown in Figure 13e, illustrating that the duration of
strong intermittent events ranges approximately from 5 to 20 s, that is, 160 to 640 samples. It serves as a guide for
optimizing the filtering window size in the computation of high‐order spectral moments.

The impact of different filtering window sizes on the spectral Kurtosis, K̃ , for the initial ebb and flood sections is
illustrated in Figure 14 using Hamming windows of 128, 256, and 512 samples. An additional 0.95 confidence
level interval is depicted using black dashed lines. Although a shorter window may enhance the higher‐order
spectral moments, this comes at the cost of reduced frequency resolution, as shown in Figure 14a. This is
because the minimum frequency that can be resolved is determined by the length of the filtering window, as
discussed in Section 3.1, which may not be suitable for this analysis. Conversely, longer windows encompass a
broader range of frequencies. Figure 14c shows that a filtering window size of 512 samples successfully captures
low‐frequency deviations from Gaussianity and provides sufficient frequency resolution to distinguish between
two distinct peaks for f ≤ 1 Hz. This finding, as confirmed in Figure 14, indicates that a filtering window size
aligned with the duration of transient events yields optimized results for spectral Kurtosis, K̃ (Lortie, 2021).
Therefore, a Hamming window with a length of 512 samples is selected for subsequent analysis.

Spectral kurtosis K̃ of the selected section of ebb and flood flows from nodule, WA, are provided in Figures 15a–
15d shown with their respective streamwise velocity spectrum. A nonmonotonically increasing K̃ is observed
within the inertial subrange for the tidal flows; a similar trend is also observed at the East River, NY Tidal Energy
site, not shown here for brevity. Instead, K̃ reaches the peak value and fluctuates between the beginning to the
middle of the inertial subrange, that is, ∼0.1 − 0.5 Hz for tidal flow at nodule point site and starts decreasing for
even higher frequency. Figure 15 illustrates the ability of spectral kurtosis to detect and isolate each scale's

Figure 13. (a) Probability density functions for uʹ , Δuʹ , and Δ2uʹ . (b, c) Flatness of the PDF distribution for all sections:
(b) for ebb flows and (c) for flood flows with a dashed line representing the averaged value across all sections.
(d) Spectrogram generated from the short‐time Fourier transform, and (e) a focused view of the area within the red dashed
box from (d), showing strong activity for f ≤ 5 Hz.
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contribution to non‐Gaussianilty within the time series, which allows us to evaluate the relative intermittency
level at each scale. The magnitude of K̃ reveals that the ebb flow sections demonstrate stronger intermittency
across all scales compared to flood flow sections aside from the higher overall intermittency level reported using
structure function and PDF analysis (Figures 6f and 13b, 13c); also, the difference in K̃ magnitudes reduce
beyond f ≳ 0.5 Hz. Similar K̃ trend is observed for the velocity time series obtained from East River, NY tidal
energy site in Figure 15e, validating that the intermittency characteristics of tidal flows differ from the mono-
tonically increasing K̃ in grid turbulence and wall‐bounded turbulent flows (Lortie, 2021; Lortie &
Mydlarski, 2022).

5. Discussions
The analysis of tidal flows at the NP site provides crucial insights into their multifractal and intermittent char-
acteristics, revealing distinct directional dependencies and varying degrees of long‐range dependence and
sensitivity to large fluctuations. These factors can modulate various environmental and hydrological phenomena.

Multifractal detrended fluctuation analysis (MF‐DFA) and spectral kurtosis were instrumental in uncovering the
multifractal and intermittent features. MF‐DFA revealed the scale‐invariant nature of multifractality, whereas

Figure 14. Impact of filtering window lengths on Section 1 ebb and flood flow (Figure 1), with a 95% confidence interval
(dashed line). Hamming window sizes: (a) 128, (b) 256, (c) 512 samples; frequencies are shown in linear scale (left) and log
scale (right) to highlight low‐frequency events.

Figure 15. Comparison between ebb (solid lines) and flood (dashed lines) flows of streamwise velocity spectrum Φu and
spectral kurtosis K̃ for selected sections: (a) Section 1, (b) Section 3, (c) Section 5, (d) Section 7 from nodule point, WA, and
(e) Φu and K̃ for East River, NY tidal site.
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spectral kurtosis showcased the nonmonotonic behavior of intermittency across different frequency scales, a
phenomenon not typically observed in turbulence studies. The multifractal spectrumDh indicated higher LRD for
the ebb sections, whereas the wider left‐skewed Dh spectrum for flood sections suggested higher multifractality
and susceptibility to large‐scale fluctuations.

Two sets of surrogate time series were used to explore the origin of multifractality. The width of the Dh spectrum
significantly reduced for the temporally permuted ebb and flood sections, with H ≈ 0.5, indicating a slow decay
in autocorrelation in the original time series due to temporal LRD is the primary source of multifractality.
However, the IAAFT algorithm generated phase‐permuted data also exhibited a narrower Dh spectrum width,
suggesting a non‐negligible contribution to multifractality aside from the contribution of LRD. Both temporal‐
and phase‐permuted surrogate time series for ebb and flood flows showed a pronounced left‐skewedDh spectrum,
indicating that the long‐range dependence of nonlinear intermittent events plays a crucial role in the large‐scale
multifractal characteristics.

The fourth‐order spectral moments, spectral kurtosis K̃ indicated higher intermittency levels across all frequency
scales in ebb flow sections and unveiled a unique tidal flow intermittency pattern, diverging from the patterns
observed in wall‐bounded and grid turbulence. The spectral kurtosis pattern demonstrated a plateau at the
beginning of the inertial subrange, and decay in K̃ began as the frequency approached the middle of the inertial
subrange, indicating a Gaussian‐like PDF distribution for small‐scale events at both investigated tidal sites.

It is worth highlighting the effectiveness of using multifractal detrended fluctuation analysis (MF‐DFA) and
spectral kurtosis to reveal multifractal and intermittent attributes of tidal flows. The flood and ebb flow multi-
fractal characteristics at nodule point, WA, may differ due to a combination of physical and environmental
factors, including bathymetric complexity, channel geometry, and wind forcing mechanisms. At nodule point,
WA, the tidal dynamics are likely influenced by local bathymetric features, such as channel constrictions
(Moegling & Cochrane, 2022) that may amplify the flood dominance and leads to a wider multifractal spectrum
and demonstrates lower overall turbulence intermittency compared to ebb flows (Friedrichs & Aubrey, 1988).
Also, difference in turbulence scaling and intermittency can be resulted from stratification and vertical mixing
during flood and ebb tides (Burchard & Baumert, 1998) and reflected in multifractal flow properties.

Finally, this study serves as an initial step toward integrating fractal and intermittent characteristics of tidal/wind
behavior into turbulence spectrum modeling, aiding in the design, operation, and maintenance of tidal/wind
turbines and offering valuable insights for estimating the LCOE. Also, the directional variations in multifractality
and intermittency impact tidal energy extraction and environmental management, informing sustainable coastal
development and ecosystem conservation strategies, as tidal flows significantly shape coastal landscapes and
influence marine habitats.

6. Conclusions
This study provides a comprehensive analysis of tidal flows' multifractal and intermittent characteristics, offering
insights into their complex dynamics. Using detrending moving average (DMA) and multifractal detrended
fluctuation analysis (MF‐DFA), we uncovered particular differences between ebb and flood flow sections at the
nodule point, WA, and East River, NY, tidal sites. Our findings revealed that ebb flows exhibit higher Hurst
exponents and overall intermittency compared to flood flows at the investigated tidal sites, suggesting distinct
flow dynamics and energy distribution mechanisms between the two phases of the tidal cycle.

Through detailed methodologies such as DMA and MF‐DFA, we uncovered the presence of multiple fractal
scalings within the tidal flow data, highlighting the intricate multifractal nature of these flows. This multifractal
behavior indicates a hierarchical organization of turbulent structures across different scales with implications for
energy dissipation and transfer processes within the flow. Also, inspecting scale‐dependent intermittency levels
using spectral kurtosis provided further insights into the statistical properties of turbulent fluctuations, revealing a
Gaussian‐like PDF distribution for small‐scale events.

By highlighting the importance of integrating multifractal analysis into spectral models, this work advances our
understanding of turbulent systems and offers valuable tools for optimizing energy capture in renewable energy
devices such as tidal turbines at the specific tidal site. Note that external factors such as wind forcing and
freshwater input may also induce spatial and temporal variations in the flow structure, thus impacting the
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multifractal characteristics (Lai et al., 2018; Wei et al., 2021). Future work will investigate the long‐range
dependence and intermittency patterns across multiple tidal sites, incorporating data at various heights and
geographic patterns to establish links between multifractal behavior and underlying physical characteristics.
Furthermore, our findings show the need for continued research to refine numerical models and accurately predict
environmental flows particularly in sustainable coastal development and renewable energy generation, where
turbulent dynamics play a crucial role.

Data Availability Statement
Data sets are available over DOE's Open EI, MHK data repository, https://mhkdr.openei.org/ and code are
available from Cheng et al. (2024).
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