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We introduce an advanced turbulence spectrum model developed from mathematical foundations
from a covariance function class and empirically validated using extensive field data. This model
captures the complex dynamics of long-range dependence, and fractal characteristics prevalent in
riverine and atmospheric boundary layer (ABL) flows that are ignored by classical spectrum models,
such as IEC (International Electrotechnical Commission) von Karman and Kaimal model. The model
delineates scaling behaviors across distinct frequency bands and offers substantial flexibility through
five well-defined parameters each characterizing a distinct physical aspect of the velocity time series. A
detailed procedure for obtaining each parameter from time series data is outlined. The comprehensive
validations with field data from tidal currents and ABL flows substantiate the model’s fidelity in
accurately replicating observed phenomena. This validation establishes the reliability of the proposed
model and, when incorporated into stochastic full-field simulators such as TurbSim, demonstrates its
potential to advance the predictive modeling and analysis of turbulent flows in environmental science
and engineering contexts.

The turbulence spectrum serves as a pivotal tool to describe the kinetic energy distribution across the scales
of flow fluctuations. Its accurate representation is essential in numerous engineering fields and environmental
disciplines. Velocity spectral models are central to estimating unsteady structural loading, modeling the
transport of particles and scalars, and generating flow fields in high-fidelity simulations.

Among the various empirical models formulated based on wind data, those by Davenport!, Harris?, Hino?,
Kaimal4, and von Kdrman” are commonly used. These models, particularly the von Kdrman and Kaimal models,
simulate the velocity spectrum in the inertial subrange following Kolmogorov scaling. Such models underpin
advanced stochastic unsteady turbulent inflow simulators like TurbSim, developed by the National Renewable
Energy Laboratory (NREL)®”, for critical applications including turbine load analysis, imbalance fault diagnosis,
and Levelized Cost of Energy (LCOE) estimation’~!'!. However, these formulations may fail to capture significant
aspects of turbulence, such as long-range dependence (LRD) effects, fractal behavior, and intermittent patterns.
Long-range dependence (LRD) characterizes the persistence of a flow, specifically, how future states depend on
past events due to memory effects, and is quantified by the Hurst exponent H. Standard spectral models typically
assume that turbulent flows have no memory, implying statistical independence between past and future velocity
increments. This assumption inherently leads to a flat scaling in the energy-containing range'>~'%. In contrast,
most environmental flows exhibit LRD, driven by factors such as climatic variability'>~17, large-scale weather
systems!®, external forcing mechanisms'®, and atmospheric stability?. These effects contribute to a negative
spectral slope in the energy-containing range, which classical turbulence models fail to capture accurately!'2-1421,
The fractal dimension D reflects the self-affinity and geometric complexity of the flow, and environmental
turbulence often exhibits multifractality, with D varying across scales. These multifractal features are closely
tied to turbulence intermittency and stability conditions**~2%. The omission of LRD and fractal behaviors greatly
influences the scaling within energy-containing regions. This limitation can lead to underestimating the spectral
energy content, particularly in the low-frequency range, a critical gap that needs to be addressed in detail?>~?’.

Studying the turbulence spectrum and associated formulations has long been a major target in science and
engineering. Foundational work by Kolmogorov?®?° provided the basis for the energy spectrum of turbulence,
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offering unique insights into its energy distribution. However, characterizing the features of the turbulence
spectrum in distinct frequency regions remains a significant challenge, demanding innovative approaches to
capture contributing phenomena effectively. Recent studies have also revealed new non-classical behaviors in the
pre-inertial range of wall-bounded turbulence that further challenge the sufficiency of existin§ spectral models.
For example, Ali and Dey* identified a zeroth-law scaling in the helicity spectrum, H (k) ~ k", arising from the
combined effects of energy and helicity transfer induced by wall-attached superstructures.

Recent progress in spectral formulations of random fields has shown promising results in overcoming these
limitations (Lim et al.>'; Faouzi et al.*?). These new models provide practical tools to extract and interpret velocity
field data effectively while incorporating fractal dimensions (D) and Hurst parameters (H) have introduced
novel ways to analyze the intermittent and multi-scale turbulence processes®>. We introduce a velocity spectral
model derived from the parametric family of fractal and Hurst effect decouplers formulated by Jetti et al.>*.

This formulation accounts for short- and long-range dependencies, as determined by its parametric settings.
This new class of velocity spectrum model requires similar input parameters to those used in traditional
turbulence spectrum models, e.g., the IEC von Kérmdan isotropic model, and IEC Kaimal model®®. These
parameters can be easily obtained from measured or simulated time series. We demonstrate that the new model
returns superior scale-dependent energy distribution accuracy compared to those obtained from traditional
empirical spectrum models. This approach can also provide the basis to develop generalized two-dimensional®
and three-dimensional®’ counterparts that account for the aforementioned phenomena.

The manuscript is organized as follows. The new class of covariance functions and their spectral representation
are introduced in Section 1, followed by the description of the procedure to obtain the required model parameters
in Section 2; the detrending, multifractal analysis, and model performance evaluation using the atmospheric
boundary layer (ABL) and tidal flow datasets are discussed in Section 3; and the main conclusions are provided
in Section 4.

Base formulation and contributing factors

Let us first consider the parametric family of isotropic functions proposed by Jetti et al.’*, where each parameter
must be rigorously linked to the physical processes they represent. The fundamental formulation is defined as
follows:

l'34

Yapq(@) =0 (1= 1+ (x/c)"")"")", x>0, (1)

where o represents the covariance, and ¢ is a scaling parameter. The function 14, 5 ~ (+) qualifies as an isotropic
covariance function in R for any dimension d =1,2,..., provided o € (0,1], 8 > 0, and 7 € (0,2].
Importantly, ¥« g,~(x) > 0, ensuring that it models only positive covariances and does not represent negative
correlations. Note that, in contrast, the covariance function of the classical Von Kdarman model is complex,
involving modified Bessel functions of the second kind; see Laudani et al.*®. As discussed next, the quantity
~ou is related to the fractal behavior or short-range fluctuations of the random-like field, here the turbulent
velocity fluctuations. The quantity 0 is directly linked to the Hurst exponent used as a measure of long-term
memory of time series'®!”. The parameter +y controls the transition between the long-range and short-range
scaling behaviors. The parameter ¢ as noted is a scaling parameter and is related to the integral length scale (or
the correlation length) of the underlying random-like field. For classical turbulence spectrum models (i.e., IEC
von Kérman and Kaimal model) yo is set to 5/3 for one-dimensional velocity spectra to enforce the Kolmogorov
—5/3 slope in the inertial subrange and set v3 = 0.5 assuming that the past and future velocity fluctuations
in the flows are independent; while 73 = 1/3 correspond to the Kolmogorov scaling law®® under self-affinity
assumption.

Jetti et al.** demonstrated that 14,5, € L1(R?) when v > d, characterizing the function as exhibiting
short-range dependence (SRD). Conversely, when 73 < d, the function displays LRD, which is more commonly
observed in turbulence field data and is the main focus of the manuscript. For further insights into SRD, refer to
the supplementary information.

The associated spectral density of this parametric family is expressed as follows:
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where K, denotes the modified Bessel function of the second kind of order v. For a valid covariance function
Ya,8,~, We have
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Here, g ~ h indicates that the function g behaves like & under the specified asymptotic limit. For detailed
asymptotic SRD results, refer to the Supplementary Material. The low and high-frequency limits of the spectral
density ¢« 3,4 for LRD are given by:

Fapaf) ~ o Colfe)"~foryp € (151,d) =0, ©
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Gapi(f) ~ a2C1(fe) ™77 forf — oo, (6)

where Cy and C' are functions of a, 3, 7, ¢, and d. For completeness, the explicit expressions for Cy and C| are
given below:
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The asymptotic behavior of the covariance function reveals the fractal and Hurst properties inherent in the
model, where the fractal dimension quantifies the degree of scale invariance within the time series, and the Hurst
describes the long-range dependence effect, both of which are critical for characterizing turbulence data. From
the derived asymptotic relations, the fractal dimension D and Hurst parameter H can be uniquely determined
using the equations below:

Yo

D=d+1- -, )

H—1-28 (10)

Equations 9 and 10 illustrate that o and f facilitate tuning D and H (i.e., the high and low-frequency limits)
given a specific «. The influence of varying + is explored by generating four unity variance random time series,
each with different -y values while maintaining a constant ya = 2/3, 8 = 0.9, and ¢ = 1. The values of 7y are
set to [2/3, 1, 3/2, 2]. These values are chosen to ensure the time series correspond to having D = 5/3 for one-
dimensional turbulent velocity time series?*-*? and represent an LRD process. The time series were generated
using the circulant embedding method (CEM)*, with each simulated time series being of total length 2.

The spectra of these four simulated time series are depicted in Fig. la, demonstrating that increasing -y
sharpens the transition band between the H and D determined asymptotic high and low-frequency behavior.
Figure 1b further elucidates the relationship between v and the degree of multifractality by looking into their
multifractal spectra, showing that a higher  results in a sharper transition by increasing the multifractality***>
(more information regarding multifractal spectrum is provided Section 2). An empirical correlation between
and the multifractal spectrum width (Ahy) is presented in Fig. 1c. It illustrates a lower bound for the multifractal
spectrum width at the highest v value (Ah, =~ 0.11 at v = 2), indicating that the current class of covariance
functions only allow limited source of multifractility at the transition band (Equation 1). The potential inclusion
of non-Gaussian distribution processes and the expansion to a full multifractal model that includes intermittency
effect are considerations left for future work.
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Fig. 1. (a) Spectral distributions for long-range dependence covariance model sharing H (v = 0.9) and D
(ya =2/3) but different . (b) Multifractal spectrum showing g—th order singularity exponent (k) versus g—
th order singularity dimension D, obtained from simulated time series with various v, and (¢) multifractal
spectrum width (Ahg) versus +y for various -y realizations; the simulated time series shared d = 1, yao = 2/3,
and v8 = 0.9..
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Tuning the scaling constant ¢ allows control over the transition band frequency within the turbulence
spectrum; it is related to the integral time-length scale (T, L) of the velocity time series. The integral time-
length scale represents the transition point where the spectral density function shifts from low to high-frequency
behavior. This transition point can be approximated as the intersection of the asymptotic relations in Equations
5 and 6 when the covariance function exhibits LRD. Thus, the transition frequency is given by:

(11)

ZT

1 7 Cy\ Yr(ath)
@)
For example, consider the spectral density @a,gﬂ(f) whend = 1,78 = 0.5,ya = 2/3,v = 2/3,0% = 1,and
¢ = 10, as illustrated in Fig. 2a. The transition frequency zr, calculated using Equation 11 and the transition
band frequency approximated by the inverse of the integral time scale T, are also included, confirming that
zr = 1/T, (and zr ~ 1/L, for the wavenumber spectrum). When d = 1, the integral length scale, L., is
obtained from the covariance function as:

1 [ro
L, = ;/ Va8, () dx (12)
0

and can also be calculated from a velocity time series using Taylor hypothesis*® for flows with a characteristic
turbulent velocity fluctuation < 10% of its mean convection velocity?/, as:

Ly, =Ty X U, (13)

where U is the convection velocity, and the integral time scale 1%, is defined as:
to
T, = / Puw(T) dT, (14)
0

here, 1o is the time lag where the correlation becomes sufficiently low*®%, typically set such that py.. (t0) < 0.01.

The approximations for the transition frequency (Eq. 11) indicate that as the scaling constant ¢ increases,
the transition frequency decreases. This is illustrated by considering the spectral density of a LRD covariance
function for various ¢ values in Fig. 2b, while keeping all other parameters constant. The transition frequency
and integral time/length scale results for short-range dependence (SRD) are provided in the Supplementary
Material.

Procedure to obtain turbulence spectrum via proposed spectrum model

This section details the procedure for obtaining the five required parameters-«, 3, v, o2, and c-in Equation 1
for the spectrum model. Each step is thoroughly illustrated using atmospheric boundary layer (ABL) and tidal
flow velocity measurements as examples. The procedure comprises six main steps:

1. Preprocess the measured or simulated time series using an Empirical Mode Decomposition (EMD)-based
sifting method to detrend the data, ensuring the time series is wide-sense stationary (WSS) before calculating
the required turbulence quantities.
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Fig. 2. Spectral density ¢a,3,(f) for a long-range dependent covariance model. (a) 738 = 0.5, ¢ = 10, and
o = 1, illustrating the transition frequency zr = 1/T.,. Black lines indicate the asymptotic low and high-
frequency behaviors of 1,5, (f). (b) ¥3 = 0.5 with varying scaling constants ¢, such that 0Coc?? =1 = 1.
In both cases,d = 1, ya = 2/3,and v = 2/3.
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2. Obtain the variance o2, integral time scale T, and integral length scale L., from the detrended WSS time
series.

3. The fractal dimension (D) of a stochastic process can also be estimated using various techniques, such as
variogram estimators®’. For high Reynolds number turbulence spectra, typically D ~ 1.7 + 0.3%0-42,

4. Conduct a Multifractal Detrended Fluctuation Analysis (MF-DFA) to determine the Hurst component, H,
and the multifractal spectrum width Ahg of the measured or simulated time series. The monofractal Hurst
component H will determine the energy-containing scaling in the turbulence spectrum!>142!,

5. Estabhsh the parameter 7y using the empirical multifractal spectrum width-+y relationship deplcted in Fig. 1c.

6. Once 02, Ty, (Lu), v, D and H are obtained, calculate o, 8, and ¢ using Equations 9, 10 and 11.

Detailed methodology explaining these steps are discussed in the Materials and Methods section®'.

Results and discussion

Two distinct sets of experimental turbulence data, from tidal currents and the atmospheric boundary layer
(ABL), are used to compare and evaluate the velocity spectrum against traditional turbulence models and the
proposed formulation. A set of atmospheric turbulence data was obtained using a CSAT3 sonic anemometer
positioned on a meteorological tower at a height of 80 m and sampled over 24 hours at a frequency of 20 Hz.
The meteorological tower is located at the University of Minnesota Eolos Wind Energy Research Field Station.
For more details on the atmospheric boundary layer data, refer to Chamorro et al.>2. The tidal current data were
obtained from the Nodule Point, WA, tidal energy site. This dataset was collected using an Acoustic Doppler
Velocimeter (ADV) during the spring tide of 2011, with a sampling frequency of fs = 32 Hz over a period of
4.3 days. The ADV was positioned at the apex of the Tidal Turbulence Tripod, 4.7 m above the seabed, which
was 22 m deep at Nodule Point, located on the eastern side of Marrowstone Island. The unprocessed ADV data
underwent the phase-space-thresholding (PST) test™ to detect spikes and outliers, which were replaced by time-
averaged values. For more information on the sampling parameters and Doppler noise, refer to Thomson et al.>*.

Detrended time series and turbulence quantities

Figure 3a,d illustrates the raw time series alongside the EMD residue and the detrended time series. For the ABL
dataset, the residue appears as a moving mean with slight deviations from a constant zero mean, while large-
scale motions dominates the tidal flow residue. These results highlight the effectiveness of EMD in eliminating
both moving-mean and large-scale trends.

The impact of detrending on turbulence quantities is demonstrated by comparing the streamwise velocity
autocorrelation function, puw, and their Fourier domain spectrum (®.,). The streamwise velocity autocorrelation
Puv is defined by Equation 15°:

pun () = /(B! (t = 7) for, (15)
where u’ = u — U denotes the streamwise velocity fluctuations, U =
o2 the variance of the signal.

(u) the mean velocity, 7 the time lag, and
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Fig. 3. (a,d) Sample atmospheric boundary layer data and tidal flow data with their background trend
obtained by EMD sifting method as introduced in?®. Comparison between quantities computed using
detrended and raw time series; (b,e) autocorrelation py.u, (¢,f) streamwise velocity spectrum ®.,, and (g)
0w, Ty and L, obtained using raw and detrended datasets.
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Despite only slight background residue shifts, the ABL dataset demonstrates that proper detrending
significantly affects the autocorrelation function py., (Fig. 3b), influencing the estimation of variance o2, integral
length scale L., and integral time scale 77, (Fig. 3g). For non-detrended time series, p.. decays very slowly, not
approaching zero until 7 &~ 3700 s and 17000 s for ABL and tidal velocity data, respectively (Fig. 3b,e). A closer
examination of the highlighted region for 7 < 200 seconds in the inset of Fig. 3b reveals that the raw data py.
quickly decays to a plateau value of approximately 0.2 and drops very slowly thereafter, indicating the non-ergodic
and non-stationary nature of the original time series®®*”. A similar effect is observed for the tidal flow data in
Fig. 3e, where the large-scale periodic oscillation in p.., reflects the large-scale motions of the tidal currents. In
contrast, the detrended p.. decays quickly to zero as highlighted in the insets of Fig. 3b,e. The estimations of
0w, T, and L, using raw and detrended time series are shown in Fig. 3g, revealing a significant overestimation
of these quantities by an order when using the raw signal due to imposed mean on a non-stationary signal,
leading to erroneous large-scale fluctuations. Conversely, accurate estimations from the detrended data show L.,
and T, values consistent with the inverse of the transition frequency 1/zr from the spectrum and match those
reported for ABL and riverine/tidal data under similar conditions and velocity ranges>*8-61,

The effect of removing background residue also significantly influences the velocity spectrum at the ,largest
scales (i.e., the low frequency component), where high energy level in the raw ®,, is observed due to non-
stationarity; specifically, f < 107% Hz for ABL and f < 10~" Hz for tidal flows as shown in Fig. 3c,f. Since
EMD segregates intrinsic mode functions and residue by scale order, subtracting the residue predominantly
affects the velocity spectrum only at the largest scales. This effect is demonstrated by the overlap of the raw
and detrended higher frequency ®. components in Fig. 3¢,f. The overlap highlights the efficacy of the EMD
detrending algorithm, which accurately removes large-scale trends while preserving the integrity of smaller-
scale fluctuations. This attribute showcases the advantages of EMD over other regression-based and frequency-
based filtering methods for turbulence studies?.

DFA and multifractal spectrum results

The distributions of the generalized Hurst exponent (H,), mass exponent (74), singularity exponent (hg),
singularity dimension (D, ), and the multifractal spectrum for ABL and tidal data are illustrated in Fig. 4. The
generalized Hurst component, shown in Fig. 4a, demonstrates a monofractal Hurst component H > 0.5 for
both datasets, confirming the LRD effect. The non-flat distribution of H, also suggests significant multifractality
for both ABL and tidal flows, corroborated by the multifractal spectrum in Fig. 4e. The multifractal spectrum
permits the extraction of the Hurst component H = H,—; and the multifractal spectrum width Ah,. Here, a
wider Ahg but a lower H is observed for tidal flow, indicating stronger multifractality but lower LRD compared
to the ABL dataset.

Model parameters
Using the turbulence statistics and the multifractal spectrum, it is possible to derive all required parameters,
construct the covariance function class of Equation 1, and obtain the modeled spectrum.

For the detrended ABL and tidal flow datasets, the derived parameters are as follows:
H = [0.85 4 0.03,0.78 + 0.02Ah, = [0.21 % 0.02,0.48 + 0.01p2 = [3.64 & 0.03,0.82 £ 0.02] x 10~ s
T, = [30.05 +0.03,3.34 £ 0.01] s, and D = [1.68 £ 0.04, 1.70 & 0.02] estimated using both box-counting
and variogram methods, which agrees well with those reported in the literature*®-*2. The Hurst components
> 0.5 indicating LRD for both flows, where riverine flows often shows LRD resulting from hydrological
processes and climatic variability!®>-!7. Similarly, turbulent flows in environmental boundary layers exhibit long-
term persistence influenced by large-scale weather systems!®, external forcing mechanisms'®, and atmospheric
stability conditions?.

Following the procedure outlined in Section 2, « and 3 are determined using Equations 9 and 10 with a selected
~v = 2, resulting in @ = [0.32 £ 0.04, 0.30  0.02], 5 = [0.15 £ 0.03,0.22 £ 0.02], where the uncertainty in
parameter estimation are inherent from flow statistics, and Equation 11 leads to ¢ = [6.64, 0.84] for ABL and
tidal data respectively. The choice of v = 2 is motivated by the high degree of multifractality demonstrated in
both datasets (Fig. 4b). For additional results with lower y values, please refer to the Supplementary Material.
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Fig. 4. (a) Generalized Hurst component, Hg, (b) g—th order mass exponent, 74, (c) g—th order singularity
exponent, hg, (d) ¢g—th order singularity dimension, D, and (e) multifractal spectrum for the wind (blue solid
line) and tidal (red dashed line) data.
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Fig. 6. Comparison between experimental measurement, Von Karman model, and proposed spectral model
for tidal flow; (a) streamwise velocity spectrum ®.,, (b) premultiplied spectrum f®.,, and (c) high-/ and low-
pass 0.

Model performance evaluation
With the derived parameters, the modeled proposed spectra are compared with the experimentally measured
spectra and the classical von Karman spectra in Figs. 5 and 6.

The experimentally measured spectra in Figs. 5a and 6a exhibit negative scaling in the energy-containing
range, demonstrating the LRD effect!#262-%4, In contrast, the widely used IEC von Kdrmdn spectral model fails
to capture the correct scaling within this range due to its inability to model LRD effects. It shows a flat scaling
and underestimates the energy level within the energy-containing range.

It is critical to note that large-scale energy-containing range eddies contribute significantly to the velocity
variance-approximately 40% and 55% for ABL and tidal flow datasets, respectively (black dashed-line in
Figs. 5a,b and 6a,b). These eddies are crucial for wind and tidal turbine design and operation®-’, as studies
have shown that background flow structures with scales larger than the wind turbine rotor diameter significantly
affect turbine power and wake velocity fluctuations®-7°.

Moreover, the consequences of inaccurate energy-containing range scaling by the von Karman spectral model
are further illustrated by the compensated spectrum. There is a clear overestimation in the high-frequency bands
of the pre-multiplied von Kdrman spectra in Figs. 5b and 6b, as the model compensates for the underestimated
energy level within the energy-containing range to match the full band variance with the detrended time series.

The enhanced performance of the proposed model relative to the IEC von Karman spectral model is
demonstrated in Figs. 5¢c and 6¢. The omission of long-range dependence (LRD) effects in the von Kairmén model
leads to an underestimation of energy in the energy-containing range, as quantified by the low-pass-filtered
standard deviation o. Specifically, the von Karman model captures only 48% and 53% of the experimentally
measured low-pass o, for the ABL and tidal spectra, respectively.

In contrast, the proposed spectral model incorporates LRD effects and offers tunable parameters D and H,
enabling accurate representation of energy levels across all frequency ranges, including precise control of the
transition frequency via the scaling parameter c. The resulting low-pass o, deviates from the experimental
measurements by only 5% for the ABL and tidal spectra, indicating a substantial improvement in predictive
accuracy over the IEC von Kdrman model.
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Conclusions

The findings from this study indicate that the proposed turbulence spectrum model provides a significant
advancement in modeling field turbulence spectra across diverse environmental conditions. This model,
derived from a newly developed class of covariance functions, offers several distinct advantages over traditional
turbulence spectrum models, such as the IEC von Karman isotropic model and the IEC Kaimal model.

The proposed model introduces parameters that explicitly account for long-range dependence and fractal
dimension. This differentiation is critical as it allows for a more nuanced representation of turbulence dynamics,
particularly in capturing the negative slope of the spectrum in the energy-containing range (that are linked
to LRD of the flows'?"1%), a feature often observed in atmospheric and oceanic turbulence but inadequately
represented by classical models. The inclusion of the LRD effect and the ability to decouple between Hurst
exponent H and fractal dimension D by the proposed model results in better accuracy in energy level
representation across all scales compared to previous turbulence spectrum models. This precision is not merely a
theoretical enhancement but has practical implications in improving the fidelity of simulations used in wind and
tidal energy research, where accurate energy predictions are crucial for design and operational efficiency. Also, it
has been recently shown that, under statistically isotropic conditions, the fractal and Hurst characteristics of the
lateral velocity components are identical to those of the streamwise component”!. This offers a natural extension
of the proposed approach to modeling full velocity fields. Another significant benefit of the proposed model is
its ease of use. The model is designed with a clear and simple procedural approach that minimizes the need for
non-trivial parameter tuning. This user-friendly aspect makes it accessible to practitioners and researchers who
may not specialize in the theoretical aspects of turbulence modeling.

It is important to note that the proposed model, due to the monofractal structure of Equation 1, is limited in its
ability to capture the multifractal and heavy-tailed characteristics of turbulent velocity fluctuations. Future work
will aim to extend the underlying Gaussian random field to a superstatistical framework’?, enabling improved
representation of intermittency and progression toward a multifractal formulation”®. Since the turbulence
spectrum fundamentally governs the distribution of turbulent kinetic energy across scales, it plays a critical role
in stochastic, full-field turbulence simulators. In this context, implementing the proposed model in tools such as
TurbSim, replacing conventional spectra like the IEC von Kdrmén and Kaimal models, can yield more accurate
simulations of environmental flows that exhibit long-range dependence (LRD). The proposed model improves
spectral fidelity across all frequency ranges and significantly reduces band-pass o, errors compared to classical
models currently used in TurbSim”%, thereby enhancing the accuracy of turbine load predictions and levelized
cost of energy (LCOE) assessments”’. These improvements underscore the model’s potential to substantially
impact the planning and implementation of wind and tidal energy plants. Its ability to provide more accurate
predictions of turbulence behavior will likely lead to enhancements in turbine design, site selection, and overall
energy efficiency. The broader adoption of this model could, therefore, contribute significantly to optimizing
renewable energy resources, aligning with global sustainability goals.

Methods

Empirical mode decomposition (EMD) based sifting method for detrending

Atmospheric boundary layer, tidal, and riverine flows are typically non-stationary. Data detrending is essential to
ensure time series data are wide-sense stationary (WSS) before assessing turbulence statistics?® such as variance
(0'2), turbulence intensity level (I.,), and integral time/length scale (7%, L..), which serve as input parameters for
the proposed spectrum model. We adopt a fast and adaptive EMD-based sifting method”” to detrend the time
series data x(t), with an overview of the algorithm provided below:

1. Identify the local extrema of the time series. The local minima and maxima are connected using cubic splines
to construct the lower and upper envelopes.

2. Average the lower and upper envelopes constructed in the previous step to form a new mean envelope, m1 (t)
. This is the first intrinsic mode function (IMF) that contains the highest frequency fluctuations within x(t).

3. Compute the difference h1(t) between the original signal x(¢) and the first IMF my (¢):

hi(t) = z(t) — ma(2). (16)

4. Repeat the first two steps using the difference signal h1(¢) as a new signal, and generate the second IMF
ma(t) by computing a new mean from the upper and lower envelopes of i (t).
5. The second iteration yields a new difference signal h(t):

ha(t) = hi(t) — ma(t). (17)

6. Store the n-th order IMFs, m., (t), and iterate through the above process until a stopping criterion indicates
that no more fluctuating IMFs can be sifted. The last difference signal hy(¢) is termed the residue, which
should show no significant variation upon further iteration.

7. Once the residue h,, (t) is obtained, compute the detrended time series z4(t):

za(t) = x(t) — hn(t). (18)
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Hurst exponent using detrended fluctuation analysis

Multifractal Detrended Fluctuation Analysis (MF-DFA) is performed to obtain the Hurst component that
characterizes the degree of Long-Range Dependence (LRD) within a time series. MF-DFA is a robust tool
for extracting scale-invariant structures within time series?>’®”” and is required here to incorporate the LRD
within the proposed spectrum model, where classical spectrum models ignore the LRD effect (i.e., assuming
that H = 0.5). This assumption used in classical spectrum models will later be proved incorrect and will be
addressed by the proposed spectrum model. The fractal analysis of a time series x (¢) is conducted to determine
the Hurst exponent H and the multifractal spectrum width Ah,. MF-DFA involves the following steps:

1. Generate a random walk-like time series X; from a noise-like time series zx (t) by

Xi: (Ik—<l'k>), i:].,...,N. (19)
k=1

2. Divide X; into N, = int(/N/s) non-overlapping intervals of equal timescale s.
3. Remove the local trend from each of the [N segments by subtracting the residues obtained via the EMD-
based sifting method.

4. Calculate the variance for each segment v = 1, ..., N, where the variance is defined as:
1 s
F? == X[(v—1 | — (1)}
(s,0) = < Eﬂ {X[(v=1)s +i] —zu(i)}", (20)

and z, (¢) represents the EMD residue in the v-th segment.
5. Compute the g-th order fluctuation function by:

N, 1/q
1

Fy(s) = i Z [F2(57v)]q/2 ,for g £ 0. (21)

v=1

6. Estimate the generalized g-th order Hurst exponent H,(q) by the relation:

Fy(s) ~ sH1@. (22)

The first order Hurst component is the monofractal Hurst component H (i.e., H = Hy=1).

Multifractal spectrum width Ah, from multifractal spectrum

The multifractal spectrum is derived through a two-step transformation process of the g-th order Hurst exponent,
H,. Initially, H, is utilized to compute the g-th order mass exponent 7, using Equation 23. The derivative of 7,
yields the g-th order singularity exponent (hg), and the g-th order singularity dimension (D) is then derived via
a first-order Legendre transformation, as delineated in Equations 24 and 257%7%7°, Subsequently, the multifractal
spectrum is constructed by relating h, with D,.

Tq = qHy, — 1. (23)
AN

q — Aq ’ (24)

Dq = qhq — 4. (25)

Two key quantities can be extracted from the multifractal spectrum: hq 0, at which the maximum D, occurs,
representing the most dominant Hurst exponent, and the width or range of the D, spectrum, defined as
Ahg = hg,max — Rq,min, indicating the degree of multifractality.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
author on reasonable request.
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