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We introduce an advanced turbulence spectrum model developed from mathematical foundations 
from a covariance function class and empirically validated using extensive field data. This model 
captures the complex dynamics of long-range dependence, and fractal characteristics prevalent in 
riverine and atmospheric boundary layer (ABL) flows that are ignored by classical spectrum models, 
such as IEC (International Electrotechnical Commission) von Kármán and Kaimal model. The model 
delineates scaling behaviors across distinct frequency bands and offers substantial flexibility through 
five well-defined parameters each characterizing a distinct physical aspect of the velocity time series. A 
detailed procedure for obtaining each parameter from time series data is outlined. The comprehensive 
validations with field data from tidal currents and ABL flows substantiate the model’s fidelity in 
accurately replicating observed phenomena. This validation establishes the reliability of the proposed 
model and, when incorporated into stochastic full-field simulators such as TurbSim, demonstrates its 
potential to advance the predictive modeling and analysis of turbulent flows in environmental science 
and engineering contexts.

The turbulence spectrum serves as a pivotal tool to describe the kinetic energy distribution across the scales 
of flow fluctuations. Its accurate representation is essential in numerous engineering fields and environmental 
disciplines. Velocity spectral models are central to estimating unsteady structural loading, modeling the 
transport of particles and scalars, and generating flow fields in high-fidelity simulations.

Among the various empirical models formulated based on wind data, those by Davenport1, Harris2, Hino3, 
Kaimal4, and von Kármán5 are commonly used. These models, particularly the von Kármán and Kaimal models, 
simulate the velocity spectrum in the inertial subrange following Kolmogorov scaling. Such models underpin 
advanced stochastic unsteady turbulent inflow simulators like TurbSim, developed by the National Renewable 
Energy Laboratory (NREL)6,7, for critical applications including turbine load analysis, imbalance fault diagnosis, 
and Levelized Cost of Energy (LCOE) estimation7–11. However, these formulations may fail to capture significant 
aspects of turbulence, such as long-range dependence (LRD) effects, fractal behavior, and intermittent patterns. 
Long-range dependence (LRD) characterizes the persistence of a flow, specifically, how future states depend on 
past events due to memory effects, and is quantified by the Hurst exponent H. Standard spectral models typically 
assume that turbulent flows have no memory, implying statistical independence between past and future velocity 
increments. This assumption inherently leads to a flat scaling in the energy-containing range12–14. In contrast, 
most environmental flows exhibit LRD, driven by factors such as climatic variability15–17, large-scale weather 
systems18, external forcing mechanisms19, and atmospheric stability20. These effects contribute to a negative 
spectral slope in the energy-containing range, which classical turbulence models fail to capture accurately12–14,21. 
The fractal dimension D reflects the self-affinity and geometric complexity of the flow, and environmental 
turbulence often exhibits multifractality, with D varying across scales. These multifractal features are closely 
tied to turbulence intermittency and stability conditions22–24. The omission of LRD and fractal behaviors greatly 
influences the scaling within energy-containing regions. This limitation can lead to underestimating the spectral 
energy content, particularly in the low-frequency range, a critical gap that needs to be addressed in detail25–27.

Studying the turbulence spectrum and associated formulations has long been a major target in science and 
engineering. Foundational work by Kolmogorov28,29 provided the basis for the energy spectrum of turbulence, 
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offering unique insights into its energy distribution. However, characterizing the features of the turbulence 
spectrum in distinct frequency regions remains a significant challenge, demanding innovative approaches to 
capture contributing phenomena effectively. Recent studies have also revealed new non-classical behaviors in the 
pre-inertial range of wall-bounded turbulence that further challenge the sufficiency of existing spectral models. 
For example, Ali and Dey30 identified a zeroth-law scaling in the helicity spectrum, H(k) ∼ k0, arising from the 
combined effects of energy and helicity transfer induced by wall-attached superstructures.

Recent progress in spectral formulations of random fields has shown promising results in overcoming these 
limitations (Lim et al.31; Faouzi et al.32). These new models provide practical tools to extract and interpret velocity 
field data effectively while incorporating fractal dimensions (D) and Hurst parameters (H) have introduced 
novel ways to analyze the intermittent and multi-scale turbulence processes33. We introduce a velocity spectral 
model derived from the parametric family of fractal and Hurst effect decouplers formulated by Jetti et al.34.

This formulation accounts for short- and long-range dependencies, as determined by its parametric settings. 
This new class of velocity spectrum model requires similar input parameters to those used in traditional 
turbulence spectrum models, e.g., the IEC von Kármán isotropic model, and IEC Kaimal model35. These 
parameters can be easily obtained from measured or simulated time series. We demonstrate that the new model 
returns superior scale-dependent energy distribution accuracy compared to those obtained from traditional 
empirical spectrum models. This approach can also provide the basis to develop generalized two-dimensional36 
and three-dimensional37 counterparts that account for the aforementioned phenomena.

The manuscript is organized as follows. The new class of covariance functions and their spectral representation 
are introduced in Section 1, followed by the description of the procedure to obtain the required model parameters 
in Section 2; the detrending, multifractal analysis, and model performance evaluation using the atmospheric 
boundary layer (ABL) and tidal flow datasets are discussed in Section 3; and the main conclusions are provided 
in Section 4.

Base formulation and contributing factors
Let us first consider the parametric family of isotropic functions proposed by Jetti et al.34, where each parameter 
must be rigorously linked to the physical processes they represent. The fundamental formulation is defined as 
follows:

	 ψα,β,γ(x) = σ2(1 − (1 + (x/c)−γ)−α)β , x ≥ 0,� (1)

where σ2 represents the covariance, and c is a scaling parameter. The function ψα,β,γ(·) qualifies as an isotropic 
covariance function in Rd for any dimension d = 1, 2, . . ., provided α ∈ (0, 1], β > 0, and γ ∈ (0, 2]. 
Importantly, ψα,β,γ(x) ≥ 0, ensuring that it models only positive covariances and does not represent negative 
correlations. Note that, in contrast, the covariance function of the classical Von Kármán model is complex, 
involving modified Bessel functions of the second kind; see Laudani et al.33. As discussed next, the quantity 
γα is related to the fractal behavior or short-range fluctuations of the random-like field, here the turbulent 
velocity fluctuations. The quantity γβ is directly linked to the Hurst exponent used as a measure of long-term 
memory of time series16,17. The parameter γ controls the transition between the long-range and short-range 
scaling behaviors. The parameter c as noted is a scaling parameter and is related to the integral length scale (or 
the correlation length) of the underlying random-like field. For classical turbulence spectrum models (i.e., IEC 
von Kármán and Kaimal model) γα is set to 5/3 for one-dimensional velocity spectra to enforce the Kolmogorov 
−5/3 slope in the inertial subrange and set γβ = 0.5 assuming that the past and future velocity fluctuations 
in the flows are independent; while γβ = 1/3 correspond to the Kolmogorov scaling law38 under self-affinity 
assumption.

Jetti et al.34 demonstrated that ψα,β,γ ∈ L1(Rd) when γβ > d, characterizing the function as exhibiting 
short-range dependence (SRD). Conversely, when γβ ≤ d, the function displays LRD, which is more commonly 
observed in turbulence field data and is the main focus of the manuscript. For further insights into SRD, refer to 
the supplementary information.

The associated spectral density of this parametric family is expressed as follows39:

	
ψ̂α,β,γ(f) = −σ2 f1− d
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where Kν  denotes the modified Bessel function of the second kind of order ν. For a valid covariance function 
ψα,β,γ , we have

	
1 − ψα,β,γ(x)

σ2 ∼ β

cγα
xγα, x → 0 � (3)

	
ψα,β,γ(x)

σ2 ∼ αβcγβx−γβ , x → ∞, � (4)

Here, g ∼ h indicates that the function g behaves like h under the specified asymptotic limit. For detailed 
asymptotic SRD results, refer to the Supplementary Material. The low and high-frequency limits of the spectral 
density ψ̂α,β,γ  for LRD are given by:

	
ψ̂α,β,γ(f) ∼ σ2C0(fc)γβ−dforγβ ∈

(
d − 1

2 , d
)

, f → 0, � (5)
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	 ψ̂α,β,γ(f) ∼ σ2C1(fc)−d−γαforf → ∞, � (6)

where C0 and C1 are functions of α, β, γ, c, and d. For completeness, the explicit expressions for C0 and C1 are 
given below:

	
C0 = c

2−γβαβΓ
(

d
2 − γβ

2

)

πd/2Γ
(

γβ
2

) , � (7)

	
C1 = c

2γα−1αβγ

πd/2

Γ
(

d
2 + γα

2

)

Γ
(
1 − γα

2

) . � (8)

The asymptotic behavior of the covariance function reveals the fractal and Hurst properties inherent in the 
model, where the fractal dimension quantifies the degree of scale invariance within the time series, and the Hurst 
describes the long-range dependence effect, both of which are critical for characterizing turbulence data. From 
the derived asymptotic relations, the fractal dimension D and Hurst parameter H can be uniquely determined 
using the equations below:

	
D = d + 1 − γα

2 ,� (9)

	
H = 1 − γβ

2 .� (10)

Equations 9 and 10 illustrate that α and β facilitate tuning D and H (i.e., the high and low-frequency limits) 
given a specific γ. The influence of varying γ is explored by generating four unity variance random time series, 
each with different γ values while maintaining a constant γα = 2/3, γβ = 0.9, and c = 1. The values of γ are 
set to [2/3, 1, 3/2, 2]. These values are chosen to ensure the time series correspond to having D = 5/3 for one-
dimensional turbulent velocity time series40–42 and represent an LRD process. The time series were generated 
using the circulant embedding method (CEM)43, with each simulated time series being of total length 216.

The spectra of these four simulated time series are depicted in Fig. 1a, demonstrating that increasing γ 
sharpens the transition band between the H and D determined asymptotic high and low-frequency behavior. 
Figure 1b further elucidates the relationship between γ and the degree of multifractality by looking into their 
multifractal spectra, showing that a higher γ results in a sharper transition by increasing the multifractality44,45 
(more information regarding multifractal spectrum is provided Section 2). An empirical correlation between γ 
and the multifractal spectrum width (∆hq) is presented in Fig. 1c. It illustrates a lower bound for the multifractal 
spectrum width at the highest γ value (∆hq ≈ 0.11 at γ = 2), indicating that the current class of covariance 
functions only allow limited source of multifractility at the transition band (Equation 1). The potential inclusion 
of non-Gaussian distribution processes and the expansion to a full multifractal model that includes intermittency 
effect are considerations left for future work.

Fig. 1.  (a) Spectral distributions for long-range dependence covariance model sharing H (γβ = 0.9) and D 
(γα = 2/3) but different γ. (b) Multifractal spectrum showing q−th order singularity exponent (hq) versus q−
th order singularity dimension Dq  obtained from simulated time series with various γ, and (c) multifractal 
spectrum width (∆hq) versus γ for various γ realizations; the simulated time series shared d = 1, γα = 2/3, 
and γβ = 0.9..
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Tuning the scaling constant c allows control over the transition band frequency within the turbulence 
spectrum; it is related to the integral time-length scale (Tu, Lu) of the velocity time series. The integral time-
length scale represents the transition point where the spectral density function shifts from low to high-frequency 
behavior. This transition point can be approximated as the intersection of the asymptotic relations in Equations 
5 and 6 when the covariance function exhibits LRD. Thus, the transition frequency is given by:

	
zT = 1

c

(
C1

C0

)1/γ(α+β)
.� (11)

For example, consider the spectral density ψ̂α,β,γ(f) when d = 1, γβ = 0.5, γα = 2/3, γ = 2/3, σ2 = 1, and 
c = 10, as illustrated in Fig. 2a. The transition frequency zT , calculated using Equation 11 and the transition 
band frequency approximated by the inverse of the integral time scale Tu, are also included, confirming that 
zT ≈ 1/Tu (and zT ≈ 1/Lu for the wavenumber spectrum). When d = 1, the integral length scale, Lu, is 
obtained from the covariance function as:

	
Lu = 1

σ2

∫ L0

0
ψα,β,γ(x) dx � (12)

and can also be calculated from a velocity time series using Taylor hypothesis46 for flows with a characteristic 
turbulent velocity fluctuation ≤ 10% of its mean convection velocity47, as:

	 Lu = Tu × U,� (13)

where U is the convection velocity, and the integral time scale Tu is defined as:

	
Tu =

∫ t0

0
ρuu(τ) dτ,� (14)

here, t0 is the time lag where the correlation becomes sufficiently low48,49, typically set such that ρuu(t0) ≤ 0.01.
The approximations for the transition frequency (Eq. 11) indicate that as the scaling constant c increases, 

the transition frequency decreases. This is illustrated by considering the spectral density of a LRD covariance 
function for various c values in Fig. 2b, while keeping all other parameters constant. The transition frequency 
and integral time/length scale results for short-range dependence (SRD) are provided in the Supplementary 
Material.

Procedure to obtain turbulence spectrum via proposed spectrum model
This section details the procedure for obtaining the five required parameters–α, β, γ, σ2, and c–in Equation 1 
for the spectrum model. Each step is thoroughly illustrated using atmospheric boundary layer (ABL) and tidal 
flow velocity measurements as examples. The procedure comprises six main steps: 

	1.	 Preprocess the measured or simulated time series using an Empirical Mode Decomposition (EMD)-based 
sifting method to detrend the data, ensuring the time series is wide-sense stationary (WSS) before calculating 
the required turbulence quantities.

Fig. 2.  Spectral density ψ̂α,β,γ(f) for a long-range dependent covariance model. (a) γβ = 0.5, c = 10, and 
σ2 = 1, illustrating the transition frequency zT ≈ 1/Tu. Black lines indicate the asymptotic low and high-
frequency behaviors of ψ̂α,β,γ(f). (b) γβ = 0.5 with varying scaling constants c, such that σ2C0cγβ−1 = 1. 
In both cases, d = 1, γα = 2/3, and γ = 2/3.
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	2.	 Obtain the variance σ2, integral time scale Tu, and integral length scale Lu from the detrended WSS time 
series.

	3.	 The fractal dimension (D) of a stochastic process can also be estimated using various techniques, such as 
variogram estimators50. For high Reynolds number turbulence spectra, typically D ≈ 1.7 ± 0.340–42.

	4.	 Conduct a Multifractal Detrended Fluctuation Analysis (MF-DFA) to determine the Hurst component, H, 
and the multifractal spectrum width ∆hq  of the measured or simulated time series. The monofractal Hurst 
component H will determine the energy-containing scaling in the turbulence spectrum13,14,21.

	5.	 Establish the parameter γ using the empirical multifractal spectrum width-γ relationship depicted in Fig. 1c.
	6.	 Once σ2, Tu (Lu), γ, D and H are obtained, calculate α, β, and c using Equations 9, 10 and 11.

Detailed methodology explaining these steps are discussed in the Materials and Methods section51.

Results and discussion
Two distinct sets of experimental turbulence data, from tidal currents and the atmospheric boundary layer 
(ABL), are used to compare and evaluate the velocity spectrum against traditional turbulence models and the 
proposed formulation. A set of atmospheric turbulence data was obtained using a CSAT3 sonic anemometer 
positioned on a meteorological tower at a height of 80 m and sampled over 24 hours at a frequency of 20 Hz. 
The meteorological tower is located at the University of Minnesota Eolos Wind Energy Research Field Station. 
For more details on the atmospheric boundary layer data, refer to Chamorro et al.52. The tidal current data were 
obtained from the Nodule Point, WA, tidal energy site. This dataset was collected using an Acoustic Doppler 
Velocimeter (ADV) during the spring tide of 2011, with a sampling frequency of fs = 32 Hz over a period of 
4.3 days. The ADV was positioned at the apex of the Tidal Turbulence Tripod, 4.7 m above the seabed, which 
was 22 m deep at Nodule Point, located on the eastern side of Marrowstone Island. The unprocessed ADV data 
underwent the phase-space-thresholding (PST) test53 to detect spikes and outliers, which were replaced by time-
averaged values. For more information on the sampling parameters and Doppler noise, refer to Thomson et al.54.

Detrended time series and turbulence quantities
Figure 3a,d illustrates the raw time series alongside the EMD residue and the detrended time series. For the ABL 
dataset, the residue appears as a moving mean with slight deviations from a constant zero mean, while large-
scale motions dominates the tidal flow residue. These results highlight the effectiveness of EMD in eliminating 
both moving-mean and large-scale trends.

The impact of detrending on turbulence quantities is demonstrated by comparing the streamwise velocity 
autocorrelation function, ρuu, and their Fourier domain spectrum (Φu). The streamwise velocity autocorrelation 
ρuu is defined by Equation 1555:

	 ρuu(τ) = u′(t)u′(t − τ)/σ2
u,� (15)

where u′ = u − U  denotes the streamwise velocity fluctuations, U = ⟨u⟩ the mean velocity, τ  the time lag, and 
σ2

u the variance of the signal.

Fig. 3.  (a,d) Sample atmospheric boundary layer data and tidal flow data with their background trend 
obtained by EMD sifting method as introduced in26. Comparison between quantities computed using 
detrended and raw time series; (b,e) autocorrelation ρuu, (c,f) streamwise velocity spectrum Φu, and (g) 
σu, Tu and Lu obtained using raw and detrended datasets.
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Despite only slight background residue shifts, the ABL dataset demonstrates that proper detrending 
significantly affects the autocorrelation function ρuu (Fig. 3b), influencing the estimation of variance σ2, integral 
length scale Lu, and integral time scale Tu (Fig. 3g). For non-detrended time series, ρuu decays very slowly, not 
approaching zero until τ ≈ 3700 s and 17000 s for ABL and tidal velocity data, respectively (Fig. 3b,e). A closer 
examination of the highlighted region for τ ≤ 200 seconds in the inset of Fig. 3b reveals that the raw data ρuu 
quickly decays to a plateau value of approximately 0.2 and drops very slowly thereafter, indicating the non-ergodic 
and non-stationary nature of the original time series56,57. A similar effect is observed for the tidal flow data in 
Fig. 3e, where the large-scale periodic oscillation in ρuu reflects the large-scale motions of the tidal currents. In 
contrast, the detrended ρuu decays quickly to zero as highlighted in the insets of Fig. 3b,e. The estimations of 
σu, Tu, and Lu using raw and detrended time series are shown in Fig. 3g, revealing a significant overestimation 
of these quantities by an order when using the raw signal due to imposed mean on a non-stationary signal, 
leading to erroneous large-scale fluctuations. Conversely, accurate estimations from the detrended data show Lu 
and Tu values consistent with the inverse of the transition frequency 1/zT  from the spectrum and match those 
reported for ABL and riverine/tidal data under similar conditions and velocity ranges54,58–61.

The effect of removing background residue also significantly influences the velocity spectrum at the ,largest 
scales (i.e., the low frequency component), where high energy level in the raw Φu is observed due to non-
stationarity; specifically, f ≤ 10−3 Hz for ABL and f ≤ 10−1 Hz for tidal flows as shown in Fig. 3c,f. Since 
EMD segregates intrinsic mode functions and residue by scale order, subtracting the residue predominantly 
affects the velocity spectrum only at the largest scales. This effect is demonstrated by the overlap of the raw 
and detrended higher frequency Φu components in Fig. 3c,f. The overlap highlights the efficacy of the EMD 
detrending algorithm, which accurately removes large-scale trends while preserving the integrity of smaller-
scale fluctuations. This attribute showcases the advantages of EMD over other regression-based and frequency-
based filtering methods for turbulence studies26.

DFA and multifractal spectrum results
The distributions of the generalized Hurst exponent (Hq), mass exponent (τq), singularity exponent (hq), 
singularity dimension (Dq), and the multifractal spectrum for ABL and tidal data are illustrated in Fig. 4. The 
generalized Hurst component, shown in Fig. 4a, demonstrates a monofractal Hurst component H > 0.5 for 
both datasets, confirming the LRD effect. The non-flat distribution of Hq  also suggests significant multifractality 
for both ABL and tidal flows, corroborated by the multifractal spectrum in Fig. 4e. The multifractal spectrum 
permits the extraction of the Hurst component H = Hq=1 and the multifractal spectrum width ∆hq . Here, a 
wider ∆hq  but a lower H is observed for tidal flow, indicating stronger multifractality but lower LRD compared 
to the ABL dataset.

Model parameters
Using the turbulence statistics and the multifractal spectrum, it is possible to derive all required parameters, 
construct the covariance function class of Equation 1, and obtain the modeled spectrum.

For the detrended ABL and tidal flow datasets, the derived parameters are as follows: 
H = [0.85 ± 0.03, 0.78 ± 0.02], ∆hq = [0.21 ± 0.02, 0.48 ± 0.01], σ2

u = [3.64 ± 0.03, 0.82 ± 0.02] × 10−1 m/s, 
Tu = [30.05 ± 0.03, 3.34 ± 0.01] s, and D = [1.68 ± 0.04, 1.70 ± 0.02] estimated using both box-counting 
and variogram methods, which agrees well with those reported in the literature40–42. The Hurst components 
> 0.5 indicating LRD for both flows, where riverine flows often shows LRD resulting from hydrological 
processes and climatic variability15–17. Similarly, turbulent flows in environmental boundary layers exhibit long-
term persistence influenced by large-scale weather systems18, external forcing mechanisms19, and atmospheric 
stability conditions20.

Following the procedure outlined in Section 2, α and β are determined using Equations 9 and 10 with a selected 
γ = 2, resulting in α = [0.32 ± 0.04, 0.30 ± 0.02], β = [0.15 ± 0.03, 0.22 ± 0.02], where the uncertainty in 
parameter estimation are inherent from flow statistics, and Equation 11 leads to c = [6.64, 0.84] for ABL and 
tidal data respectively. The choice of γ = 2 is motivated by the high degree of multifractality demonstrated in 
both datasets (Fig. 4b). For additional results with lower γ values, please refer to the Supplementary Material.

Fig. 4.  (a) Generalized Hurst component, Hq , (b) q−th order mass exponent, τq , (c) q−th order singularity 
exponent, hq , (d) q−th order singularity dimension, Dq , and (e) multifractal spectrum for the wind (blue solid 
line) and tidal (red dashed line) data.
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Model performance evaluation
With the derived parameters, the modeled proposed spectra are compared with the experimentally measured 
spectra and the classical von Kármán spectra in Figs. 5 and  6.

The experimentally measured spectra in Figs. 5a and  6a exhibit negative scaling in the energy-containing 
range, demonstrating the LRD effect14,21,62–64. In contrast, the widely used IEC von Kármán spectral model fails 
to capture the correct scaling within this range due to its inability to model LRD effects. It shows a flat scaling 
and underestimates the energy level within the energy-containing range.

It is critical to note that large-scale energy-containing range eddies contribute significantly to the velocity 
variance–approximately 40% and 55% for ABL and tidal flow datasets, respectively (black dashed-line in 
Figs. 5a,b and  6a,b). These eddies are crucial for wind and tidal turbine design and operation65–67, as studies 
have shown that background flow structures with scales larger than the wind turbine rotor diameter significantly 
affect turbine power and wake velocity fluctuations68–70.

Moreover, the consequences of inaccurate energy-containing range scaling by the von Kármán spectral model 
are further illustrated by the compensated spectrum. There is a clear overestimation in the high-frequency bands 
of the pre-multiplied von Kármán spectra in Figs. 5b and  6b, as the model compensates for the underestimated 
energy level within the energy-containing range to match the full band variance with the detrended time series.

The enhanced performance of the proposed model relative to the IEC von Kármán spectral model is 
demonstrated in Figs. 5c and 6c. The omission of long-range dependence (LRD) effects in the von Kármán model 
leads to an underestimation of energy in the energy-containing range, as quantified by the low-pass-filtered 
standard deviation σu. Specifically, the von Kármán model captures only 48% and 53% of the experimentally 
measured low-pass σu for the ABL and tidal spectra, respectively.

In contrast, the proposed spectral model incorporates LRD effects and offers tunable parameters D and H, 
enabling accurate representation of energy levels across all frequency ranges, including precise control of the 
transition frequency via the scaling parameter c. The resulting low-pass σu deviates from the experimental 
measurements by only 5% for the ABL and tidal spectra, indicating a substantial improvement in predictive 
accuracy over the IEC von Kármán model.

Fig. 6.  Comparison between experimental measurement, Von Kármán model, and proposed spectral model 
for tidal flow; (a) streamwise velocity spectrum Φu, (b) premultiplied spectrum fΦu, and (c) high-/ and low-
pass σu.

 

Fig. 5.  Comparison between experimental measurement, Von Kármán model, and proposed spectral model 
for atmospheric boundary layer flow; (a) streamwise velocity spectrum Φu, (b) premultiplied spectrum fΦu, 
and (c) band-/ and low-pass σu.
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Conclusions
The findings from this study indicate that the proposed turbulence spectrum model provides a significant 
advancement in modeling field turbulence spectra across diverse environmental conditions. This model, 
derived from a newly developed class of covariance functions, offers several distinct advantages over traditional 
turbulence spectrum models, such as the IEC von Kármán isotropic model and the IEC Kaimal model.

The proposed model introduces parameters that explicitly account for long-range dependence and fractal 
dimension. This differentiation is critical as it allows for a more nuanced representation of turbulence dynamics, 
particularly in capturing the negative slope of the spectrum in the energy-containing range (that are linked 
to LRD of the flows12–14), a feature often observed in atmospheric and oceanic turbulence but inadequately 
represented by classical models. The inclusion of the LRD effect and the ability to decouple between Hurst 
exponent H and fractal dimension D by the proposed model results in better accuracy in energy level 
representation across all scales compared to previous turbulence spectrum models. This precision is not merely a 
theoretical enhancement but has practical implications in improving the fidelity of simulations used in wind and 
tidal energy research, where accurate energy predictions are crucial for design and operational efficiency. Also, it 
has been recently shown that, under statistically isotropic conditions, the fractal and Hurst characteristics of the 
lateral velocity components are identical to those of the streamwise component71. This offers a natural extension 
of the proposed approach to modeling full velocity fields. Another significant benefit of the proposed model is 
its ease of use. The model is designed with a clear and simple procedural approach that minimizes the need for 
non-trivial parameter tuning. This user-friendly aspect makes it accessible to practitioners and researchers who 
may not specialize in the theoretical aspects of turbulence modeling.

It is important to note that the proposed model, due to the monofractal structure of Equation 1, is limited in its 
ability to capture the multifractal and heavy-tailed characteristics of turbulent velocity fluctuations. Future work 
will aim to extend the underlying Gaussian random field to a superstatistical framework72, enabling improved 
representation of intermittency and progression toward a multifractal formulation73. Since the turbulence 
spectrum fundamentally governs the distribution of turbulent kinetic energy across scales, it plays a critical role 
in stochastic, full-field turbulence simulators. In this context, implementing the proposed model in tools such as 
TurbSim, replacing conventional spectra like the IEC von Kármán and Kaimal models, can yield more accurate 
simulations of environmental flows that exhibit long-range dependence (LRD). The proposed model improves 
spectral fidelity across all frequency ranges and significantly reduces band-pass σu errors compared to classical 
models currently used in TurbSim74, thereby enhancing the accuracy of turbine load predictions and levelized 
cost of energy (LCOE) assessments7,9. These improvements underscore the model’s potential to substantially 
impact the planning and implementation of wind and tidal energy plants. Its ability to provide more accurate 
predictions of turbulence behavior will likely lead to enhancements in turbine design, site selection, and overall 
energy efficiency. The broader adoption of this model could, therefore, contribute significantly to optimizing 
renewable energy resources, aligning with global sustainability goals.

Methods
Empirical mode decomposition (EMD) based sifting method for detrending
Atmospheric boundary layer, tidal, and riverine flows are typically non-stationary. Data detrending is essential to 
ensure time series data are wide-sense stationary (WSS) before assessing turbulence statistics26 such as variance 
(σ2), turbulence intensity level (Iu), and integral time/length scale (Tu, Lu), which serve as input parameters for 
the proposed spectrum model. We adopt a fast and adaptive EMD-based sifting method75 to detrend the time 
series data x(t), with an overview of the algorithm provided below: 

	1.	 Identify the local extrema of the time series. The local minima and maxima are connected using cubic splines 
to construct the lower and upper envelopes.

	2.	 Average the lower and upper envelopes constructed in the previous step to form a new mean envelope, m1(t)
. This is the first intrinsic mode function (IMF) that contains the highest frequency fluctuations within x(t).

	3.	 Compute the difference h1(t) between the original signal x(t) and the first IMF m1(t): 

	 h1(t) = x(t) − m1(t).� (16)

	4.	 Repeat the first two steps using the difference signal h1(t) as a new signal, and generate the second IMF 
m2(t) by computing a new mean from the upper and lower envelopes of h1(t).

	5.	 The second iteration yields a new difference signal h2(t): 

	 h2(t) = h1(t) − m2(t).� (17)

	6.	 Store the n-th order IMFs, mn(t), and iterate through the above process until a stopping criterion indicates 
that no more fluctuating IMFs can be sifted. The last difference signal hn(t) is termed the residue, which 
should show no significant variation upon further iteration.

	7.	 Once the residue hn(t) is obtained, compute the detrended time series xd(t): 

	 xd(t) = x(t) − hn(t).� (18)
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Hurst exponent using detrended fluctuation analysis
Multifractal Detrended Fluctuation Analysis (MF-DFA) is performed to obtain the Hurst component that 
characterizes the degree of Long-Range Dependence (LRD) within a time series. MF-DFA is a robust tool 
for extracting scale-invariant structures within time series45,76,77 and is required here to incorporate the LRD 
within the proposed spectrum model, where classical spectrum models ignore the LRD effect (i.e., assuming 
that H = 0.5). This assumption used in classical spectrum models will later be proved incorrect and will be 
addressed by the proposed spectrum model. The fractal analysis of a time series xk(t) is conducted to determine 
the Hurst exponent H and the multifractal spectrum width ∆hq . MF-DFA involves the following steps: 

	1.	 Generate a random walk-like time series Xi from a noise-like time series xk(t) by 

	
Xi =

i∑
k=1

(xk − ⟨xk⟩) , i = 1, . . . , N.� (19)

	2.	 Divide Xi into Ns = int(N/s) non-overlapping intervals of equal timescale s.
	3.	 Remove the local trend from each of the Ns segments by subtracting the residues obtained via the EMD-

based sifting method.
	4.	 Calculate the variance for each segment v = 1, . . . , Ns, where the variance is defined as: 

	
F 2(s, v) = 1

s

s∑
i=1

{X[(v − 1)s + i] − xv(i)}2 ,� (20)

	 and xv(i) represents the EMD residue in the v-th segment.

	5.	 Compute the q-th order fluctuation function by: 

	
Fq(s) =

{
1

Ns

Ns∑
v=1

[
F 2(s, v)

]q/2

}1/q

, for q ≠ 0.� (21)

	6.	 Estimate the generalized q-th order Hurst exponent Hq(q) by the relation: 

	 Fq(s) ∼ sHq(q).� (22)

	 The first order Hurst component is the monofractal Hurst component H (i.e., H = Hq=1).

Multifractal spectrum width ∆hq  from multifractal spectrum
The multifractal spectrum is derived through a two-step transformation process of the q-th order Hurst exponent, 
Hq . Initially, Hq  is utilized to compute the q-th order mass exponent τq  using Equation 23. The derivative of τq  
yields the q-th order singularity exponent (hq), and the q-th order singularity dimension (Dq) is then derived via 
a first-order Legendre transformation, as delineated in Equations 24 and 2576,78,79. Subsequently, the multifractal 
spectrum is constructed by relating hq  with Dq .

	 τq = qHq − 1.� (23)

	
hq = ∆τq

∆q
,� (24)

	 Dq = qhq − τq.� (25)

Two key quantities can be extracted from the multifractal spectrum: hq,0, at which the maximum Dq  occurs, 
representing the most dominant Hurst exponent, and the width or range of the Dq  spectrum, defined as 
∆hq = hq,max − hq,min, indicating the degree of multifractality.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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