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We investigated the impact of detrending techniques on turbulence quantities from tidal stream flow data,
focusing on the autocorrelation function, p,, and velocity spectrum, &(f). Standard detrending methods,
including high-pass frequency-based and polynomial-based techniques, are examined, alongside a proposed
alternative method, the empirical mode decomposition (EMD). Our results highlight that intervals of flow
acceleration and deceleration, typical in tidal and riverine flows, significantly affect the estimation of

turbulence quantities using high-pass frequency filtering and polynomial detrending of varying orders. These
methods can strongly influence p,, and @(f), thereby affecting the accurate estimation of derived quantities.
We examine two variations of detrending data using EMD; the first removes only the EMD residue, and
the second removes both the residue and the largest scale intrinsic mode function (IMF). By comparing the
detrended spectra with the modeled von Kirmén spectra, we demonstrate that the second variation (i.e.,
removing the residue and the largest scale IMF) successfully removed the large-scale trend of the data while
retaining the energy of other scales.

1. Introduction

Dozens of successful deployments of tidal energy converters (TECs)
around the globe demonstrate the potential of tidal energy to contribute
to an expanding global renewable power generation portfolio, including
a wide range of distributed energy needs for isolated coastal and
island communities (Huckerby et al., 2012; Chowdhury et al., 2021;
OES, 2023). The maximum extractable global mean annual tidal power
along continental shelves is estimated to be some fraction of the 2.5
terawatts (TW) tidal energy dissipation rate (Egbert and Ray, 2003),
with estimates ranging significantly from 0.06 TW (Hammons, 1993)
to 1 TW (Kempener and Neumann, 2014).

The current global installed capacity for tidal energy is approxi-
mately 15 MW, primarily consisting of 1st-stage pilot farm projects.
However, there are new projects totaling blue an additional 109 MW
of installed capacity, representing a seven-fold increase, under devel-
opment (IRENA and OEE, 2023b). Full-scale tidal energy conversion
(TEC) technologies have been demonstrated with rated capacities of
up to 2 MW per device (O. Orbital Marine Power, 2023). With this
projected increase in global installed capacity in the coming decades,

reductions in levelized costs of energy (LCOE) are expected to occur
through economies of scale, the streamlining of supply chains, and
technology improvements; further details can be found in IRENA and
OEE (2023a).

Thorough characterization of the tidal energy resource and turbu-
lent inflow conditions is crucial for advancing tidal energy develop-
ment. It provides key inputs, like the hydrodynamic loads, hydrokinetic
power densities, and turbulence statistics for siting, project develop-
ment, and designing and certifying TEC devices (IEC, 2015; Neary
et al., 2013). Classification and type-certification of TEC devices re-
quire assessment of the maximum mean current speed at hub height,
e.g., during the maximum perigean tide, along with the median value
of the turbulence intensity occurring at 1.5 m/s (Neary et al., 2019;
Bittencourt et al., 2014; Deb et al., 2023).

Estimations of tidal energy potential often combine field measure-
ments with numerical models (Iglesias et al., 2021; Chen et al., 2013;
Wang and Yang, 2017; Buri¢ et al., 2021; Yang et al., 2020, 2021;
Maldar et al., 2022). For instance, Chen et al. (2013) used a 3D finite-
element model to evaluate tidal current energy potential at Kinmen

* Corresponding author at: Mechanical Science and Engineering, University of Illinois, Urbana, 61801, IL, USA.
E-mail addresses: vsneary@sandia.gov (V.S. Neary), Ipchamo@illinois.edu (L.P. Chamorro).

https://doi.org/10.1016/j.oceaneng.2024.117427

Received 12 December 2023; Received in revised form 6 March 2024; Accepted 7 March 2024

Available online 14 March 2024

0029-8018/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/oceaneng
https://www.elsevier.com/locate/oceaneng
mailto:vsneary@sandia.gov
mailto:lpchamo@illinois.edu
https://doi.org/10.1016/j.oceaneng.2024.117427
https://doi.org/10.1016/j.oceaneng.2024.117427
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2024.117427&domain=pdf
http://creativecommons.org/licenses/by/4.0/

S. Cheng et al.

Nomenclature

D, streamwise velocity spectrum (m2/s).

Puu autocorrelation of the streamwise velocity
component.

o2 streamwise velocity variance (m?/s2).

T time lag (s).

fs sampling frequency (Hz).

L, integral length scale (m).

T, integral time scale (s).

U time-averaged streamwise velocity (m/s).

u streamwise velocity (m/s).

u streamwise velocity fluctuation (m/s).

EMD empirical mode decomposition.

IMF intrinsic mode function.

WSS wide-sense stationary.

Island, Taiwan, aiming to identify an optimal location for a tidal power
plant. Similarly, Wang and Yang (2017) numerically assessed the power
potential of minor tidal channels in Puget Sound, USA. They employed
a 3D hydrodynamic model (FVCOM) to investigate the impact of a
power plant on tidal circulation, revealing increased turbulence levels
in the turbine wake. Yang et al. (2021) employed a high-resolution
3D tidal hydrodynamic model to characterize the energy resource of
Salish Sea tidal streams, highlighting the significance of evaluating
both current magnitude and kinetic energy flux for optimal turbine
placement. However, while these studies have primarily focused on
hydrodynamic characteristics, estimating tidal-turbine interaction often
neglects tidal turbulence parameters due to the challenges of obtaining
high-resolution turbulence measurements. Recently, Deb et al. (2023)
incorporated macro-scale turbulence quantities into a hydrostatic prim-
itive equation (HPE) model to analyze the tidal energy resource in the
Western Passage, Maine, USA. Their assessment of turbulent kinetic
energy (TKE) and turbulence intensity across various channel depths
facilitated the evaluation of suitable cross-sections for tidal energy
converter (TEC) deployment.

The interaction between turbines and tidal currents may be par-
ticularly strong; tidal turbulence significantly affects the fatigue load
on hydrokinetic turbines, requiring modeling and methods to assess
turbulence levels (Yadegari et al., 2023). A specific turbulence model
is required to simulate these types of flows. Such a model relies on
input parameters from field measurements and returns tidal turbu-
lence characteristics like those used for wind turbulence models, such
as the IEC Kaimal Model and the IEC von Karmén Isotropic Model.
These models generate time series of velocity fluctuations based on
turbulence spectral representation and account for coherent structures,
as demonstrated in the TurbSim stochastic unsteady turbulent inflow
simulator (Kelley and Jonkman, 2005).

To utilize the classical velocity spectrum model, it is necessary to
have turbulence statistics such as the variance of velocity fluctuations
(c,) and integral length scale (L,) as input parameters. However, to
estimate these statistical quantities and perform spectrum analysis cor-
rectly, the turbulence signal must be wide-sense stationary (WSS) and
pass the stationarity test, i.e., (X(r)) = u, and their covariance function,
C, follows C (t;,1,) = C (t, — ;) = C(z), where 7 = 1,—1; > 0 is the time
lag (Grami, 2016). Unfortunately, most tidal currents exhibit large-scale
patterns, changes in direction, and acceleration/deceleration over the
measurement period, resulting in a non-stationary process. This leads to
an inability to converge on mean quantities and higher-order statistics
using the raw signal. Consequently, turbulence statistics at tidal sites
being reported only over short time intervals, typically on the order of
several minutes in the literature (Gunawan et al., 2014; Thomson et al.,
2012; Milne et al., 2017). However, such short time periods may not

Ocean Engineering 300 (2024) 117427

capture the effects of large-scale eddies and can restrict the develop-
ment of spectrum models as part of a multiple-criteria decision-making
model for selecting tidal energy converter sites. This emphasizes the
critical need for the development of detrending techniques capable of
efficiently removing dominant trends in the raw signal and generating
a wide-sense stationary (WSS) signal suitable for calculating turbulence
statistics.

Several detrending methods have been suggested to eliminate large-
scale trends in raw velocity fluctuation data and obtain a WSS signal.
However, conventional methods such as frequency-based filtering (low-
pass, high-pass, and band-pass filters) and polynomial-based filter-
ing are vulnerable to failure or are not suitable for turbulence data
due to intermittent events. Determining the correct parameters for
these detrending methods is challenging, and there are no established
guidelines for designing filters for turbulence data processing. Further-
more, most detrending methods are limited to one-dimensional and
single-variant data.

Here, we present a robust method for detrending multi-dimensional
and multi-variant data using the so-called empirical mode decompo-
sition (EMD) sifting process to remove large-scale trends. We compare
the performance of EMD with other common detrending methods, such
as high-pass filters and polynomial-based detrending, when applied
to tidal flow data. We present a methodology for empirical mode
decomposition (EMD) with minimal parameter tuning required, which
yields superior results in spectrum and autocorrelation analyses when
compared to other commonly used detrending methods. This has been
demonstrated through its application to experimental turbulence tidal
signals.

2. Tidal current data

We examined the effectiveness of detrend methods for two tidal
sites: Nodule Point, WA, and East River, NY. The first dataset was
obtained from an Acoustic Doppler Velocimeter (ADV) during the
spring tide in 2011, with a sampling frequency of f, = 32 Hz, over
a period of 4.3 days. The ADV was positioned at the apex of the Tidal
Turbulence Tripod, which was situated 4.7 m above the seabed that was
22 m deep at Nodule Point, located on the eastern side of Marrowstone
Island. For more information on the sampling parameters and Doppler
noise, refer to Thomson et al. (2012).

The second dataset was collected using a three-axis ADV for a
duration of 39 days between June 9th to July 17th, 2011, with a
sampling frequency of f; = 20 Hz. The upward-looking Sontek ADV
was deployed at the Roosevelt Island Tidal Energy (RITE) site, owned
by Verdant Power. The RITE Project site is located on the east side of
Roosevelt Island, between the boroughs of Manhattan and Queens, New
York City. For details on the site characteristics, refer to Gunawan et al.
(2014).

2.1. Data processing

The unprocessed Acoustic Doppler Velocimeter (ADV) data un-
derwent the phase-space-thresholding (PST) test (Goring and Nikora,
2002) to detect spikes and outliers. Detected spikes and outliers were
replaced with time-averaged values as detailed in Gunawan et al.
(2011). We focus on intervals characterized by sufficiently high fluid
velocities relevant to energy conversion. Fig. 1a depicts a time series
of tidal flow, highlighting specific intervals that meet the criterion.

3. Methodology

Tidal flows exhibit non-stationarity statistical features; they fail sta-
tionarity tests such as the one described by Foken and Wichura (1996);
see example in Fig. 1. Time series from these streams are not in a state
of wide-sense stationarity (WSS), which means they lack a constant
mean, or their covariance function shifts over time (Florescu, 2014).
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Fig. 1. (a) Sample streamwise velocity time series of a selected tidal resource. (b-d) Close view of the signal within selected A — C regions.
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Fig. 2. Comparison of the frequency response generated by (a) various 6th order high-pass filters, and (b) Butterworth filter for filter order n =1 to 6.

Such non-stationarity presents challenges for using turbulence formu-
lations (Monin and Yaglom, 1999; Durbin and Reif, 2011; Stanisic,
2012) since statistical quantities do not converge and are dependent
on the extent of the time series. Conversely, dividing the continuous
time series into shorter time windows, where each window may exhibit
a stable mean and variance, could lead to the omission of large-
scale eddies (Thomson et al., 2012). Therefore, it becomes essential
to implement effective detrending techniques when aiming to develop
turbulence models that span extended durations characterized by high-
momentum tides with time scales on the order of hours (as illustrated
in Fig. 1 b-d). Standard detrending methods can be categorized into
frequency-based filters (e.g., high-pass, low-pass, and band-pass filters)
and polynomial-based approaches. These two methods have advantages
and disadvantages, which are discussed briefly below.

While detrending techniques such as regression-based and frequency-
based filtering are widely used in the signal processing community,
for instance, in processing Electroencephalography (EEG) and Magne-
toencephalography (MEG) data (de Cheveigné and Arzounian, 2018;
Eleuteri et al., 2012), they suffer from limitations such as significant
autocorrelation and spectra artifacts or sensitivity to various detrending
parameters. These parameters lack robust tuning criteria and often
require trial and error. Furthermore, the aforementioned methods are
limited to one-dimensional data with a single variant and cannot be
easily extended to multi-dimensional or multi-variant data.

We propose an alternative detrending method using empirical mode
decomposition (EMD) to address these issues. EMD is a powerful non-
stationary modal decomposition tool that does not require parameter
tuning and is robust to highly intermittent turbulence data. Further-
more, EMD applies to multi-dimensional and multi-variant data (Rilling
et al., 2007; Rehman and Mandic, 2009, 2010), making it an ideal tool
for detrending tidal turbulence signals.

3.1. Frequency-based filtering

High-pass filters are commonly employed to eliminate slow large-
scale patterns in signals (van Driel et al., 2021). However, the frequency-
based nature of these filters alters the behavior of the turbulence
spectrum, rendering them challenging. The frequency response of stan-
dard high-pass filters is shown in Fig. 2a, with the cutoff frequency
set to half the sampling frequency. This figure illustrates the common
artifacts of frequency-based filterings, such as the ripple effect in the
passband (i.e., normalized frequency > 0.5) of Chebyshev Type I and
elliptic filters. Such issues are absent in Butterworth and Chebyshev
Type II filters, which exhibit flat passband responses. However, these
filters have wide transition bands and suffer from slow roll-off. Based
on the frequency response characteristic, using the maximally flat
passband Butterworth filter response is recommended to minimize
artifacts in the passband spectrum. However, this smoothness comes at
the cost of decreased roll-off steepness, so a higher filter order is typi-
cally necessary to improve the roll-off performance, as demonstrated
in Fig. 2b. Other limitations have also been reported while dealing
with frequency-based filter design, including the distortion of transient
features (de Cheveigné and Arzounian, 2018; Acunzo et al., 2012) and
the ringing effect (Tanner et al., 2015; Widmann and Schroger, 2012).
These are particularly problematic when dealing with turbulence data,
as they can alter the magnitude of intermittent events. In addition, low
cutoff or high-order filter designs often exhibit transient fluctuations
that take time to attenuate (Vanierschot et al., 2009).

3.2. Regression-based detrending

Large-scale signal trends can be identified using different tech-
niques, including linear and nonlinear regression analysis, which in-
volves solving a least-squares fitting problem. The methods used to
identify these trends can significantly affect the inferred statistics.
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Fig. 3. Polynomial regression on the sample data with added noise and glitches mimicking distinct features of flow data; (a) raw signal k(r) (black) superimposed with the large
mean pattern and glitches w(r) (red), (b) fitted curves using n-th order polynomial regression for various n values.

Linear and nonlinear regression analyses involve minimizing problems
with linear or nonlinear constraints and bounds (Freedman, 2009;
Aldrich, 2005). Here, we utilize linear regression for data fitting. The
problem is defined as follows (Devore, 2008):

mxin Z(yi — f (i (), 1

fx,B) = 2p;0;(x).

The fitted curve y; is a function of the independent variable x;
and the fitting coefficient g, represented as y; = f(x;,$). The base
function ¢(x), such as ¢; = x/ for polynomial fitting or ¢; = /* for
exponential fitting, is also involved in the fitting process. Polynomial
regression is of particular interest as the order of the polynomial deter-
mines the removed signal scales, potentially providing an alternative to
frequency-based filtering. However, the least-square regression method
minimizes the variance of the unbiased coefficient estimators under the
Gauss—-Markov theorem (Harville, 1976; Hallin, 2014), which assumes
uncorrelated errors in the regression model. This assumption does not
align with the nature of turbulence data.

Minimizing the least square regression variance is highly susceptible
to glitches and intermittent events, as Fig. 3 exemplifies. We illustrate
this using a sample signal k(¢), consisting of a pattern w(r) and a
summation of two modes. The signals w() and k(¢) are shown in Fig. 3a,
and are defined as follows:

w(t) =12/50 + 2 + g(1),

34 5r(1) 415<t<6
g(t) = 245r () 1245<t<143 (2)
ri () otherwise

k(t) = 2 cos(2t) + 3 cos(5¢1) + w(?).

The quadratic trend w(r) is added to the random noise distributed
as r (1), which comprises two sections of higher mean and fluctuation,
mimicking the peak flood behavior in tidal turbulence (Milne et al.,
2013; Villarini and Smith, 2010). Polynomial regression is applied to
the sample signal k(r), which consists of the large pattern and two
modes. Fig. 3b illustrates the polynomial regression results, demonstrat-
ing that even with the correct polynomial order (n = 2), the regression
method fails to capture the large pattern due to the influence of outliers.
The results highlight that selecting proper fitting parameters heavily
affects the regression-based filtering outcomes. Moreover, increasing
the polynomial order does not necessarily yield a better fit as it may
lead to overfitting, which is evident in the n = 6 fit.

There have been various attempts to prevent the issues of underfit-
ting or overfitting in polynomial regression; however, there is currently
no widely agreed-upon approach for selecting the most suitable fitting
parameters (Araujo, 2018; Bu and Zhang, 2021; Lever et al., 2016;
Chatterjee and Hadi, 1986).

3.3. Empirical Mode Decomposition (EMD) for data detrending
Empirical Mode Decomposition (EMD) is a sifting process developed

by Huang et al. (1998) to analyze non-stationary and nonlinear sig-
nals. EMD is designed to extract local features and the time-frequency

distribution of a signal. The EMD process comprises two steps. First,
the signal is decomposed into multiple intrinsic mode functions (IMFs).
Second, the instantaneous time-frequency distribution of the data is
extracted from each IMF using Hilbert-Huang transform (HHT) (Huang
et al., 1999). The sifting process extracts IMFs based on local frequency
or wavenumber information and produces IMFs in ascending order of
local frequencies or spatial scales. The first IMF contains the highest
local frequencies or spatial scales, and the final IMF contains the lowest
local frequencies or scales of the oscillation. The residual component
of the decomposition contains the trend of the signal or data. Despite
being an effective method for analyzing non-stationary and nonlinear
signals, there is still ongoing research to improve the accuracy and
efficiency of EMD.

The fast and adaptive EMD algorithm is based on a sifting process
that resembles the one proposed by Thirumalaisamy& Ansell (Thiru-
malaisamy and Ansell, 2018) for extracting intrinsic mode functions
(IMFs) from a time-varying signal x(7). This procedure involves identi-
fying the local extrema of the signal, which are used to construct upper
and lower envelopes using cubic splines. The average of these envelopes
is then computed as m,(f), and the difference between the signal and
its envelope, denoted as h,(¢), is obtained as A, (t) = x(t) — m, (?).

To obtain the first intrinsic mode function (IMF) more accurately,
the difference signal A, (¢) is considered as a new signal, and its upper
and lower envelopes are computed along with their new mean m,(t).
Subsequently, a new difference signal h,(r) = h,(1)—m, () is determined,
and this iteration is repeated until a stopping criterion is satisfied. The
sifting process continues until the last residue shows no significant
variation. An example of the one-dimensional, single variant EMD
applied on a clean signal x(¢) is presented in Fig. 4, where x(¢) comprises
two modes, a nonlinear quadratic pattern and an offset, as given by:

x(7) = 2 cos(2t) + 3 cos(5t) + 12 /50 + 2. 3)

Fig. 4 demonstrates the efficacy of the EMD algorithm in accurately
identifying and separating the different modes present in the raw signal.
The extracted intrinsic mode functions (IMFs) are given alongside the
modes used to construct the raw signal in Fig. 4b,c, showing that the
IMFs accurately capture the amplitude of the modes with an error of
less than 5% in the peak magnitude difference. Furthermore, the overall
nonlinear pattern of the signal is captured in the residue, as shown in
Fig. 4d. These results highlight the ability of EMD to robustly sift out
multi-scale trends without heavy parameter tuning or prior knowledge
of the raw signal.

4. Results

In this section, we evaluate the efficacy of the aforementioned
filters, i.e., frequency-based, regression-based, and EMD approaches,
in detrending raw data. To assess the performance of these methods,
we compute velocity spectra and autocorrelation functions of the de-
trended signals. The objective is to retain the intermediate frequencies
while eliminating low-frequency, large-scale patterns. Additionally, we
use autocorrelation functions to compare the performance of the dif-
ferent filters. A successful filter should preserve essential frequency
components of the signal while effectively removing the trend.
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Fig. 5. (a) Raw streamwise velocity fluctuations in interval section B of Fig. 1, (b) autocorrelation function, p,, and (c) corresponding streamwise velocity spectrum of the
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Fig. 6. (a) Time series of high-pass filtered streamwise velocity fluctuations in interval A of Fig. 1, (b) autocorrelation function, p,,, and (c) the corresponding streamwise velocity

spectrum.

4.1. Raw data

Fig. 5a illustrates the velocity fluctuation data during time interval
B, as shown in Fig. 1a, which exhibits periods of acceleration and
deceleration (see Fig. 1b), displaying substantial fluctuations at a large
scale in the signal. The non-stationary nature of the signal can also be
inferred from the autocorrelation function of the streamwise velocity,
P> defined as (Hong et al., 2022):

@

Here, u' = u — U represents the velocity fluctuations, where U = (u)
corresponds to the mean velocity, r is the time lag and o2 is the
variance of the signal. The decay of correlation in p,, appears very slow,
where it does not approach zero until a time lag of approximately 3000
s. A closer examination of the highlighted region for = < 50 seconds
in the inset reveals that p,, reaches a plateau value of approximately
0.75 and decays very slowly afterward. This plateau behavior indicates
non-ergodic and non-stationary behavior (Papoulis and Unnikrishna
Pillai, 2002; Park and Park, 2018). The general large-scale variability
in Fig. 1b affects the velocity spectrum leading to a sharp increase in
energy level at the largest scale for f < 1073 Hz, as highlighted by the
red-dashed box in Fig. 5c.

p(0) =u' (O (t — 7)/c2.

4.2. Spectral high-pass filtering

A high-pass Butterworth filter (Butterworth et al., 1930) with a
cutoff frequency of 2.5 x 10~ Hz and filter orders of 5 and 6 are
used to illustrate the effectiveness of frequency-based detrending. The
filtered signal, its corresponding velocity spectrum, and autocorrelation
function are presented in Fig. 6. The velocity fluctuations, «/, in Fig. 6a
indicates that the 5Sth-order filter successfully removes the large-scale
patterns, resulting in a significant decrease in energy at low frequen-
cies; however, the 6th-order filter with a different roll-off performance

fails to filter all the low-frequency energy, resulting in the plateau of
P ~ 0.55 at ¢ = 50 s. Although the fifth-order filter performs well
in autocorrelation, an artifact appears in the spectrum of Fig. 6¢ near
the cutoff frequency, demonstrating that frequency-based filters are not
optimal for filtering turbulence data.

4.3. Polynomial regression filtering

Fig. 7 illustrates a least square regression filtering method. Fig. 7a
shows the raw velocity fluctuations overlaid with polynomial regres-
sion trends. Figs. 7b-e display the corresponding detrended signals,
demonstrating how the filtered structures are affected by changing the
polynomial order. This figure also highlights the difficulty of using
regression-based filtering methods in selecting the appropriate param-
eters. Lower polynomial orders can result in underfitting, where the
slow drift cannot be removed, as shown in Figs. 7b-c. Overfitting
can occur with larger polynomial orders, as seen in the case of n
15 at the beginning of the signal (highlighted by a red box) when
comparing Figs. 7d,e. However, the n = 15 case showed better filtering
performance at the end of the signal (red-dashed box), whereas the
n =9 case demonstrated underfitting. This example highlights the chal-
lenges associated with regression-based methods, where determining
the correct regression parameters might require trial and error. There
is no guarantee for an » that produce the right polynomial fit.

Fig. 8 displays the autocorrelation function and the velocity spec-
trum @, for the detrended signals presented in Fig. 7. Underfitting
polynomials are expected to produce a large-scale trend and slow
convergence in autocorrelation. Although the higher-order polynomial
fits (n = 9 and 15), exhibit better performance in p,,, the nature of least
square regression does not consider the frequency domain property.
As a result, the selection of the filtered scales is ambiguous. This is
evidenced by comparing the corresponding spectrum filtered by 9-th
and 15-th order polynomials. Note that the 15-th order polynomial does
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Fig. 9. IMFs obtained from fast and adaptive EMD for streamwise velocity fluctuations in interval B (Fig. 1c).

not filter out higher frequency (i.e., smaller scale) structures; instead,
an unphysical sharp drop in the lowest frequency band is observed.
This again highlights that regression-based filtering is suboptimal for
detrending tidal turbulence data.

4.4. Single-variant EMD filtering

Fig. 9 presents the IMFs generated through EMD in section B of
the data (Fig. 1b), using a sifting tolerance set at 0.1% of the signal
amplitude. Fig. 10 displays two versions of detrended data. The first
version subtracts only the residue from the raw signal, marked with a
green dashed line in Fig. 10a. In contrast, the second version involves
the addition of the last IMF and residue, represented by the red line in
Fig. 10a. The first detrended signal still displays sufficiently large-scale
fluctuations (Fig. 10b), while the second version exhibits a signal with
acceleration and deceleration periods removed correctly (Fig. 10c).

A comparison of the autocorrelation function, p,,, and velocity
spectrum, @,, between the raw signal and the two detrended signals
are given in Figs. 11 and 12 for the three intervals selected in Fig. 1.
The blue lines in Fig. 11 indicate signals where both the residue and
the last IMF were subtracted, showing p,, ~ 0 at = 50 s. In contrast,
the red lines indicate signals where only the residue was subtracted,
demonstrating p,,, > 0.2 at = 50s with large-scale oscillations observed
for a sufficiently high time lag (z > 1000 s). This finding confirms
that residue and last IMF subtraction may be appropriate for riverine
and tidal turbulence data where glitch exists. Moreover, the velocity
spectrum in Fig. 12 supports the effectiveness of EMD in detrending
riverine and tidal turbulence data. The signals with the residual and
last IMF removed (blue lines) overlap with the raw signal at the
high-frequency band while effectively removing the lowest frequency
artifact, resulting in negligible slopes in the energy-containing range for
one-dimensional spectra. This is consistent with previous studies (Pope,
2000; Saddoughi and Veeravalli, 1994).
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Fig. 10. (a) Raw streamwise velocity fluctuations at interval B (Fig. 1c) superimposed with trends obtained by one-dimensional one-variant EMD; the green dotted line shows the
EMD residue and the red line is the residue with the addition of the last IMF, (b) signal with residue subtracted, and (c) signal with residue and last IMF subtracted.
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With the detrended wide-sense stationary data obtained from EMD,
we can calculate the input parameters required for the von Kérman
spectrum model. The integral length scale, L,, is determined as (Pope,
2001)

L,=T,xU. %)

where U = (u,,,,) represents the convection velocity with ( ) represent-
ing the time-average operator (Fig. 1b-d), and 7, denoting the integral
time scale. It is defined as follows (Chamorro et al., 2013):

fo

T, = /0 Pu(T)dT,
where 1, is time lag where the correlation is sufficiently low (Chamorro
et al., 2013; Cheng et al., 2022); here, we set this low limit to p,,(#,) <
0.05. The integral length scale, L,, and streamwise velocity fluctuations,
0,, from the raw data and those from the detrended data by the EMD
method are provided in Fig. 13. The analysis reveals a significant over-
estimation of ¢, and L, when using the raw signal. This overestimation
is caused by imposing a mean on a non-stationary signal, leading to
erroneous large-scale fluctuations, as shown in Fig. 13c. By subtracting
both EMD residue and the last IMF from the signal, a more accurate
estimate of turbulence intensity (~ 10%) and integral length scale (L, ~
0(10') m) was obtained, which is consistent with similar velocity range
riverine/tidal data (Milne et al., 2013; Thiébaut et al., 2020; Thomson
et al., 2012).

(6)

4.5. Justification on subtracting both EMD residue and last IMF

Fig. 14 illustrates the outcome of applying the sifting algorithm
to the signal k(7), as depicted in Fig. 3 and defined by Eq. (2). This
demonstrates that when the time series is noisy and contains large-
scale outliers, the combination of both EMD residue and the last IMF
successfully captures the true background trend, whereas using EMD
residue alone fails to do so. Although there were larger errors in
peak amplitude in the sections where outliers are present, the modes
were well captured in the first three IMFs. The fourth IMF showed a
smooth spline fit approximation of the piecewise function g(¢), which
consists of two outlier sections. It is important to note that due to the
spline-fit nature of the EMD algorithm, the fourth IMF and residue in
Fig. 14d,e could not accurately capture the piecewise function g(¢) and
quadratic pattern. Instead, it was necessary to combine the last IMF
with the residue to obtain a smooth approximation for w(¢) in Eq. (2),
as evidenced in Fig. 14f. This further stresses the robustness of EMD
detrending when compared to regression-based detrending methods.

Lastly, the comparison between model spectra using the IEC von
Karméan model (I.E. Commission et al., 2005) given in Eq. (7)

462L,/U
D,(f) =

(7)
(1+71 (fLu/U)2)5/6
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and (c) signal with residue and last IMF subtracted.

and the spectrum of the measured signal for the raw «’ signal and the
EMD-filtered data are shown in Fig. 15. The results indicate a good
match between the modeled and measured spectra within the inertial
subrange for the signal after removing the last IMF and residue obtained
from EMD, as shown in Fig. 15c. However, the non-stationary signals
produce unrealistically large ¢, and L, values, resulting in large-scale
fluctuations and a sharp increase in energy at the lowest frequency
band (Fig. 15a,b, red-dashed ellipse). The incorrect estimation of 5, and
L, results in overestimating the integral scale energy level and corre-
lation length scale and underestimating the inertial subrange energy.

These results emphasizes the importance of the EMD detrend process
for riverine and tidal turbulence data.

5. Discussion

Examining distinct detrending methods, frequency-based filtering,
regression-based techniques, and empirical mode decomposition (EMD),
reveals their effects on non-stationary tidal turbulence data. Each tech-
nique offers a distinct perspective in addressing detrending challenges.

Frequency-based filters manipulate signal frequency content to iso-
late or remove specific fluctuation scales. While they can eliminate
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low-frequency trends effectively, they often introduce unwanted arti-
facts in autocorrelation (p,,) and velocity spectrum (&,). This occurs
due to abrupt frequency component removal, causing ringing and
transient effects that distort turbulence signal spectral characteristics.
Such distortions could affect the analysis and modeling. Hence, while
useful in specific contexts, frequency-based filters’ susceptibility to
introducing artificial features hampers their use with non-stationary
tidal turbulence data.

Regression-based detrending, though conceptually simple, can pose
implementation challenges. Determining the correct polynomial order
requires a balance between capturing trends and avoiding overfitting
or underfitting. This method might struggle to handle certain phenom-
ena in tidal data. While offering flexibility, the success of regression-
based approaches heavily relies on precise parameter selection and
understanding of data characteristics.

In contrast, empirical mode decomposition (EMD) uses the sifting
process to automatically obtain various scales of intrinsic mode func-
tions (IMFs), providing an adaptive and robust solution for detrending
non-stationary tidal turbulence data and avoids the complex filter
parameter tuning process in regression-based detrending. Its adaptabil-
ity ensures that local, intermittent-like events and glitches minimally
affect decomposition, treating them as intrinsic components rather than
artifacts. By removing both residue and the largest scale IMF, EMD-
detrended signals eliminate large-scale trends while preserving other
scale dynamics, demonstrating a smooth spectrum without artifacts ob-
served in frequency-based filtered signals. This aligns with the inherent
variability and intermittency of tidal turbulence data.

6. Conclusion and remarks

Our research underscores the significance of detrending
non-stationary riverine and tidal current data before estimating turbu-
lence statistics required for classical turbulence spectrum models. This
is especially crucial for tidal flows with high velocities and substantial
energy conversion potential, where the high-momentum tides often
exceed 10 min in duration and exhibit pronounced non-stationary
behavior. We assessed two detrending filters: frequency-based (like
low-pass filters) and regression-based (such as polynomial regression
detrending). Our findings highlight the challenges associated with these
methods, including the need for intricate parameter tuning in filter
design, the vulnerabilities of regression-based detrending to issues like
under- and over-fitting, and sensitivity to glitches. Also, frequency-
based filters introduce artifacts in autocorrelation (p,,) and velocity
spectrum (®,), manifested as ringing and transient effects, rendering
them less suitable for handling this type of turbulence data.

We propose a robust detrending process using empirical mode
decomposition (EMD) to address these limitations. This approach effec-
tively extracts various scales of fluctuations from the raw signal, cate-
gorizing them as intrinsic mode functions (IMFs), while the large-scale
trend is captured in the form of residue. We tested two EMD-detrended
signals on tidal turbulence data. One subtracted only the residue, while
the other removed both the residue and the IMF, representing the
largest scale fluctuation. Our outcomes reveal that the latter approach
eliminates the large-scale trend within riverine and tidal data. As a
result, improved estimations of turbulence statistics, such as turbulence
intensity and integral length scale L,, were achieved. Also, this method
provided a velocity spectrum @, that exhibited enhanced compatibility
with the classical von Karman spectrum model. The proposed EMD
detrending method is flexible and can be applied to real-world non-
stationary data, such as riverine flow, tidal flows, and atmospheric
boundary layer wind flow. This method allows for accurate estimation
of turbulence quantities and may be instrumental for future turbulence
model construction.
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