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A B S T R A C T

Waves of varying magnitude and frequency, characteristic of all coastal locations throughout the world, could
be converted into electricity via wave energy converters. However, one challenge with wave energy conversion
is lack of knowledge of the regional distribution of wave properties (e.g. to optimise site selection), and how
the wave power varies at inter- and intra-annual timescales. Here, we apply physics- and non-physics-based
approaches to accurately simulate the wave climate of the Canary Islands—a region in the eastern North
Atlantic that relies heavily on the import of diesel to generate much of its electricity. Over the 11-year time
period of the physics-based wave hindcast, the annual mean wave power of Lanzarote, one of the largest of
the Canary Islands was approximately 25 kW/m along the exposed north-western coast of the island. We find
that intra-annual variability was relatively low (compared with high latitude regions such as the west coast
of Scotland), with the coefficient of variation for wave energy resource = 1.1. To reduce levelized cost, it
could be advantageous to co-locate wave energy arrays with mature offshore wind energy, and we find that
the dominance of swell waves in Lanzarote reduces the coefficient of variation for a 55% wind, 45% wave
combination to 0.8. Finally, we demonstrate a simple non-physics based process for extending the output
timeseries beyond the hindcast duration, by correlating with parameters from global models.
1. Introduction

With continental coastlines exposed to high energy densities gener-
ated by thousands of kilometres of fetch, the theoretical annual global
wave power potential has been estimated at 29,500 TWh, sufficient to
meet the world’s annual electricity demand, which was 22,900 TWh
in 2019 [1–3]. Creating a strong wave energy sector to tap into this
potential will support global efforts to address climate change (and
energy insecurity) by contributing to a robust and diverse renewable
energy mix. Expansion in installed wave energy capacity is urgently
needed to improve grid resilience and decarbonise island communities.

The wave energy industry benefits from and is impaired by its
diversity of technology. There is an ecosystem of different types of
device, optimised for different water depths and wave characteris-
tics. However, this poses practical challenges: each device requires its
own trajectory of development and in situ prototype and array-scale
testing. A heterogeneous global network of consented (and, ideally,
grid-connected) test sites is crucial. One such site is the Atlantic island
of Lanzarote, which lies about 1000 km from the Iberian Peninsula and
125 km from the African coast.

∗ Corresponding author.
E-mail address: d.christie@bangor.ac.uk (D. Christie).

1.1. Modelling Lanzarote’s wave resource

Lanzarote, located between latitude 28◦14′N and 28◦49′N and lon-
gitude 7◦13′W and 7◦14′W, is the fourth largest of the Canary Islands
(Fig. 1)—a Spanish autonomous community in the Atlantic Ocean.
Including islets, it has an area of 846 km2, and runs 60 km north-south,
and 20 km east–west. The northern coast, in particular, is an attractive
location for wave energy extraction. Direct exposure to Atlantic swells
results in a potentially large and relatively consistent energy resource.

General information about a location’s suitability for wave energy
extraction may be obtained from analysing the outputs of regional-
scale models. For example, Sierra et al. [4], explored wave power at
nine data points around Lanzarote, extracted from long-term 0.25◦ ×
0.25◦ resolution models. Although all the sites were in deep water,
considerable spatial variation in power and direction was observed
(including at adjoining data points), with the archipelago acting as
an obstacle. With each island covered by only one or two grid points
(as can be seen in Fig. 1 showing the Canary Islands with a 1◦ grid
overlaid), care should be taken when interpreting these model outputs
for wave modulation due to the islands. Furthermore, the grid is too
coarse for variation along the coastline itself to be resolved explicitly.
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Fig. 1. Map of the Canary Islands, including Lanzarote in the north-east, with the La Santa deployment site labelled. The 100 m and 1000 m bathymetric contours indicate
particularly steep gradients in the region: more detailed bathymetry for Lanzarote and the deployment site is shown in Fig. 2.
Fig. 2. The two nested SWAN model domains, with the boundaries shown as red boxes.
The rapidly varying bathymetry in the Lanzarote coast poses challenges for model
construction. The asterisks in (a) correspond to the global ERA-5 spectra available at
0.5◦ × 0.5◦ resolution, which act as the (spatially and temporally varying) boundary
conditions for the outer model. The asterisks in (a) are the grid points from the outer
model (b) constituting the boundary input for the nested inner model.
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A similar study for the Canary Island of El Hierro, based again on a
North Atlantic wave model with 0.25◦ × 0.25◦ resolution, found similar
spatial variability, and also explored seasonal dependence [5].

Regional scale models such as those used in [4,5] give a useful
overview of the nature of the wave resource in a particular part of
the world. However, to identify potential areas for energy extraction,
more detail must be obtained on the spatial distribution of wave energy.
This requires a higher resolution local simulation, using a spectral
wave code such as SWAN [6], often driven at the offshore boundaries
by output from a larger regional or global model. One such multi-
decadal hindcast model for the entire Canary Islands group (including
Lanzarote) was considered by [7], while similar studies have also used
SWAN modelling to investigate the wave resource of island groups such
as the Azores [8] and the Cape Verde Islands [9].

The Canary Islands are a volcanic archipelago characterised by
extremely steep bathymetric gradients. These can lead to large spa-
tial inhomogeneities in nearshore resource, with extremely localised
‘‘hotspots’’ resulting from bathymetric features. The Canary Islands
SWAN model [7] used a 0.1◦ × 0.05◦ grid, with almost all of the model
domain points situated in deep water. To characterise the wave re-
source available for nearshore energy harvesting (and optimise deploy-
ment) one must additionally resolve the rapid local-scale bathymetry-
induced variation. This requires a further level of nesting. Such a
high-resolution local model was created for Tenerife [10] which charac-
terised two representative seastates, and investigated the effect of wave
energy converter placement. A local-scale model for the energetic north
coast of Lanzarote has not been hitherto created, and sub-kilometre
resolution multi-annual hindcasts have not yet been produced for any
of the Canary Islands. These gaps will be addressed in the following.

1.2. Renewable energy in Lanzarote

The Canary Islands represent the global energy situation in mi-
crocosm. A move is underway to replace high dependence on fossil
fuels (expensive imported diesel) with increasing use of renewables,
with an aim of halving fossil fuel use by 2030. Renewable use has
rapidly increased from 7.8% in 2017 to 19.9% in 2021 [11], driven
by expansion in wind power although an ambition to further diversify
the energy mix is supported by infrastructure investment. Proposed
connectivity improvements in the weakly-meshed network (for example
with submarine links between Lanzarote and the neighbouring island of
Fuerteventura) and a significant increased in energy storage (including
the Salto de Chira pumped-storage hydroelectric power station on Gran
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Fig. 3. Timeseries and scatter plots of SWAN-modelled and AWAC-measured 𝐻𝑠 and 𝑇𝑝 from 30 December 2019–29 March 2020. The SWAN simulation closely tracks the AWAC
measurements, although the maxima and minima are sometimes less pronounced.

Fig. 4. The occurrence frequency of each 𝐻𝑠−𝑇𝑝 seastate combination, as a percentage of the 2,100 hourly AWAC measurements (top) and 2100 corresponding SWAN calculations
(bottom).

Fig. 5. The inner model run with hourly (red) and interpolated six hourly timestep (blue). A six hourly timestep is sufficient to resolve the model’s temporal variation.
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Fig. 6. Eleven year averaged 𝐻𝑠 for the outer model (top) and inner model (bottom).
Vectors indicate mean wave direction.

Canaria) are projected to lead to significant reductions in renewable
energy costs [12].

Bombora Wave Power has been selected to provide up to 4 MW of
wave power from a grid-connected site at La Santa, on the north-east
of Lanzarote. Electricity will be generated using Bombora’s ‘‘mWave’’
membrane style submerged wave energy converters, each of which
is rated at 1.5 MW. The submerged membranes pump air through a
turbine to produce electrical power: being positioned 10 m beneath
the water surface ensures survivability in energetic environments, and
removes any visual impact – a key advantage that tidal turbines, for
example, have over the majority of wave energy converters [13].

The Bombora device design is also ideally suited for co-location with
offshore wind turbines, since it can be attached to the wind turbine
substructure itself. Co-locating wave energy devices with offshore wind
turbines can reduce energy costs by utilising common grid connec-
tions, and exploiting synergies in the consenting process and operation
and maintenance procedures. By reducing wave heights at windfarms,
maintenance weather windows may also be enlarged [14,15]. Crucially,
the variability in output power may be reduced by such a hybrid
development — this requires areas of low covariance between wind
and waves, and must be considered on a location-by-location basis [16].
Regional case studies in reducing variability have been carried out for
locations in California, Denmark, Ireland and Australia [17–20], but
prior to this article had not been considered for the Canary Islands: a
combined study of wind and wave resource in Tenerife [10] did not
include temporal variation, smoothing or joint statistics.
1201
Fig. 7. Variation of significant waveheight along depth contours (middle plot) and
cross-shore transects (lower plot). The upper plot shows the spatial distribution over
the inner model domain, as well as the locations of the transects and contours. The
black asterisk shows the AWAC location which is the area of most interest for energy
extraction.

1.3. Structure of the article

This article presents a detailed exploration of the nearshore wave
resource in the most energetic part of the Lanzarote coastline, by means
of a high-resolution nested SWAN model (described in Section 2),
validated by sensor data (Section 3). To meet the particular challenges
of modelling this volcanic archipelago, for which deep water persists
until less than two kilometres from the coastline, a 50 m structured
grid is nested into a larger 1.5 km resolution grid, which is in turn
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Fig. 8. Joint probability of significant waveheight and energy period at a potential energy extraction location. The upper image shows a table with percentages for each binned
seastate combination, while the lower image shows a joint kernel density estimate with percentage exceedence contours.
Fig. 9. The solid line in the upper plot shows the eleven-year mean value for each timestep, to give an ‘‘average’’ year: the shaded area shows one standard deviation above (and
below) this mean. In the lower plot, the solid line is the median value, and the shaded area is between the lower and upper quartiles.
driven by directional spectra varying spatially along the boundary,
obtained from a global model. Unlike previous treatments (such as [4,
7] discussed above), this allows full characterisation (in Section 4)
of the considerable spatial variation of the nearshore resource arising
from bathymetric features. The Lanzarote site is dominated by long-
distance swell waves, and Section 4 goes on to investigate the extent
of decoupling from local wind, and the dependence of the overall
coefficient of variability on the relative proportions of wind and wave
energy, to determine an optimum energy mix for this location. Analyses
of wind-wave covariance depend fundamentally on location [16] and
have not previously been carried out for the Canary Islands.

Finally, Section 5 uses the model data to explore a novel non-
physics-based method for determining wave parameters at a given
1202
location, allowing the hindcast to be extended backwards in time by
several decades at negligible computational cost, and allowing the pos-
sibility of forecasting. Unlike surrogate modelling techniques requiring
a systematic exploration of input parameter space such as [21,22], we
demonstrate that one can achieve an accurate reconstruction from pure
timeseries data using simple multilinear regression.

2. Methods

The wave hindcast consists of a nested pair of SWAN models [6,23],
the outer of which is nested within the global ECMWF ERA-5 WAM
wave model [24]. Both SWAN and WAM are third generation spectral
wave models: such spectral wave models are used as standard in wave
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energy resource assessment and underpin the analyses in [4,5,7–10]
discussed above. The underlying physics in such models is discussed in
Section 2.1, and is described in detail in [6,23]. Further information on
the use of spectral wave modelling in wave energy resource assessments
may be found in [25].

2.1. Spectral wave models and their outputs

Third generation spectral wave models such as SWAN simulate
the evolution of wave spectra using the Wave Action Conservation
Equation [26]:

𝜎
{ 𝜕
𝜕𝑡

(𝑁(𝐱, 𝜎, 𝜃, 𝑡)) + ∇. [𝐯𝑁(𝐱, 𝜎, 𝜃, 𝑡)]
}

=

𝑠wind Wind Forcing
+𝑠wcap Whitecapping
+𝑠bot Bottom Friction
+𝑠surf Wavebreaking
+𝑠nl Nonlinear Interactions

(1)

ere, the depth-averaged action density 𝑁(𝜎, 𝜃, 𝐱, 𝑡) = 𝐸(𝜎,𝜃,𝐱,𝑡)
𝜎 , where

(𝜎, 𝜃, 𝐱, 𝑡) is depth-integrated energy density (i.e. the directional spec-
rum), 𝜎 is angular frequency (in a reference frame moving with
urrent), 𝜃 is direction, 𝐱 is horizontal position, and 𝑡 is time.1 The prop-

agation velocity 𝐯 and differential operator ∇ act in four-dimensional
phase space: two spectral dimensions (𝜎 and 𝜃) and two spatial di-

ensions (𝐱). The ∇.(𝐯𝑁) term includes shoaling, depth- and current-
nduced refraction, and can be modified to incorporate diffraction.

AM [27] was originally developed to model the generation and
eepwater propagation of ocean waves. SWAN (‘‘Simulating WAves
earshore’’) was historically designed for smaller-scale simulations of
earshore wave transformations, but is also suitable for large-scale
eepwater models [28].

The energy density 𝐸(𝐱, 𝜎, 𝜃, 𝑡) may be output at a given position
nd time within the model. At a given location in the model, SWAN can
lso output the energy transport vector, whose Cartesian components are
iven by

𝑥,𝑦 = 𝜌𝑔 ∫ 𝑐𝑥,𝑦(𝜎)𝐸(𝜎, 𝜃)d𝜎d𝜃 (2)

here 𝑐𝑥,𝑦 is the 𝑥- or 𝑦- component of the group velocity, and we
re henceforth suppressing the explicit 𝐱 and 𝑡 dependence from the
otation. The magnitude of (2) gives the rate of energy transport (and
ence the theoretical power available to a wave energy converter) per
nit wavefront, thereby allowing a device-agnostic measure of wave
esource.

Integrating the spectral density 𝐸(𝜎, 𝜃) over the wave direction
gives the omnidirectional spectrum, which is conventionally written
(𝑓 ), in terms of frequency 𝑓 in Hertz. The spectral moments

𝑛 = ∫ 𝑆(𝑓 )𝑓 𝑛d𝑓 (3)

f 𝑆(𝑓 ) are used to calculate significant waveheight 𝐻𝑠 and energy
eriod 𝑇𝑒:

𝑠 = 4
√

𝑚0, 𝑇𝑒 =
𝑚−1
𝑚0

. (4)

hese parameters provide a characterisation of the seastate, both
perational and extreme, and may be used in conjunction with a device
ower matrix to estimate yield from a wave energy converter. In deep
ater, 𝐻𝑠 and 𝑇𝑒 may also be used directly to give a measure of

heoretical power available. Since 𝑐𝑔 ≃ 𝑔𝑇
2𝜋 , definitions (3)–(4) allow

he magnitude of (2) to be rewritten in the simplified deepwater form:

0 ≃
𝜌𝑔2

64𝜋
𝐻2

𝑠 𝑇𝑒. (5)

1 Although we are operating in the frequency domain, the spectral
uantities can vary over timescales of order minutes or hours.
1203
However, this case study concerns nearshore energy extraction in shal-
low or intermediate water depths, so the SWAN-calculated power
values presented in Section 4.2 are obtained from the full spectral
formula (2).

2.2. The Lanzarote model

The Lanzarote model consists of the nested pair of outer and inner
model domains shown in Fig. 2. The choice of model domain reflects
the bathymetry. As a volcanic island, Lanzarote has no continental
shelf, with deep water (>1000 m) found very close to the coast, followed
y extremely rapid bathymetric change. To capture this variation re-
uires high spatial resolution, and consequently a limited spatial extent,
ocussed on the area of interest for wave energy exploitation: the north-
est coast of Lanzarote around La Santa. This is nested into a coarser
uter model, which was in turn driven by 2D spectral output from the
lobal ERA-5 WAM wave model.

The outer model is a structured grid of 1.5 km cell size, incor-
orating the islands of Gran Canaria, Fuerteventura and Lanzarote,
f dimensions approximately 300 × 150 km. Bathymetry data from
MODNet [29] was used, in conjunction with local multibeam sur-
ey data for the deployment site for the inner model. In each case,
he bathymetry resolution exceeded the model resolution: the EMOD-
et bathymetry resolution was 1

16 × 1
16 arcminutes, while the local

ultibeam survey yielded elevation maps at <1 m resolution.
The boundary is chosen to correspond exactly with twelve grid-

points of the global ERA-5 model, which produces hourly directional
spectral output interpolated onto a regular 0.5◦ × 0.5◦ grid from its
ative Gaussian discretisation. These are discretised into 24 equally-
paced directional bins, and 30 frequency bins, starting at 0.03453 Hz
nd increasing geometrically with 𝑓 (𝑛) = 1.1×𝑓 (𝑛−1) up to 0.5478 Hz.
orcing the model with ERA-5 directional spectra at multiple points
ay be achieved by converting the downloaded spectral data to the

ame format as SWAN nested output, then using the BOUNDNEST
ommand. For the outer model, the spectral coverage and resolution is
ncreased to 48 directional bins and 35 geometrically spaced frequency
ins from 0.02358 Hz to 0.54775 Hz (𝑇 ∼ 1.8–42.4 s). It is run in non-
tationary mode with a 12 min timestep, using a first-order upwind
ropagation scheme.

The inner model is oriented along the Lanzarote coast (at an angle of
5.35◦ with respect to lines of latitude), extending 11.7 km long-shore
nd 4.4 km cross-shore (Fig. 2b). The inner model increases spatial
esolution to 50 m and directional resolution to 3◦ (120 directional
ins), but uses the same 35 frequency bins as the outer model. The
oundary and wind conditions may be considered to be constant over
he propagation time from offshore boundary to coastline (a short
istance of order 3 km), so the inner model is implemented as a series
f stationary simulations corresponding to the output timesteps, as rec-
mmended by SWAN for small, high-resolution models with relatively
arge timesteps. The nested output from the outer model offers spectra
t 8 long-shore intervals.

Wind forcing is from the ERA-5 model, providing hourly data at
0.25◦ resolution. Time varying water level was not included in the

uter model, where water depths in the region of interest were never
ess than 200 m, but was initially included in the inner model using
PXO9v2a data [30] using the TMD Matlab toolbox [31]. Following
sensitivity analysis, tidal current was found to have negligible effect

n simulated wave properties across the computational domain, while
dversely affecting model run times, and was consequently omitted.

. Validation and sensitivity

A Nortek Signature 1000 ADCP was deployed for three months, be-
ween the 30th December 2019 and the 29th March 2020, at 29◦5′56′′N,
3◦41′17′′W, a location with, on average, 13.5 m water depth. Wave
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Fig. 10. Eleven-year (2010–21) mean rate of energy transport from the outer SWAN
model, calculated using (2). The shading shows the magnitude of the energy transport,
and the red arrows show the direction. In the northern part of the domain, there is
little spatial variation – almost up to the coastline – with fluxes of approximately 25
kW/m.

parameters were reported every hour: of the frequency-domain param-
eters available, the significant wave height 𝐻𝑠 and peak period 𝑇𝑝 were
used for model validation.2

Hourly output from the inner SWAN model for the same time
period, providing SWAN hindcast 𝐻𝑠 and 𝑇𝑝 for each of the 2100 pairs
of AWAC-measured values. Timeseries for AWAC-measured and SWAN-
simulated 𝐻𝑠 and 𝑇𝑝, and scatter plots showing the correspondence
between measured and modelled values are shown in Fig. 3. The joint
occurrence frequency of each 𝐻𝑠 − 𝑇𝑝 pair is shown in Fig. 4.

For the significant wave height, the SWAN model had a bias (dif-
ference between the mean values) of −0.03 m, a scatter index (root
mean squared error normalised by the mean) of 14.4%, and a Pearson
correlation coefficient (𝑟) of 0.91 (𝑟2 = 0.83). For the peak period, the
bias was 0.1 s, scatter index 9.7% and 𝑟 = 0.73 (𝑟2 = 0.53).

For the validation, the (stationary) inner model had been set up
to create hourly output, matching the availability of the AWAC data.
However, the models are driven by ERA-5 global wind and boundary
wave data: although this is available with an hourly timestep, the
metocean conditions obtained from this model do not vary sufficiently
rapidly to justify an hourly timestep for the full hindcast. To illustrate
this, hourly values for significant waveheight were generated in two
ways for a sample time period: direct evaluation by running an hourly
SWAN model, and interpolation from a six-hourly model. The results in
Fig. 5 show negligible difference between the direct and interpolated
hourly data. The RMS error in the hourly timeseries interpolated from
the six-hourly SWAN runs, compared to the timeseries obtained by
running an hourly SWAN model, is 0.00052 m, or 0.02% of the mean
significant wave height. Therefore, running the inner model every six
hours has minimal impact on the fidelity of the output, while allowing
computation time to be reduced by a factor of six.

2 The energy period 𝑇𝑒 was not provided in the AWAC data, but quality in-
dices derived from 𝑇𝑝 are assumed to indicate comparable model performance
in calculating 𝑇 .
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𝑒

4. Results

4.1. Seastate characterisation

The outer and inner models were run for an eleven year period
from the 1st January 2011 to the 31st December 2021. Eleven-year
mean values for significant waveheight and energy period are shown in
Fig. 6, with red arrows indicating the mean wave direction at selected
points. Due to the lack of a continental shelf, the wave properties
remain almost constant from the north-western model boundary to
the north-west coast of Lanzarote, with the prevailing wave direction
coming from the North, and reduced wave action on the south-eastern
coast. Despite this lack of variation, the outer model still plays an
important role in transforming the globally modelled spectral wave
conditions from the north-western boundary. It allows us to drive the
model from only ERA-5 data points located in regions of limited spatial
variability, away from any landmasses or sub-grid-scale variations (the
south-eastern boundary is closer to land, but this does not affect the
wave conditions at the region of interest around La Santa). The spatial
dependence of the 11-year averaged significant waveheight and energy
period for the inner model exhibits very gradual variation, which
becomes rapid around 1 km from the coastline. The behaviour of
significant waveheight is plotted along depth contours and cross-shore
transects in Fig. 7.

While Figs. 6–7 showed the spatial variation of time-averaged sig-
nificant waveheight and energy period, the remainder of this section
considers the time dependence of these quantities at the location of
most interest for wave energy extraction: the AWAC validation location,
shown as a black asterisk in the inner model on Fig. 6, close to La Santa.

To characterise the temporal variability at this location, eleven-year
hourly joint occurrence tables, and bivariate kernel density estimates,
are shown in Fig. 8. The joint probability table can be combined with
a device power matrix to estimate annual energy yield. The KDE plot
shows correlation between significant waveheight and energy period:
in this swell-dominated location, the largest waves occur in seastates
with the largest periods.

Fig. 9 shows averaged intra-annual variation of significant wave-
height, constructed by comparing corresponding dates and times across
the eleven year hindcast. First, a 24-hour moving mean is constructed
from the six-hourly significant waveheight values, for the whole eleven
year hindcast period. This is then converted into a single ‘‘averaged’’
year, by calculating the mean, median, standard deviation, first and
third quartiles for each timestep across the eleven years of hindcast
data. So, for example, the ‘‘Jan 1st, 06:00’’ step is an average of the
seastates at every Jan 1st 06:00 for each of the years 2011–2021.

Maxima occur in February and December, but the seasonal vari-
ability is less pronounced than one would find in higher latitude
regions (e.g. [32]). The timeseries of parameters such as significant
waveheight, energy transport, and a selection of peak and mean periods
is available in the supplementary files to this paper: a full definition of
the output quantities is available in [33].

4.2. Power

For a given device, the annual energy yield may be predicted by
combining probability distributions such as those presented in Fig. 8
with the power matrix of the device in question.

Alternatively, for site characterisation, a device-agnostic measure of
theoretical yield may be obtained from the magnitude of the energy
flux calculated from the directional spectrum using Eq. (2) (or the
deepwater approximation calculated from the spectral parameters using
Eq. (5).) The SWAN model can directly output the components of the
energy transport (2), which is valid for all water depths. The values in
the northern part of the outer domain are relatively uniform, almost up
to the edge of the landmasses.
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Fig. 11. Eleven-year (2010–21) mean rate of energy transport from the inner SWAN model, calculated using (2). The shading shows the magnitude of the energy transport, and
the red arrows show the direction. Bathymetric contour lines are shown in black. Local areas of significantly elevated energy transport can be seen.
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Fig. 10 shows eleven-year averaged deep-water wave energy trans-
port for the outer model; the corresponding values for the inner model
are in Fig. 11. The shading indicates the magnitude of the energy
flux, while arrows overlaid on a coarser grid indicate direction. Taking
both plots together, the power propagating from the North is virtually
uniform (with fluxes of around 25 kW/m) until the 100 m contour line
(approximately 2 km from the coast), and then begins to exhibit more
local-scale variability, with the bathymetric variation causing some
focussing into local high-energy ‘‘hotspots’’.

The energy transport of approximately ≃ 25 kW/m in the north
coast of Lanzarote is somewhat lower than the combined hindcasts
and forecasts for the HIPOCAS model reported in [4], where annual
averaged power between 1958 and 2008 reached 30kW/m. However,
this was obtained from the deep water expression (5) by taking the ap-
proximation 𝑇𝑒 ≃ 𝑇𝑝. For the grid points in Fig. 10 the true relationship
is found to be closer to 𝑇𝑒 ≃ 0.8𝑇𝑝.

4.3. Potential for co-location

By sharing infrastructure (e.g. cabling), levelised cost can be re-
duced by co-locating two or more offshore renewable energy technolo-
gies [34]. Two candidate technologies for co-location, especially due to
the high cost of wave energy, are offshore wind and wave energy [18].
To diversify generation times, suitable regions require the wind and
wave resource to be either uncorrelated, or for there to be a phase lag
between the timeseries. This is more likely to occur in regions that are
dominated by swell waves, as opposed to local wind seas.

Fig. 12 shows the phase relationship between wind and wave power
at the model point corresponding to the AWAC location: 29◦5′56′′N,
13◦41′17′′W. For a given time lag, the wave power timeseries was
shifted relative to the wind by the appropriate time period, and then
the Pearson correlation coefficient was calculated. The maximum corre-
lation occurs for a five-hour shift. This is due to the very large Atlantic
fetch at the location, in contrast to the one-hour phase shift observed
in the North Sea [18].

The existence of such a phase shift is beneficial for grid resilience
and power quality. Furthermore, a low absolute value of the correlation
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m

coefficient is an indicator of the profitability of resource smooth-
ing [16]: here the correlation coefficients are very low, never exceeding
0.25. This relative lack of correlation may be seen in Fig. 13, which
shows that time periods with large wave power do not regularly corre-
spond with those of large wind power. The shape of the contours is very
different to, for example, those in Fig. 8 which shows the relationship
between two relatively well-correlated quantities. Swells arriving at
Lanzarote may have originated many hundreds of miles away, and the
wind field associated with their generation may not arrive in the same
form, and will not arrive at the same time as the waves.

The low correlation between wind and wave power means that
grid and storage requirements may be reduced by considering hybrid
developments in Lanzarote, by reducing overall variability of power
output. This can be seen in Fig. 14, which plots temporal variation of
wave and wind power over different time periods in 2021 (the whole
year, the first six months and the month of February), and shows that
periods of higher (and lower) wind and wave power do not regularly
coincide.

Consider a hybrid wind-wave development with 𝑊 % of the overall
lifetime power supplied by wind. The time dependence of the combined
power is given by

𝑃combined(𝑡) =
𝑊
100

𝑃wind(𝑡)

𝑃wind
+ 100 −𝑊

100
𝑃wave(𝑡)

𝑃wave
, (6)

here a bar indicates mean. The coefficient of variation (COV), defined
s the standard deviation divided by the mean, is commonly used to
uantify variability in energy resource (see, for example, [4,35,36]).
ig. 15 shows how the wind-wave mix affects variability, using the
OV calculated from six-hourly values of the combined wind and wave
ower given by (6) for 2011–2021. The COV for 100% wave power
s 1.1, and the COV for 100% wind power is 1.0. However, a 55%
ind, 45% wave combination reduces this to 0.8, potentially leading to

mproved power quality, less requirement for storage, and less pressure
n the grid.

. Extending to multi-decadal time scales

The eleven-year hindcast used a physics-based deterministic (SWAN)

odel of the Lanzarote area to transform time-varying input data (such



Renewable Energy 206 (2023) 1198–1211D. Christie et al.
Fig. 12. Dependence of time shift between wind and wave on correlation between the power data timeseries from 2011–2021. The location of the maximum implies that on average
the wave behaviour lags five hours behind the wind.
Fig. 13. Joint kernel density estimate of wind and wave power. More energetic seastates are not highly correlated with larger values of wind power.
as offshore wave spectra, local wind fields and water level) to output
wave conditions at the nearshore area of interest.

We now seek to determine if the hindcast data can allow us to con-
struct a simple empirical correlation-based model expressing particular
output parameters in terms of a smaller subset of input data, thereby
allowing the hindcast to be extended in time without additional SWAN
modelling.

Our hypothesis is that an output parameter 𝑄 (such as signifi-
cant waveheight) at a given nearshore location 𝐱𝑞 may be approxi-
mately written as an empirical function of 𝑀 quantities (either recog-
nised parameters such as energy period, or components of a spectrum)
evaluated at 𝑁 combinations of offshore location and time, i.e.

𝑄(𝐱𝑞 , 𝑡) ≃ 𝐹
(

𝑃1(𝐱1, 𝑡 − 𝜏1),… , 𝑃𝑀 (𝐱𝑁 , 𝑡 − 𝜏𝑁 )
)

(7)

where 𝐹 is some unknown function to be determined empirically, 𝑡 is
time, and 𝜏𝑛 is a time delay to allow for conditions to propagate from
𝐱𝑛 to 𝐱𝑃 . If the input parameters 𝑃𝑚(𝐱𝐧, 𝑡 − 𝜏𝑛) can be obtained from
global datasets, then one would be able to extend a local hindcast over
multiple decades without explicit calculation, with negligible compu-
tational effort. It would also allow straightforward seastate forecasting
using operational global forecast models.
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Specialised machine-learning or Bayesian approaches may facilitate
the generation of sophisticated ‘‘surrogate models’’ for this purpose
from a small, strategically selected training dataset [21,22]. By con-
trast, we seek to determine a lower bound for the fidelity of such
models, by developing the simplest possible approach based on straight-
forward interpolation of a small number of input parameters.

For this simple example, we shall correlate ECMWF global data at a
single ‘‘Driving’’ datapoint (an offshore location at 30◦N, 14◦W), with
SWAN output data at the nearshore ‘‘Evaluation’’ point 105 km away
(and evaluated one hour later) at 29◦5′56′′N, 13◦41′17′′W, in 13.5 m
water depth, coinciding with the ADCP deployment location, as shown
in Fig. 16.

The ERA-5 data used for this example was significant wave height,
mean wave period, and significant height of total swell. In terms
of Eq. (7), 𝐱𝑞 is the ADCP location (the Evaluation Point), and 𝑁 = 1
with 𝐱1 as the Driving ERA-5 datapoint at 30◦N, 14◦W, and 𝜏1 as 1 h.
We use three parameters for driving data, so 𝑀 = 3 with 𝑃1, 𝑃2 and
𝑃3 being the ERA-5 significant wave height, mean wave period, and
significant height of total swell. Two separate models were created: one
for which the output parameter 𝑄 was the significant waveheight, and
a second model for which 𝑄 was the energy period.
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Fig. 14. Timeseries of wind and wave power, over different time periods in 2021. Episodes of large wave and wind power do not regularly coincide. The sustained period of high
wave power in February did not correspond to increased wind energy, whereas the stronger winds experienced in late May did not show heightened wave action.
Fig. 15. Dependence of coefficient of variability (‘‘COV’’, defined as standard deviation
divided by mean) on the proportions of wind and wave. While the COV for 100%
wave power is 1.1, and the COV for 100% wind power is 1.0, a 55% wind, 45% wave
combination reduces this to 0.8.

In each case 𝐹 was encoded as a Matlab scatteredInter-
polant. The fitting data at the Evaluation Point 𝐱𝑞 came from ten
years of six-hourly timesteps from the SWAN hindcast (January 2011
– December 2020), i.e. evaluated at 00:00, 06:00, 12:00 and 18:00
daily. The corresponding ERA-5 parameters were evaluated at 23:00,
05:00, 11:00 and 17:00 each day at the global model data point at
30◦N, 14◦W, to account for the hour’s delay time 𝜏. Each timestep
was treated as an independent point in the scattered interpolant. By
using data derived from timeseries, one will automatically have more
densely populated regions in parameter space, corresponding to the
most common combinations of seastate and atmospheric parameters.
This means that the model should be more accurate in the most
commonly encountered conditions, but may require additional fitting
data to successfully model extremes.

The eleventh year of the hindcast, 2021, was used for validation.
Taking the ERA-5 timeseries for the significant wave height, mean
wave period, and significant height of total swell at the offshore point,
the scattered interpolant created from the ten year hindcast was used
to estimate a new timeseries for the nearshore significant waveheight
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Fig. 16. The ‘‘Driving’’ and ‘‘Evaluation’’ points for our correlation-based model.
ECMWF wind and wave parameters at the offshore Driving Point are correlated with
significant waveheight and energy period at the nearshore Evaluation Point based
on ten years of the SWAN hindcast. These correlations are then used to predict the
behaviour at the Evaluation Point for a further year, using only that year’s ECMWF
data at the Driving Point, without recourse to any further SWAN modelling.

without recourse to the 2021 SWAN model. This was then compared
with the actual SWAN output, for validation. The process was then
repeated for the energy period.

Fig. 17 shows the timeseries of significant waveheight and energy
period for the 2021 validation period, comparing the values directly
calculated in SWAN with those obtained by using the 2011–2020 hind-
cast data to correlate the offshore parameters with the nearshore val-
ues. Fig. 18 compares the single and joint statistical distributions of
hindcast parameters with the directly calculated and reconstructed
values. The reconstructed significant waveheight had a scatter index
of 6.92%, a bias of 0.002 m and a correlation coefficient of 0.981. The
reconstructed energy period had a scatter index of 5.92%, a bias of
−0.015 s and a correlation coefficient of 0.978.

This simple demonstration of principle generated a satisfactory re-
construction for 𝐻𝑠 and 𝑇𝑒 based only on three offshore parameters and
a Matlab scattered interpolation method. One possible refinement of the
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Fig. 17. Timeseries and scatter plot comparing the significant wave height and energy period calculated directly using SWAN with the reconstruction generated by correlating
ERA offshore data with the SWAN outputs from the previous ten years. Scatter indices for 𝐻𝑠 and 𝑇𝑒 were 6.92% and 5.92% and bias was negligible.
Fig. 18. Significant waveheight and energy period histograms, and joint probability density for the directly modelled and reconstructed 2021 data. The similarity implies that a
simple reconstruction technique may be used to extend the hindcast time period to that of the underlying global dataset.
method might involve partitioning into wind-sea and swell, fitting each
separately (also incorporating direction) and then recombining at the
end. A more sophisticated fitting method using more seastate variables
combined with elements of machine learning may also offer further
increases in accuracy.

To test how much of the SWAN hindcast is needed for a satisfactory
multivariate interpolation, the reconstruction was repeated for different
quantities of fitting data. In each case, the nearshore conditions for
2021 were repeatedly reconstructed, using interpolants generated from
different lengths of SWAN hindcast, ranging from 2011 alone, to the full
ten years from 2011 to 2020. The dependence of the quality indices on
fitting record length shown in Fig. 19. For this simple reconstruction, a
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time period of three to four years is adequate for low scatter indices
and high correlation coefficients, with extra data only leading to a
very gradual improvement. However, refining the method by utilising
additional ERA-5 parameters would require the full dataset, to ensure
a more complete coverage of parameter space (or else a more strategic
approach to generating the SWAN models representing a range of
seastate conditions).

Returning to the ten-year dataset, the same validated Matlab inter-
polant was used to extend the hindcast backwards in time to 1959, to
match the availability of the global ERA-5 data. The 63-year equiva-
lents to the eleven-year output from Figs. 8 and 9 are shown in Figs. 20
and 21.



Renewable Energy 206 (2023) 1198–1211D. Christie et al.
Fig. 19. Fidelity of the simple scattered interpolant reconstruction technique as a
function of the length of the SWAN hindcast used as data.

6. Discussion and conclusion

Geographically and socially, Lanzarote is ideally placed for in-
creased exploitation of wave energy. Authorities have demonstrated
a commitment to reducing fossil fuel dependence by funding grid
improvements and facilitating demonstrator deployments such as the
Bombora site in La Santa, to take advantage of the energetic wave
resource resulting from uninterrupted exposure to the Atlantic fetch.

An analysis of global model output at deepwater grid points off
the north of the island shows a large energy density [4]. However, a
detailed description of the local wave climate requires global models
to be coupled to nearshore simulations. In this article, SWAN models
were nested into the global ECMWF ERA-5 wave model. The boundary
of the outer SWAN model was driven by full directional wave spectra,
at the same 0.5◦ resolution as the ERA-5 global data. This fed a high-
resolution (50 m grid) local model in the vicinity of the Bombora
development at La Santa. This approach best exploits the accuracy
and fidelity of the validated global model, by transforming ERA5’s
detailed, spatially varying, fully spectral boundary conditions towards
the inner boundary, without having to re-model large sections of sea.
Validation at the proposed wave extraction site showed good agreement
with data from a three-month AWAC deployment. Lanzarote has no
continental shelf, with deep water giving way to very rapidly varying
bathymetry close to the coast. The modelling shows that the significant
waveheight and energy period also exhibit very little spatial variation
until a few kilometres away from the coastline, followed by rapid local
variations. The power density, calculated from 𝐻𝑠 and 𝑇𝑒, will therefore
also remain constant in the same region, followed by a rapid reduction
a short distance from the coast. This extreme local variability cannot
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be captured by a 0.5◦ scale global model. High-resolution nearshore
modelling is essential for resource characterisation where changes in
wave properties may be too rapid to be accommodated within a coarser
grid. In swell dominated seas, care must also be taken to correctly
characterise power in terms of the energy period.

The wave resource varies seasonally, with higher powers between
November and April, though the variation is less than one would find
at higher latitudes. The domination of swell is favourable for energy
extraction, with a correlation between larger significant waveheights
and longer energy periods, resulting in larger power densities. The
domination of swell also means that there is low correlation (and a
five-hour phase lag on average) between wave power and local wind.
This is beneficial for combined wind-wave developments, resulting in
less variability than wave or wind alone. The reduction in resource in
summer may be further balanced by adding solar power to the energy
mix.

Timeseries of significant waveheight, energy period, and hence
power, may also be extended by a relatively straightfoward correlation
and interpolation method, using the eleven-year hindcast (or a shorter
subset thereof), in conjunction with three parameters from the global
model at a neighbouring offshore location. Triplets of the offshore
parameters are correlated to modelled significant waveheight, and
separately to modelled energy period for several years’ worth of SWAN
model run. This can be used to extend the timeseries, since the ERA-
5 dataset provides global parameters extending back to 1959. It may
also be combined with the operational forecast to provide forecast esti-
mates of the seastates. More datapoints are available for most common
seastates, meaning this fitting methods works well for characterising
operational conditions, but may be less successful at estimating extreme
behaviour.
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Fig. 20. Joint probability of nearshore significant waveheight and energy period for an extended 63-year hindcast created by correlating offshore seastates with the SWAN model
output. The corresponding directly calculated 11-year SWAN model result was given in Fig. 8.
Fig. 21. The 63-year mean and median significant waveheights for each date, with the shaded areas showing standard deviation (top plot) and the region between the 25th and
75th percentiles (bottom plot). This is the 63-year extended version of Fig. 9.
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