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Abstract: The proposal of new technologies capable of producing electrical energy from renewable
sources has driven research into seas and oceans. Research finds this field very promising in the
future of renewable energies, especially in areas where there are specific climatic and morphological
characteristics to exploit large amounts of energy from the sea. In general, this kind of energy is
referred to as six energy resources: waves, tidal range, tidal current, ocean current, ocean ther-
mal energy conversion, and saline gradient. This review has the aim to list several wave-energy
converter power plants and to analyze their years of operation. In this way, a focus is created to
understand how many wave-energy converter plants work on average and whether it is indeed an
established technology.
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1. Introduction

This review is focused on the exploitation of sea wave energy. However, this is just one
of the several kinds of energy, related to the oceanic environment, thus a brief description
of the main sea energy resources is necessary [1,2].

Oceans represent an enormous energy reserve that is distributed in different phenom-
ena. Among these, the main kinds of energies related to the oceans are marine currents,
osmotic salinity, OTEC (acronym of Ocean Thermal Energy Conversion), tide, and sea wave.

Each oceanic energy source has a relevant potential for human applications; however,
as shown in Table 1, sea waves and marine currents have the highest energy potentials [3].

Table 1. Potential installable capacity and energy production from marine energy sources [3].

Ocean Energy Capacity (GW) Potential Generation
(TWh/y)

Tide 90 800
Marine currents 5000 50,000
Osmotic salinity 20 2000

OTEC 1000 10,000
Sea wave 1000–9000 8000–80,000

All these oceanic energy sources are classified as renewable [4]. Indeed, tides are
due to the Moon’s orbit around the Earth, the orbit of this one around the sun, and the
Earth’s rotation. As consequence, a huge amount of seawater flows around the world’s
surface, modifying locally the sea level. The effects are locally different due to the irregular
distribution of lands around the world. In any case, the tides are a regular phenomenon,
whose effects can be accurately predicted. Thus, tides represent an interesting renewable
energy source, allowing the exploitation of tidal streams or tidal ranges. The second
one has few applications worldwide, since this phenomenon allows the installation of
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the power plant close to the coastline, realizing a barrier equipped with low-head hydro
turbines. The first one was the power plant in La Rance (France), installed in 1966 and still
operating. Other plants are installed in Russia (Kislaya Guba, 1.7 MW), Canada (Annapolis
Royal Generation Station, 20 MW), China (Jiangxia, 3.9 MW), and Korea (Lake Sihwa.
254 MW) [5].

The term ocean current is used to underline the different origin of marine currents
in comparison to the tidal currents, previously described. Ocean currents are seawater
circulations promoted by solar energy. Since the solar radiation varies with the latitude and
considering the irregular distribution of the lands on the Earth’s surface and the orography
of seabed, the variation of water density produces water flows that are extended for
thousands of kilometers. Superficial currents are, also, created by the wind interactions (that
is also an effect of solar radiation) with the sea surface. Summing all these contributions,
the thermohaline circulation is generated. The Gulf Stream is a famous ocean current
(about 100 km wide and 800 m to 1200 m deep) that is originated from the Gulf of Mexico
and flows up the North Pole with a speed of about 2.5 m/s [6]. Other famous currents are
the Kuroshio Current (on the west side of Pacific Oceans) [7] and the Agulhas Current (on
the south-eastern part of the Indian Ocean, along the coastline of South Africa) [8].

About the Ocean Thermal Energy Conversion (OTEC), the idea is the installation of a
thermal machine using the superficial seawater as a thermal source and the deep water
as a thermal sink [9]. The main problem is the low energy efficiency of this system, also
in the best cases. Considering the installation of an ideal Carnot heat engine to exploit
the available thermal sources, the energy efficiency is no more than 7%. Consequently,
introducing the irreversibility of a real system, the power plant requires huge dimensions
(especially the heat exchangers) to obtain a significant power output; thence the required
investments are high. Two layouts for a possible OTEC power plant have been proposed:
open cycle and closed cycle [9,10]. In the first one, the warm water from the sea surface
is flashed to produce steam and then condensed using the cold deep water. The main
disadvantages are related to the operative conditions. Indeed, steam generation requires
a vacuum condition along with the entire plant, so air infiltration is possible. At the
same time, the specific mass of steam is quite high (30–100 m3/kg), hence the system
requires large pipes for small power outputs. In the second solution, the warm superficial
water is used to evaporate a working fluid, normally used in the chilling sector such as
ammonia, propane, or chlorofluorocarbon. This vapor is used to run a turbine, then it is
condensed using the deep water as a refrigerant. The advantage is that the system works
under pressure, so air infiltration is avoided. As a disadvantage, large heat exchangers are
required [11].

About the saline gradient energy source (called also Osmotic Power), the idea is the
exploitation of chemical energy released when the freshwater from rivers is mixed with
saltwater in the sea. Two solutions with different ions concentrations are characterized by
different values of osmotic pressure. A solution, proposed in 1937, is the Pressure Retarded
Osmosis, where the saltwater is pressurized before a semipermeable membrane. If the
external pressure gradient is lower than the osmotic pressure, water flows from the diluted
solution to the concentrated one. Brackish water is consequently produced, with the same
pressure as the saline water but with a greater flow. Using a hydro turbine is possible to
collect more energy than the pumping expenditure, producing an electrical output [12,13].

Finally, sea wave is a form of marine energy due to the several forces acting on the
water surface, such as the friction generated by wind, the Coriolis force (related to the
Earth rotation), the celestial bodies attraction (tidal), or other unpredictable phenomena
as earthquake and volcanic eruptions (tsunami) [14]. In any case, to describe this energy
source, some definitions are required.
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2. Definitions

A regular wave is classically modelled by a sine (or cosine) function of time and
position, introducing the amplitude A, the wavelength λ, and the period T, reported in
Equation (1) [15].

zw(x, t) = A sin
(

2π

T
t− 2π

λ
x
)

(1)

In detail, fixing the observing time t0, the wavelength λ represents the minimal
distance over which the wave shape is repeated, as shown in Figure 1.
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Similarly, selecting the observing point x0, the period T represents the minimal time
required to complete a single oscillation. Both conditions are expressed by the relations
reported in Equation (2), considering n as a generic natural number [15].

zw(x + nλ, t0) = zw(x, t0)
zw(x0, t + nT) = zw(x0, t)

(2)

The rate of propagation (called also phase velocity) vp represents the speed at which
the wave profile travels and is given by the ratio λ/T.

The amplitude A represents the measure of the entire oscillating phenomenon in a
single period. Two definitions are commonly used:

• Peak amplitude, i.e., the difference between the peak and the Surface Water Level
(SWL). This definition is commonly used in the electronics sector.

• Peak-to-peak, i.e., the difference between the crest (the highest value during the
oscillation) to the trough (the lowest one).

To avoid misunderstanding, in the sea wave sector the term “height” (symbol H) is
normally used to indicate the peak-to-peak amplitude (see Figure 1).

Equation (1) can be used also to introduce other two parameters. The amount 2π/T is
called angular frequency and is indicated with the Greek letter ω. Similarly, the amount
2π/λ is the wavenumber and indicated with k. Finally, the steepness is a nondimensional
number given by the ratio H/λ.

The parameters above introduced are commonly used to analyze the periodic signal,
also irregular, by introducing the Fourier series. Considering only a time-dependent
function to simplify, a generic period signal can be approximated by Equation (3), where
A0 is the average value of the signal, As,i and Ac,i the amplitude of the harmonics used to
approximate the input signal [15].

zw(t) = A0 +
n

∑
i=1

As,i sin
(

2πi
T

t
)
+

n

∑
i=1

Ac,i cos
(

2πi
T

t
)

(3)



Energies 2021, 14, 6604 4 of 31

The motion of a single particle of fluid during sea motion was described by the
Airy wave equations (published by Sir George Biddel Airy in 1845), representing a linear
solution to the hydrodynamic equations.

∆x = −H cosh k(z0+dw)
2 sinh kdw

cos(kx0 −ωt− φ)

∆z = H sinh k(z0+dw)
2 sinh kdw

sin(kx0 −ωt− φ)
(4)

The particle describes an elliptical motion around the mean position (x0, z0) according
to Equation (4) [16], tending to be circular in the surface (z0 = 0) and practically horizontal
near seabed (z0 = −dw), as depicted in Figure 2.
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Indeed, if the quote z0 tends to −dw (seabed), the factor cosh k(z0 + dw) is equal to 1
while sinh k(z0 + dw) is equal to 0.

If the water depth dw tends to ∞, Equation (4) can be simplified in Equation (5),
corresponding to the case of a circular motion [14].

∆x = −H
2 ekz0 cos(kx0 −ωt− φ)

∆z = H
2 ekz0 sin(kx0 −ωt− φ)

(5)

However, the sea wave phenomenon is an example of random waves, thence a
statistical approach is normally used. The following definitions are commonly adopted
during a measuring campaign in the open sea. The classical approach considers the
sea wave phenomenon as a sum of a large number of sine wave components, each one
with different amplitude Ai, period Ti, wavelength λi, and direction ϑi [17]. The term φi
represents the wave phase, considered randomly distributed in the interval [0, 2π].

zw(x, y, t) =
n

∑
i=1

Ai sin
[

2π

λi
(x cos ϑi + y sin ϑi)−

2π

Ti
x + φi

]
(6)

Using a statistical approach, it is possible to introduce a directional variance spectrum
s( f , ϑ) indicating how the energy in the wave field is distributed with respect to frequency
and direction [17].

The directional variance spectrum s( f , ϑ) can be decomposed into two functions (see
Equation (7)): s( f ) represents the total energy at each frequency independently of wave
direction, while D( f , ϑ) expresses how the energy at a specific frequency is distributed
according to the wave direction [14].

s( f , ϑ) = s( f )D( f , ϑ) (7)

By the integration over the entire space, the omnidirectional spectrum or frequency
spectrum is obtained in Equation (8) [18]:

S( f ) =
∫ 2π

0
s( f )D( f , ϑ)dϑ (8)
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where the directional distribution function D( f , ϑ) satisfies the conditions expressed by
Equation (9) [14]: ∫ 2π

0 D( f , ϑ)dθ = 1
D( f , ϑ) ≥ 0 ∀ θ ∈ [0, 2π]

(9)

The definition of frequency spectrum S( f ) is fundamental since several statistical
parameters used in sea wave analysis are defined on this basis. The n-th order momentum
of frequency spectrum mn is defined by Equation (10) [18]:

mn =
∫ ∞

0
f nS( f )d f (10)

The significant height Hs is equal to four times the standard deviation of the surface
elevation or equivalently as four times the square root of the zeroth-order moment of the
wave spectrum [19], so:

Hs = 4
√

m0 = 4
√∫ ∞

0
S( f )d f (11)

In the past, the significant height was traditionally defined as the mean wave height
of the highest third of the waves [15], according to Equation (12).

Hs ∼= H1/3 =
1

n/3

n/3

∑
j=1

Hj (12)

It is important to underline that the two definitions are practically equivalent as a
more accurate correlation shows that H1/3 = 4.01

√
m0, so the difference is negligible [19].

In the literature, sometimes other parameters are used to describe the wave height [20]:

• Hm = H1/1 Mean wave represents the average value of all measured waves in the
measuring period.

• H1/10 Wave one-tenth is the mean wave height of the highest tenth of the waves.
• Hmax Maximum wave height is the maximum value measured in the site. It is relevant

to design structures that are exposed to sea waves.

In the literature, the average period Tm represents the average value of all waves,
measured in a fixed interval (for example 30 min or 1 h). A more rigorous definition is
given by Equation (13) [17]:

Tm =
m0

m1
=

∫
S( f )d f∫
f S( f )d f

(13)

Another common period is the mean wave period Tz defined as the square root of the
zero-order momentum and the second-order momentum of the frequency spectrum (see
Equation (14)) [21]:

Tz =

√
m0

m2
=

√ ∫
S( f )d f∫

f 2S( f )d f
(14)

It is also possible to define a Peak Period Tp corresponding to the peak of the variance
density spectrum S( f ).

Finally, the wave-energy period Te is defined as the variance-weighted mean period of
the one-dimensional period variance density spectrum S( f ) [22]. Analytically, the energy
period is defined by Equation (15):

Te =
m−1

m0
=

∫
f−1S( f )d f∫

S( f )d f
(15)

This parameter is commonly used for the evaluation of potential energy production.
As Equation (15) is quite complex to perform, simplified correlations are available in
the literature.
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As an example, the Atlas of UK Marine Renewable Energy Resources suggests the cor-
relation between the energy period and the average period, expressed by Equation (16) [22]:

Te = 1.14 Tp (16)

The energy period can be also evaluated from the peak period Tp, according to
Equation (17). The value 0.86 is obtained in the case of the Pierson Moskowitz spectrum [23].
This value is commonly used in the surrounded seas with a limited surface, such as the
Mediterranean Sea [18].

Te = 0.86 Tm (17)

The Pierson Moskowitz spectrum, above cited, is modelled by Equation (18), where
αPM e βPM are two parameters related to the sea state, defined by the significant height Hs
and the peak period Tp (or equivalently the peak frequency fp = 1/Tp) [24,25]:

SPM( f ) = αPM
f 5 e−βPM/ f 4

αPM = 5
16 H2

s f 4
p βPM = 5

4 f 4
p

(18)

In the original work, the Pierson Moskowitz spectrum was related to the wind speed
measured at 19.5 m above the average sea level, using a similar formulation [14].

Another common spectrum is the JONSWAP (acronym of Joint North Sea Wave
Observation Project) spectrum, obtained from Pierson Moskowitz spectrum multiplied by
an extra peak enhancement factor γδ( f ) [26]:

SJONSWAP( f ) = SPM( f )γδ( f )

δ( f ) = exp
[
− 1

2

(
f− fp
σ fp

)2
]

σ =

{
0.07 f or f < fp
0.09 f or f ≥ fp

(19)

In the JONSWAP distribution, all parameters are obtained from the observed sea [17].
A qualitative comparison of the Pierson Moskovitz spectrum and JONSWAP spectrum is
reported in Figure 3, where the x-axis is normalized by the peak frequency and the y-axis
by the maximum value of the Pierson Moskovitz spectrum. The graph underlines the effect
produced by an extra peak enhancement factor introduced in the JONSWAP spectrum, as
in the real application all parameters are calculated to approximate the measuring data [14].

Energies 2021, 14, x FOR PEER REVIEW 7 of 30 
 

 

 

Figure 3. Qualitive comparison of Pierson Moskovitz and JONSWAP spectra. 

Sea waves can be classified in different ways, considering the parameters above 
defined. For example, introducing the ratio ௗఒೢ  (water depth divided by wavelength) [21] 

• Shallow water or long wave if ௗఒೢ < ଵଶ଴ 
• Intermediate water if ଵଶ଴ < ௗఒೢ < ଵଶ 
• Deep water or short wave ௗఒೢ > ଵଶ 

Considering the wave period T [14,27], the following definitions are used: 
• Capillary waves (𝑇 < 0.1 s), generated by wind and restored by surface tension 
• Ultra-gravity waved (0.1 𝑠 < 𝑇 < 1 s) generated by wind and restored by surface 

tension and gravity 
• Gravity waves (1 s < 𝑇 < 30 s) generated by wind and restored by gravity 
• Infra-gravity waves (30 s < 𝑇 < 5 min), caused by wind and atmospheric pressure 

gradients and restored by gravity 
• Long-period waves (seiches, storm surges, tsunamis, with a period 5 min < 𝑇 < 12 h), 

caused by atmospheric pressure gradients and earthquake and restored by gravity 
• Ordinary tidal waves (12 h < 𝑇 < 24 h), due to the gravitational attraction of celestial 

bodies (moon and sun) and restored by gravity and Coriolis force 
• Trans-tidal waves (𝑇 > 24 h), due to storms and gravitational attraction and restored 

by gravity and Coriolis force. 
In oceanography, the term “sea state” is used to indicate the temporary (about a half-

hour) and local conditions of the sea surface (with respect to wind waves and swell) as a 
consequence of wind interaction. The World Meteorological Organization (WMO) defines 
the sea states according to the Douglas Sea Scale, reported in Table 2. 

Table 2. Sea States Codes based on Douglas Sea Scale. 

Code 𝑯𝒔 Characteristics 
0 0 Calm (glassy) 
1 <0.1 Calm (rippled) 
2 0.1–0.5 Smooth (wavelets) 
3 0.5–1.25 Slight 
4 1.5–2.5 Moderate 
5 2.5–4 Rough 
6 4–6 Very rough 
7 6–9 High 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.5 1 1.5 2 2.5

S(
f)/
S P
M
,m
ax

f/fp

Pierson-Moskowitz

JONSWAP

Figure 3. Qualitive comparison of Pierson Moskovitz and JONSWAP spectra.



Energies 2021, 14, 6604 7 of 31

Sea waves can be classified in different ways, considering the parameters above
defined. For example, introducing the ratio dw

λ (water depth divided by wavelength) [21]:

• Shallow water or long wave if dw
λ < 1

20
• Intermediate water if 1

20 < dw
λ < 1

2
• Deep water or short wave dw

λ > 1
2 Considering the wave period T [14,27], the following

definitions are used:
• Capillary waves (T < 0.1 s), generated by wind and restored by surface tension
• Ultra-gravity waved (0.1 s < T < 1 s) generated by wind and restored by surface

tension and gravity
• Gravity waves (1 s < T < 30 s) generated by wind and restored by gravity
• Infra-gravity waves (30 s < T < 5 min), caused by wind and atmospheric pressure

gradients and restored by gravity
• Long-period waves (seiches, storm surges, tsunamis, with a period 5 min < T < 12 h),

caused by atmospheric pressure gradients and earthquake and restored by gravity
• Ordinary tidal waves (12 h < T < 24 h), due to the gravitational attraction of celestial

bodies (moon and sun) and restored by gravity and Coriolis force
• Trans-tidal waves (T > 24 h), due to storms and gravitational attraction and restored

by gravity and Coriolis force.

In oceanography, the term “sea state” is used to indicate the temporary (about a
half-hour) and local conditions of the sea surface (with respect to wind waves and swell)
as a consequence of wind interaction. The World Meteorological Organization (WMO)
defines the sea states according to the Douglas Sea Scale, reported in Table 2.

Table 2. Sea States Codes based on Douglas Sea Scale.

Code Hs Characteristics

0 0 Calm (glassy)
1 <0.1 Calm (rippled)
2 0.1–0.5 Smooth (wavelets)
3 0.5–1.25 Slight
4 1.5–2.5 Moderate
5 2.5–4 Rough
6 4–6 Very rough
7 6–9 High
8 9–14 Very high
9 >14 Phenomenal

Analyzing the phenomenon of sea wave propagation, the group velocity vg is intro-
duced, representing the velocity at which wave-energy travels, and defined by Equation (20):

vg =
dω

dk
(20)

In general, the phenomenon is influenced by the water depth. Considering a finite
water depth dw, the wavenumber k = 2π/λ and the angular frequency ω = 2π/T are
related by the dispersion relation, expressed by Equation (21).

ω2 = gk tanh(kdw) (21)

It is interesting to observe that in the case of deep water (dw/λ > 1/2), the term
tanh(kdw) is close to 1; in the case of shallow water (dw/λ < 1/20) the same term is
equivalent to kdw [24]. Thus, in these cases, Equation (21) is replaced by Equation (22):

ω2 =

{
gk f or dw

λ > 1
2

gk2dw f or dw
λ < 1

20
(22)
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Combining the equations above reported, the velocity group is given by
Equation (23) [22]:

vg =
1
2

vp

(
1 +

2kdw

sinh 2kdw

)
(23)

that can be simplified in two forms, according to the case of shallow water and deep water,
respectively (see Equation (24)).

vg =

{
vp f or dw

λ < 1
20

1
2 vp f or dw

λ > 1
2

(24)

With the target to exploit sea waves as a renewable energy source, it is important to
evaluate the amount of energy associate with the phenomenon.

It is possible to define the total amount of energy, related to sea wave for a unitary
surface Et. (sum of kinetic and potential energy) according to Equation (25):

Et =
ρg
8

H2 (25)

The value 8 (instead of 2) at the denominator is because wave height is double the
wave amplitude.

The wave-energy flux is defined as the power of a unitary wavefront, which is given
by Equation (26):

ϕ =
ρg
8

H2vg (26)

Equations (25) and (26) can be applied only for a monochromatic wave spectrum.
Since the real sea states are represented by a sum of several monochromatic waves, an
approximation is given by Equations (27) and (28), using the definition of significant height.

Et ≈
ρg
16

H2
s (27)

ϕ ≈ ρg
16

H2
s vg (28)

The phase velocity for gravity wave is given by Equation (29):

vp =
λ

T
=

√
g
k
=

√
gλ

2π
=

gT
2π

(29)

consequently, in the case of deep water (where vg = vp/2), the wave-energy flux is finally
obtained, according to Equation (30):

ϕ =
ρg2

64π
H2

s Te (30)

In the literature, this equation is universally adopted to estimate the wave-energy
potential in a specific site, knowing the energy period Te and the significant height
Hs [21,22,28,29].

As introduced before, the sea state, identified by the significant height and the energy
period, represents one of the several possible conditions that can be observed in the site.

A simple way to report data on the measured sea states is the scatter table (see
Figure 4), reporting the equivalent hours in which a specific condition (Te, Hs) is measured
(picture on the left) or the corresponding annual energy availability (picture on the right).
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A generic device to exploit the sea wave-energy source is affected by energy efficiency,
due to the transferring of energy from the sea wave to the device (hydraulic efficiency
ηhy) and the internal transformation to electricity (electrical efficiency ηe). According to
the definition of sea wave flux (power per unitary length of wavefront), the electricity
production from the sea waves can be estimated by Equation (31):

Esw = dc

n

∑
i=1

m

∑
j=1

ρg2

64π
H2

s,iTe,jηhy
(

Hs,i, Te,j
)
ηe
(

Hs,i, Te,j
)
ti,j (31)

where dc is the equivalent diameter of the system that recovers the energy from sea wave,
Hs,i is the i-th class of significant height, Te,j is the j-th class of energy period and ti,j is the
number of hours in which the condition

(
Hs,i, Te,j

)
is measured.

A simplified equation can be also adopted if a monthly average wave-energy flux ϕm,i
is available:

Esw = dcηhyηe

n

∑
i=1

ϕm,iti (32)

assuming an average hydraulic efficiency ηhy, an average electrical efficiency ηe of the
system ηe,w, and indicating with hi the number of hours per month [31].

In the next section, the authors have the aim to list the technologies and the devices
developed and installed, reporting on their actual success or failure.

3. State of Art

Among the renewable energy sources, the exploitation of sea waves represents a
recent sector, despite the first patent was registered in France in 1799 [32]. Many authors
claim that sea waves could play a significant role in the energy sector, especially in small
islands [33–35]. Recent statistics indicate that the total theoretical wave-energy potential
could achieve 30× 106 GWh/year; however, this renewable source is irregularly distributed
worldwide [36,37]. As shown in Figure 5, there are some hot spots (red-colored areas in the
picture), i.e., regions with the highest values of wave-energy potential. The most energetic
area is the southern part of Australia, Africa, and America, because of the limited presence
of lands. Other relevant areas are located between North America and Japan in the Pacific
Ocean and between Europe, Greenland, and North America in the Atlantic Ocean. All these
regions are exposed to extreme weather conditions, for this reason, sea wave harvesting is
complicated [20,38].
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Figure 5. Global wave power GIS map (Reproduced with permission 5139241219046 from [25], Elsevier, 2012).

In this context, the device able to extract energy from sea waves and produce electrical
energy or other useful energy output is commonly defined as Wave-Energy Converters
(WEC) [32]. These systems are classified using different criteria such as the position to
the coastline, the typical size, the orientation to the direction of wave propagation, or the
working principle [39]. As shown in Figure 6, considering the orientation of the system to
the direction of wave propagation, it is possible to define [40]:

• Attenuators, these systems are oriented parallel to the wave direction. Since the
device has a length of the same order as the wavelength, it adapts its shape to the
wave profile, extracting energy from sea waves.

• Point absorbers, these systems work independently of wave direction due to their
small sizes in comparison with the wavelength.

• Terminators, these systems are oriented perpendicular to the direction of wave propa-
gation. Sea wave ends on the device, transferring its energy.
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Considering the working principle, the following categories are identified [41]:

• Oscillating water column. In this system, sea wave enters inside a chamber open to
the atmosphere. Inside the chamber, sea wave produces a vertical water oscillation.
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The air inside the chamber is pressurized and depressurized by the water oscillation,
producing a bidirectional airflow usable to run special wind turbines. The system can
be installed on the coastline or integrated into a floating device.

• Wave-activated bodies. In this case, the sea wave produces relative motions on the
systems, running the energy converters. This kind of system can be assembled in
several configurations to produce a rotation or a translation. About the installation,
there are floating systems and submerged ones.

• Overtopping devices. In this case, seawater is conveyed in a reservoir, using a ramp
to convert the kinetic energy of sea waves into potential energy. The water is conse-
quently spilled from the reservoir and used to produce electricity, using a low-head
hydro turbine.

About the distance from the coastline, it is common to define the following regions,
Figure 7:

• Onshore. In this case, the system is directly fixed on the mainland, simplifying the
maintenance and the installation of the device.

• Nearshore. It represents the transition region between the shoreline and the effective
offshore area. In this zone, sea wave energy starts to be dissipated by the seabed. In
simple terms, the nearshore region starts where the water depth is about half of the
wavelength and ends where the depth is one-twentieth of wavelength.

• Offshore, the region where the sea wave phenomenon is practically not influenced by
the seabed. In this area, waves are strong and regular.
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After this classification, a list of devices, divided into working principles, is reported.

3.1. Oscillating Water Column

Several Oscillating Water Column (OWC) devices have been proposed in the past.
According to the position of the system from the coastline, OWC devices can be classified
as fixed or floating [37].

In the first case, the OWC plant is installed via a fixed structure on the shoreline or
close to it, or in natural or artificial structures, such as breakwaters and rock cliffs [37].

The installation of WEC directly on the shoreline has several benefits. The maintenance
operations are simplified, reducing the relative costs. At the same time, the costs for the
mooring system are minimized. Furthermore, the entire electrical equipment for the energy
conversion is installed out of the water [32].

As mentioned before, the OWC devices are designed to produce a vertical oscillation
of water inside a chamber to produce the alternative compression and expansion of the air
inside the same chamber. Since the airflow changes continually its direction, the traditional
horizontal-axis air turbines cannot be adopted. A solution is represented by the Wells
turbine, developed in the mid-1970s by Alan Arthur Wells (in that period professor at
Queen’s University of Belfast) [32].

The Wells turbine is a low-pressure air turbine, characterized by the ability to rotate
in one direction independently of the airflow direction. The blades are characterized by
symmetrical airfoils where the plane of the symmetry is the same as the plane of rotation
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and perpendicular to the airflow direction. As reported in [32], the Wells turbine is affected
by a low (or negative) torque in the case of a small airflow rate; significant aerodynamic
losses, and noise in comparison with other wind turbines. Thus, this turbine requires a
greater section to achieve the same power output as other turbines. Nevertheless, the Wells
turbine has been applied in several OWC plants.

As an example of a full-scale OWC system, the Kværner Brug’s OWC plant was
realized at Toftesfallen (Norway) in 1985 [42], with an electrical rated power of 500 kW [43].
The lower part was realized in concrete, with a height of 3.5 m above sea level. As reported
in Figure 8, this part of the system formed a chamber, communicating to the sea under
the water level. The upper part (steel tower), achieving the height of 21 m, was equipped
with a self-rectifying air turbine, with a rated power of 500 kW. Unluckily, this plant was
destroyed by a severe storm at the end of 1988. Despite the proposal to replace the damaged
part, the system was decommissioned, keeping only the concrete part on the testing site. In
its short operative life, the Kværner Brug’s OWC plant delivered 29 MWh to the electrical
grid [44].
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In 1990 an OWC system was installed at Vizhinjam (Trivandrum, Kerala, India),
composed by a concrete caisson, and installed near the original breakeven structure. The
project considered the installation of a Wells turbine coupled with an induction generator
(150 kW) in order to be directly coupled with the electrical grid [45].

In reality, the results were under the expectation: the output power was highly variable
in the range 0–60 kW in a few seconds and the induction motor frequently was an electrical
load instead of a generator, consuming more energy than the energy produced [46]. The
plant was inactive for a long period. In 2004 the plant was investigated to supply a Reverse
Osmosis desalination plant. This OWC device was finally decommissioned in 2011 [47].
This OWC system is reported in Figure 9.

Based on the same principle, in 2000 the Islay LIMPET (Land Installed Marine Power
Energy Transmitter) was installed on the Scottish island of Islay. This plant was realized
and operated by Wavegen in cooperation with the Queen’s University of Belfast. Islay
LIMPET was the full-scale version of a previous prototype (75 kW) realized in 1991. The
OWC system is reported in Figure 10.
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Figure 10. LIMPET OWC plant installed on the island of Islay (Scotland, UK) (Reproduced with
permission 5139250512092 from [50], Elsevier, 2016).

The envelope of LIMPET was entirely realized in concrete on the shoreline. It was
equipped with two Wells turbines, each one with a rated power of 250 kW [3]. However,
the generated power achieved a peak of 180 kW in the first two years of operation, for this
reason, the plant was declassed to a rated power of 250 kW [51]. The plant demonstrated
the working principle, revealing the issue of noise generation due to the operation of
Well turbines. A noise attenuator chamber was added at the end of the turbine chamber,
however, causing malfunctioning to the device [50]. The plant was decommissioned in
2012 and today only the concreate building remains on the shoreline.

Similar technology was also developed in Portugal, under the supervision of Instituto
Superior Técnico of Lisbon. In 1999 a full-scale (400 kW) OWC plant was realized in Pico
Island (Azores, Portugal) [50]. Some problems were due to malfunctions of the Wells
turbine and its support. The project was concluded in January 2018, demonstrating the
feasibility of this technology [52]. The Pico Plant is reported in Figure 11.

In 2011, an OWC plant was inaugurated in the bay of Mutriku (Spain) [53]. The
power plant is 100 m long and has an installed power of 296 kW. It is composed of 16 OWC
chambers, each one equipped with a Wells turbine. The producer indicated a total electricity
production equal to 2.1 GWh (updated to the end of September 2020) [54]. The OWC system
is reported in Figure 12.

An OWC system, called REWEC3 (REsonant Wave-Energy Converter), has been
developed in Italy, by the University of Reggio Calabria [37]. This system is designed to
be incorporated into a traditional vertical breaker in the harbor. In comparison with other
OWC devices, the main difference is the U-shape connection between the internal chamber
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and the sea (see Figure 13) that is chosen to adapt the resonance frequency of the system
to sea wave. Thus, it is possible to maximize the energy extraction [55]. In the port of
Civitavecchia, a full-scale plant has been installed, composed of 136 chambers and a rated
power of 2.5 MW [3]. In 2016 the system, with a length of 100 m, produced 500 MWh/y.
After the optimization, the designers want to achieve an annual production of 800 MWh/y.
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The Yongsoo plant (see Figure 14) is another fixed OWC system that was completed
in July 2016 near Jeju Island (Republic of Korea) [3]. The system is installed on the seabed,
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at 1.5 km from the coastline [56]. It is equipped with two horizontal-axis impulse turbines,
connected to different kinds of generators (a synchronous generator and an induction
generator), both with a rated power of 250 kW [3]. The plant has a length of 37 m and a
width of 31 m.
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Figure 14. Back (left) and perspective views (right) of OWC plant at Yongsoo [3].

A similar concept was adopted in King Island, Tasmania. The project was developed
by “Wave Swell Energy” company, after a long authorization procedure, including the
preliminary evaluation of the energy potential and characteristics of seabed. In 2019, an
OWC device (rated power 200 kW) was installed at 100 m from the coastline with a depth
of 6 m (see Figure 15 [57]). In January 2021, the device was connected to the electrical
grid of Tasmania. According to the project, the device will be removed after a year of
testing [58].
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The other family of OWC devices is composed of floating systems. The working
principle is the same. The main difference is related to the structure, where the OWC device
is installed. Indeed, the most popular solution is represented by the adoption of floating
buoys, equipped with chambers used to produce the water oscillation.

One of the first floating OWC was developed in Japan between the 1960s and 1970s
by the team of Yoshio Masuda. The system, called Backward Bent-Duct Buoy (BBDB), is
composed of a floating buoy, anchored to the seabed and equipped with an L-profiled
chamber [59]. This one is open in the back to the sea, under the water level while in the
upper part to the atmosphere, through a Wells turbine, as shown in Figure 16 [32,60].

Some years later, other similar systems were developed. Among these, the best known
are Sloped Buoy, Spar Buoy, and Mighty Whale reported in Figure 17 [61]. In detail, the
Sloped Buoy is composed of three parallel pipes installed on a floating buoy with a tilt angle
of 45◦ [62]. The lower part is open to the sea while the upper part is open to the atmosphere.
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The Spar Buoy is a vertical pipe installed in a floating buoy that has a cylindrical
shape. This aspect improves the energy extraction from sea waves because the system
works independently of wave direction. For this reason, it is classified as Point Absorber.
This device absorbs energy from waves through the heaving oscillation. As consequence,
the air inside is alternatively pressurized and depressurized according to the motion [63].
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It is interesting to report the case of Mighty Whale, composed of a buoy with a shape
resembling a whale (50 m long and 30 m wide), as shown in Figure 16 [64,65]. This OWC
device was composed of two chambers and four Wells turbines, of which two had a rated
power of 30 kW, one 10 kW, and one 50 kW (total installed power equal to 120 kW) [66].
The turbines were alternatively activated according to sea states [67]. The prototype was
installed 1.5 km away from the coastline of Gokasho Bay (Japan), in July 1998. At the end
of 2000, the field test was completed [66]. The device was removed in 2002.

The following Table 3 summarizes the main specifics of the current technologies for
sea wave harvesting, based on the OWC principle.

3.2. Wave-Activated Body

The category of Wave-Activated Bodies (WAB) comprises several kinds of solutions
for sea wave exploitation. These systems are generally composed of two or more parts,
arranged to produce a relative motion and run the energy converter [68].

These systems are generally designed for nearshore or offshore installation, to exploit
the more regular waves of the open sea, in comparison with the systems installed on the
coastline. However, the installation far away from the coastline increases the number of
problems. Indeed, long underwater cables or pipes are required to transfer the energy
collected by the WEC to the mainland. These devices need also a mooring system, strong
enough to resist extreme weather conditions [69].
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Table 3. Summary of the main OWC devices.

Project Country Position Inst. Power Status Note Ref.

Kværner Brug’s OWC Toftesfallen
(Norway)

Fixed
Onshore 1985 500 kW Decommissioned Damaged by a severe storm in 1988.

29 MWh produced. [32,42–44]

Vizhinjam OWC Trivandrum
(Kerala, India)

Fixed
Nearshore 1990 150 kW Decommissioned in 2011

Production under the expectation,
with high variability.

Inactive for a long period.
[45–47]

Limpet Islay
(Scotland, UK)

Fixed
Onshore 2000 500 kW Decommissioned in 2012 High level of noise. The attenuation

causes malfunctions. [50,51]

Pico OWC Pico Island
(Azores, Portugal)

Fixed
Onshore 1999 400 kW The project

concluded in 2018
Malfunction due to the Wells

turbine and its supports. [50,52]

Mutriku plant Mutriku (Spain)
Fixed

Onshore (harbor
integrated)

2011 296 kW Operating Total electrical production 2.1 GWh
(end of September 2020) [53,54]

REWEC3 Civitavecchia
(Italy)

Fixed
Onshore (harbor

integrated)
2016 2.5 MW Operating Annual production between 500

and 800 MWh/y [3,37,55]

Yongsoo plant Jeju Island
(Republic of Korea)

Fixed
Offshore (1 km to

the coastline)
2016 500 kW Operating Adoption of two impulse turbines,

connected to different generators [3,56]

Wave Swell King Island
(Tasmania, Australia)

Fixed
Nearshore (100 m to

the coastline)
2019 200 kW Operating The device will test for a year [57,58]

Backward Bent-Duct Buoy Japan Floating 1960–70 Concept [32,59,60]

Sloped IPS Buoy Edinburgh (UK) Floating 1970–80 Concept [61,62]

Spar Buoy Portugal Floating 2000–15 Concept [61,63]

Mighty Whale Gokasho Bay (Japan)
Floating

Offshore (1.5 km to
the coastline)

1998 120 kW Decommissioned in 2002 [64–67]
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Since there are several WABs, a classification is introduced by considering the working
principle of the device as criterium [32]: single-body heaving buoys, two-body heaving
systems, fully submerged heaving systems, pitching devices, bottom-hinged systems, and
many-body systems.

3.2.1. Single-Body Heaving Buoys

An example is a system composed essentially of a buoy able to move along a metallic
strut anchored to the seabed by a universal joint. The idea was the exploitation of this
vertical motion to pressurize an air reserve and, consequently, run an air turbine. A proto-
type, with a buoy one-meter diameter, was tested in 1983 in the Trondheim Fjord (Norway),
replacing the air turbine with an orifice [32]. A solution of this technology (Figure 18) was
developed at Uppsala University (Sweden), called the Lysekil project [32,70]. As shown
in the picture, the vertical motion is used to run a linear generator, with a rated power of
10 kW. This plant was enlarged with the other two WECs and today is currently operating,
achieving a total installed power of 30 kW [71].
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3.2.2. Two-Body Heaving Buoys

The category “two-body heaving systems” was introduced to solve the problem of the
distance between the floating buoy and the fixed structure on the seabed, where the energy
production occurs. In this case, the WEC is composed of two floating buoys to produce
a relative motion usable to extract energy. The shapes of the two floaters are normally
different to maximize the relative motion.

As shown in Figure 19, Wavebob is an example of a two-body heaving system. To
improve the relative motion between the two parts of the WEC, the central buoy is equipped
with a big mass, increasing the inertia, and limiting the vertical motion. The inferior buoy is
designed to be submerged at depth enough to minimize the interference with sea waves. The
vertical motion produced by the upper buoy (body 1) is used to run an oil pumping system.
A small-scale (1:4) prototype was tested in Galway Bay (Ireland) [32,72]. The prototype was
installed in 1999 and decommissioned in 2015 because during 2013 the funding ended.
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to the seabed, and a floater. The device works using the variation of the hydrostatic 
pressure applied to the floater that pushes up and down a linear generator installed inside. 
In 2004, a pilot plant was tested successfully in Portugal [32]. After this test, AWS Ocean 
Energy Ltd. was started in Scotland. Recent news reports the development of a 16 kW 
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Figure 19. Rendering view (left) (Reproduced with permission 5139260046167 from [32], Elsevier,
2010) and external view (right) of Wavebob (Reproduced with permission 5139260268553 from [72],
Elsevier, 2016).

PowerBuoy is another example of a two-body heaving system, developed by the
American company Ocean Power Technologies. As shown in Figure 20 [70,73], this WEC
is composed of a floater, which is free to move up and down according to sea wave, and
a submerged body, with a disk shape adopted to improve the inertia and hydrodynamic
resistance of this part and maximize the relative motion between the two main parts of
the device. The idea is the realization of a wave-energy farm, installing several devices,
each one producing electricity. To minimize the cost of the electrical connection with the
mainland, an offshore substation could be realized. In 2005 a pilot plant (40 kW) was tested
in an offshore site, close to Atlantic City (NJ, USA) [70,74]. In 2008, another plant of the
same size was installed off the coast of Santoña (Spain) [32].
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3.2.3. Fully Submerged Heaving Systems

About the fully submerged heaving systems, an example is the Archimedes Wave
Swing, developed in Holland by Teamwork Technology in 1993.

As shown in Figure 21, the system comprises two parts: a basement that is anchored to
the seabed, and a floater. The device works using the variation of the hydrostatic pressure
applied to the floater that pushes up and down a linear generator installed inside. In 2004,
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a pilot plant was tested successfully in Portugal [32]. After this test, AWS Ocean Energy
Ltd. was started in Scotland. Recent news reports the development of a 16 kW device [75].
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Figure 21. Working principle of Archimedes Wave Swing [76].

CETO (name inspired by a Greek ocean goddess) is another fully submerged device,
proposed by Carnegie Clean Energy. This system is designed to be installed in the nearshore,
a few meters below sea level. The previous version (CETO 5) was designed to pump water
for a station located on the coast where electricity and freshwater are produced, using a
Reverse Osmotic unit [77,78]. The project of an upgraded version (called CETO 6, with a
rated power of 1.5 MW) was started in Western Australia in 2014 to produce electricity
directly on the WEC. The technology is shown in Figure 22. However, the project was
discontinued on 31 October 2019 [79].
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3.2.4. Pitching Devices

In the pitching devices, the main motion is a relative rotation (usually pitch) among
the parts.

A first example was the Salter’s Duck (also called the nodding Duck), developed by
the team of Prof Stephen Salter at the University of Edinburg (UK), between the 1970s and
1980s. In detail, this device is composed of a floater, with a cam shape (see Figure 23) [80,81].
As a first solution, a hydraulic pumping system was proposed to convert the rotary motion
into electricity. As an alternative solution, a gyroscope system was proposed some years
later [81].
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Figure 23. Salter’s Nodding Duck. Section (left) [81] and rendering view (right) (reproduced with license n. 5154830518763
from [80], Elsevier, 2007).

Pelamis was a famous example of a pitching device [32]. It was developed in the
UK by Scottish company “Pelamis Wave Power Ltd.”. A first prototype, connected to the
electrical grid, was tested in Orkney (Scotland) between 2004 and 2007. In 2008 a wave
farm with three devices was installed at Aguçadoura (Portugal). Unluckily, the wave
farm worked only for two months due to technical failures, causing financial problems
to the company. The intellectual property was transferred to the Scottish government in
November 2014. This WEC comprised four cylindrical buoys, connected by three Power
Conversion Modules (PCM), as depicted in Figure 24 [82–84].
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Figure 24. Working principle [82] and external view of Pelamis [83].

In detail, the system had a shape similar to a snake, oriented according to the wave
direction, achieving a length of 120 m and a rated power of 750 kW. The working principle
of Pelamis was based on the generation of a relative rotation on the PCM, equipped with
hinged joints, to pump oil at high pressure into accumulators and then run hydraulic
motors coupled with induction generators.

The concept has been recently taken up in other projects, considering the optimization
of the geometry of the entire system to maximize the energy harvesting from sea waves [85].

3.2.5. Bottom-Hinged Systems

The Bottom-Hinged Systems are designed to exploit sea waves in shallow water
(10–15 m), where the sea motion is mainly horizontal. An example is Oyster, which is
illustrated in Figure 25 [86,87].

This device consists essentially of a barrier, made of five cylinders horizontally stacked.
Since the barrier is fixed by a horizontal hinge, the braking wave produces a rotation,
activating a high-pressure pump. The pressurized water is conveyed along pipes to the
coastline, where hydro turbines and alternators are installed to produce electricity. This
kind of WEC was proposed by the team of Professor Trevor Whittaker, from the Queen’s
University of Belfast. The company Aquamarine Power developed and tested two full-scale
plants at the European Marine Energy Centre’s Billia Croo test site (Orkney): Oyster 1
(315 kW) and Oyster 2 (800 kW). The second version was connected to the grid in 2012
until 2015 when the company ceased trading [88].
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AW energy (a Finnish company) proposed a similar system called Waveroller (see
Figure 26) [89]. In 2007, a small-scale (1:4) prototype was tested in Portugal.
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A full-scale prototype was installed in Järvenpää (Finland) in 2015, to optimize the
technology. The device is designed to be installed at 0.3–2 km from the shoreline, where the
sea depth is between 8 and 20 m. The device has a rated power of 350 kW, equipped with a
flap 18 m long and 10 m high [90]. The company is currently working on new projects in
Portugal, Mexico, and Southeast Asia [89].

3.2.6. Many-Body System

Wavestar is an example of many-body systems [32]. The first study on this device was
started in 2000 by Niels and Keld Hansen in Denmark. A small-scale prototype (1:40) was
tested in 2004 at the laboratory of Aalborg University. In 2005, a grid-connected small-scale
(1:10) pilot plant was installed at Nissum Bredning. Finally, in 2009 a 1:2 scale prototype
was connected to the grid in Hanstholm. The plant was taken down in 2013 [91]. Like other
systems described above, Wavestar uses the relative rotation of the buoys to pump oil at
high pressure and runs hydraulic motors [32]. The researchers are currently working on
the full scale of the device. As shown in Figure 27, Wavestar is composed, is composed by
20 buoys (10 m diameter), arranged in two lines, and able to extract until 6 MW according
to the climatic conditions of the North Sea. The system could be also assembled with a star
shape, using 60 buoys and achieving a total rated power of 18 MW [91,92].

The same working principle can be applied along the coastline and the breakers of
the harbors. An example is the EcoWave System, composed of several floaters, which rise
and fall according to the hydrodynamic interaction with sea waves. Using robust arms, the
system pressurizes a fluid to run a generator installed on the coastline (see Figure 28 on the
left) [93]. In 2016 a wave farm was opened at Gibraltar, located at the southern tip of the
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Iberian Peninsula. The plant has currently a rated power of 100 kW but it is planned to
achieve 5 MW of installed power [3].
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Based on the same approach, the Seahorse system (50 kW) was installed in 2012 at
the Port of Pecem (Brazil) [3,94]. The device was developed by the Federal University of
Rio de Janeiro and is composed of two arms, each one equipped with a circular buoy (see
Figure 27 on the right) [3,94].

The following Table 4 summarizes the main specifics of the current technologies for
sea wave harvesting, based on the WAB principle.

3.3. Overtopping Devices

In the Overtopping Devices (OD), the exploitation of sea waves is based on the
conversion of the kinetic energy of water into potential energy, usable by a low-head
hydro turbine.

An artificial water reserve should be created at a level superior in comparison to
the sea level. To refill the system, a ramp is required to convey sea waves inside the
water reserve.

Historically, the first OD pilot plant was the Tapchan (Tapered Channel Wave Power
Device), realized at Toftestallen (Norway) in 1985 (see Figure 29) [32,97]. The collector was
carved into a rocky cliff, realizing an entrance about 60 m wide and lifting water into a
reservoir 3 m above sea level and with a surface of 8500 m2. To convert the potential energy
into electricity, a low-head Kaplan-type hydro turbine was adopted, with a rated power of
350 kW. This plant was damaged by the storm in 1988. The plant was decommissioned
in 1991.
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Table 4. Summary of the main WAB devices.

Project Country Position Inst. Power Status Note Ref.

Lysekil Project Lysekil
(Sweden)

Offshore (2 km to the
coastline) 2006 30 kW

(10 kW each) Operating Currently operating and enlarged
with 2 WEC (June 2009) [32,70,71]

Wavebob Galway Bay (Ireland) Offshore 1999 Prototype
scale 1:4 Decommissioned in 2015 In 2013 end of the funding [32,72]

Powerbuoy Atlantic City (New
Jersey, USA)

Offshore (22.5 km to
the coastline) 2005 Up to 7.5 kW Operating Upgrade in 2020 with

photovoltaic panels [32,70,73,74,95]

Archimedes Wave
Swing Portugal Offshore 2004 Pilot plant Decommissioned Available upgrade up to 16 kW [32,75,76]

CETO 6 Albany, Western
Australia Offshore 2014 1.5 MW Discontinued Project discontinued on

31 October 2019 [77–79]

Salter’s Nodding
Duck Edinburgh (UK) Nearshore 1970–1980 Concept [80,81]

Pelamis P1 Aguçadoura,
Portugal

Offshore (5 km to
the coastline)

23 September
2008

Three devices
(750 kW each)

2.25 MW

Decommissioned
November 2008

Worked only for two months due to
technical failures on bearings.
Financial problems blocked

the activities

[32,96]

Oyster 2 EMEC
Orkney (UK) Nearshore 2012 800 kW Decommissioned The plant worked until 2015 when

the company ceased trading [86–88]

Waveroller Järvenpää (Finland) Nearshore (0.3–2 km
from the shore) 2015 350 kW Project ended

The project ended in October 2013,
leaving the device in situ

for monitoring
[89,90]

Wavestar Hanstholm
(Denmark)

Nearshore (300 m
from the shore) 2009 600 kW Decommissioned The plant was taken down in 2013 [32,91,92]

Eco Wave Gibraltar Onshore 2016 100 kW Operating [3,93]

Seahorse Pecem (Brazil) Onshore 2012 50 kW Operating [3,94]
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tested in the Nissum Bredning fjord until January 2005 [98]. In detail, Wave Dragon is 
composed of a floating water reserve, refilled with sea waves using two reflectors (see 
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the increasing of water level [99]. This kind of energy can be used by Kaplan turbines to 
run permanent magnets rotary generators. To work properly, the system should be fixed 
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Figure 29. View (left) [97] and schematic plan view (right) of Tapchan (Reproduced with permission
5139270373963 from [32], Elsevier, 2010).

It is also possible to realize an OD for an offshore application. As an example, the
Wave Dragon was a floating slack moored WEC, developed by the Danish company “Wave
Dragon Aps”. In March 2003 a 20 kW prototype (scale 1:4.5) was installed and tested in the
Nissum Bredning fjord until January 2005 [98]. In detail, Wave Dragon is composed of a
floating water reserve, refilled with sea waves using two reflectors (see Figure 30) [32,99],
and a ramp to convert the kinetic energy into potential energy through the increasing of
water level [99]. This kind of energy can be used by Kaplan turbines to run permanent
magnets rotary generators. To work properly, the system should be fixed to the seabed by
moorings and faced to the wave direction [70].
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from [32], Elsevier, 2010) and its working principle (right) (Reproduced with permission
5139270591282 from [99], Elsevier, 2009).

The last OD project is called Seawave Slot-Cone Generator, depicted in Figure 31 [3,100].
This system is designed for onshore installation.
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In detail, the system is composed of three chambers, located at different heights.
Each chamber has an opening, located at the superior point. The system has an external
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ramp-like shape, to increase the water height and fill the internal chambers. A multistage
low-head hydro turbine is used to transform the potential energy of water inside each
chamber into electricity. Two pilot plants have been planned for the realization along the
west Norwegian coasts, but have not been realized [100].

Finally, OIST Wave-Energy Project can be included in this category. The idea is the
conveying of breaking waves inside a duct, to run a low-head hydro turbine. A schematic
is reported in Figure 32 [101]. The first test was realized in 2016. After that, 2 half-scale
devices (turbine 35 cm wide and rated power of 1.3 kW) were installed and tested at the
eastside beach of Kandooma Island in the Maldives in May 2018, accumulating over 7200 h
in just ten months (February 2019). Another two full-scale WECs (60 cm turbine, 8 kW
peak) were installed in November 2018 (operating over 2000 h in just three months) [101].
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The following Table 5 summarizes the main specifics of the current technologies for
sea wave harvesting, based on the OD principle.

Table 5. Summary of the main OD devices.

Project Country Position Inst. Power Status Note Ref.

Tapchan Toftestallen
(Norway)

Onshore (3 m
above sea

level)
1985 350 kW Decommissioned

in 1991
Damaged by a
storm in1988 [32,97]

Wave Dragon
Nissum

Bredning
(Denmark)

Nearshore 2003 20 kW
(scale 1:4.5) Decommissioned [32,70,99]

Seawave
slot-cone
generator

Norway Onshore Planned but
not realized [3,100]

OIST-WEC
Kandooma

Island
(Maldives)

Nearshore 2018 8 kW Operating [101]

4. Conclusions

As shown in the lists of various technologies reported in the previous sections, the
exploitation of energy from the sea is an area of focus for university studies around the
world. Summary tables are provided to bring together all the installations mentioned,
showing project name, country of installation/design, technology, year of installation,
years of operational life, and notes.

As can be seen, some plants have been successful, producing electricity constantly,
and others for various reasons have unfortunately been decommissioned.

Limiting the analysis to the operating wave-energy converter, Figure 33 reports the
rated power of the devices, divided by working principle.
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It is interesting to observe that the current operating WEC based on the Oscillating
Water Column are all integrated on the breakwater. Indeed, this condition minimizes the
costs for the installation of the devices because the power plant is close to the electrical grid,
and, also, existing infrastructures can be easily converted for this application. The rated
power of the existing OWC devices exceeds 200 kW, allowing the production of electrical
energy for industrial applications.

About WAB, the current devices can be classified into two categories. The first one
comprised floating devices, installed in offshore areas (Lysekil Project and PowerBuoy). In
this group, the rated power is about 10 kW, usefully for monitoring and communication in
the open sea. The second group comprises devices installed on the breakwaters, such as
the OWC devices described above. In this case, the rated power is about 50–100 kW, useful
for electrical energy production.

Finally, about the overtopping device, despite the successful tests realized in the past,
there is a limited number of projects and proposed devices. The only operating project is
OIST-WEC, which is a pilot plant, with a rated power of 8 kW, installable in nearshore areas.

In conclusion, wave-energy harvesting is a very dynamic research area, where different
concepts and technologies are currently proposed and developed. Pilot plants and full-scale
devices are sometimes tested. However, the number of operating devices is very limited as
reported above.

Regardless of the selected technologies, the main barrier is represented by the costs
for the development of these systems. The participation of governments becomes very
important. Many governments have participated in the construction of energy production
plants because it is in their interest to enable the development of renewable technologies,
although some not very efficient plants have been decommissioned since funding has been
cut off.

In conclusion, it is important to highlight that this energy sector is very is complicated
and involves the management of many interrelated factors; for example, in addition to the
objective of energy production, attention must be paid to the resistance of the equipment,
which must withstand the harsh marine environment. Research has progressed and borne
fruit, but it is still possible to aim higher.
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