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Samenvatting
Inleiding

De wereldwijde energieproblematiek wordt momenteel frequent onder de

aandacht gebracht. Gedurende de voorbije decennia is de vraag naar energie

aanzienlijk toegenomen. De Europese Unie importeert circa 50 % van haar

energie en er wordt verwacht dat dit cijfer zal stijgen tot 70 % in 2030. Dit

brengt de Europese Unie in een afhankelijke en dus economisch kwetsbare

positie. Het grootste deel van die energie-import bestaat bovendien uit fossiele

brandstoffen, die bijdragen tot de opwarming van de aarde. Een van de

antwoorden om deze problemen tegen het lijf te gaan, ligt in de exploita-

tie van hernieuwbare energiebronnen. Hoewel grote hoeveelheden energie

beschikbaar zijn in de oceaangolven, is golfenergie waarschijnlijk de minst

gekende hernieuwbare energiebron. Er werden reeds verschillende conver-

sietechnologieën uitgevonden, waaronder overtoppingssystemen, oscillerende

waterkolommen en point-absorbersystemen. Point-absorbersystemen bestaan

uit kleine boeien die oscilleren in de oceaangolven. Door het dempen van

hun beweging wordt elektriciteit geproduceerd. Zoals windmolens in parken

geı̈nstalleerd worden, is het ook de bedoeling om point-absorbersystemen in

een park te plaatsen om grotere vermogens te leveren. Sommige toestellen

zijn zelfs opgebouwd uit verschillende, interagerende point-absorbers, die

geı̈ntegreerd zijn in één eenheid.

Probleemstelling en doelstellingen

Point-absorbers worden vaak afgestemd (‘getuned’) op de karakteristieken

van de invallende golffrequenties om de vermogensabsorptie te verhogen.

Deze tuning vergroot de boeibewegingen aanzienlijk. In sommige vroege-

re onderzoeken werden point-absorbers ofwel gemodelleerd zonder tuning,

wat resulteerde in ontgoochelende vermogensabsorptiewaarden, ofwel werd

tuning wel beschouwd, maar lag de focus vaak op de maximalisatie van de

vermogensabsorptie in onbegrensde condities. Dit leidt tot extreem grote
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boei-uitwijkingen en kan er zelfs voor zorgen dat de vlotter uit het water

rijst. Wanneer de vlotter terug in het water treedt, kan hij onderhevig zijn

aan ‘slamming’, een verschijnsel dat geassocieerd is met grote impactdrukken

en -krachten. Naast dit probleem, kan ook de geldigheid van de vaak gebruikte

lineaire theorie in vraag gesteld worden in deze gevallen.

Om te grote vlotteruitwijkingen, excessieve controlekrachten en slam-

mingproblemen te vermijden, werden in dit werk verschillende praktische

beperkingen opgelegd op de vlotterbeweging. De invloed van deze restric-

ties op de optimale controleparameters en op de vermogensabsorptie werd

onderzocht voor geı̈soleerde en meerdere, dicht bij elkaar geplaatste point-

absorbersystemen. Ten tweede werd de geldigheid van de lineaire theorie, voor

de beschrijving van de vlotterbeweging, geëvalueerd aan de hand van fysische

modelproeven. Tot slot werden de effecten van slamming meer in detail

bestudeerd, in het bijzonder met betrekking op drukken en krachten alsook

voorkomensfrequenties van slamming. Het doel hiervan is om realistische,

tolereerbare slammingniveaus te formuleren.

Methodologie en resultaten

Numerieke modellen in het frequentie- en tijdsdomein werden ontwikkeld,

die het hydrodynamisch gedrag beschrijven van dompende point-absorbers in

regelmatige en unidirectionele onregelmatige golven. Het model is gebaseerd

op lineaire theorie en het krijgt input in verband met de hydrodynamische

parameters van het commerciële pakket WAMIT, dat gebaseerd is op de

randelementenmethode. De point-absorber wordt extern geregeld door middel

van een lineaire dempingskracht en een lineaire tuningskracht. Het frequen-

tiedomeinmodel werd gebruikt om de vermogensabsorptie te optimaliseren

voor verschillende vlottergeometrieën, rekening houdend met bepaalde beper-

kingen. Het tijdsdomeinmodel werd aangewend om de voorkomensfrequenties

van slamming onder de loep te nemen voor verschillende vlottervormen

en slammingrestricties. De numerieke modellen werden gevalideerd door
middel van fysische modelproeven met een dompende point-absorber in

de golfgoot van het Waterbouwkundig Laboratorium in Antwerpen. Een

goede overeenkomst werd gevonden tussen de experimentele resultaten en de

resultaten van de numerieke modellering. In regelmatige golven is de overeen-

komst goed buiten de resonantiezone. In onregelmatige golven die typische

golfklasses op het Belgisch Continentaal Plat voorstelden, overschatten de
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numerieke simulaties het experimenteel geabsorbeerde vermogen slechts met

10 % tot 20 %, afhankelijk van de vlottervorm. Bijgevolg produceren de

numerieke modellen bevredigende resultaten voor die toepassingen die van

belang zijn.

Met het frequentiedomeinmodel werden numerieke simulaties in onregel-

matige golven uitgevoerd voor variërende geometrische parameters, zoals
de vlotterdiameter, de diepgang en de vorm. Een grotere vlotterdiameter

geeft aanleiding tot een behoorlijke stijging van de vermogensabsorptie,

terwijl variaties in de vlotterdiepgang de vermogensextractie slechts beperkt

beı̈nvloeden. Voor eenzelfde diameter (gemeten aan de waterlijn) en diep-

gang is de vermogensabsorptie bij een conische boei met een tophoek van

90° slechts 4 % tot 8 % beter dan bij een hemisferische boei. Aangezien

de hydrodynamische performantie vrij gelijkaardig blijkt te zijn voor vormen

die dezelfde dimensies hebben en die geassocieerd zijn met kleine visceuze

verliezen, kan verwacht worden dat andere aspecten, zoals slammingkrachten,

membraanactie en materiaalkosten, mogelijk een meer dominante invloed

zullen hebben op de finale vormlayout dan de hydrodynamische performantie

van de vorm.

Zoals reeds eerder vermeld, werden bepaalde restricties in rekening

gebracht in het optimalisatieproces van het geabsorbeerd vermogen. De

geı̈mplementeerde restricties zijn slammingrestricties, slaglengterestricties en

restricties op de controlekracht. De eerste restrictie is bedoeld om de

voorkomensfrequentie te verminderen van het fenomeen waarbij de boei

uit het water rijst. De slaglengterestrictie beperkt de maximale uitwijking

van de vlotter en de krachtrestrictie vermindert de controlekrachten voor

het geval waarbij deze door de generator worden geleverd. Algemeen

leiden deze beperkingen tot een verhoging van de demping en een verlaging

van de tuning, waarmee bedoeld wordt dat de vlotter verder buiten de

resonantiezone wordt gehouden. Deze maatregelen resulteren in kleinere

vermogensabsorptiewaarden dan de optimale waarden die kunnen bereikt

worden zonder restricties.

Slammingverschijnselen hangen enorm af van de evenwichtsdiepgang

van de vlotter. Indien een voldoende diepgang kan voorzien worden in

vergelijking met de relatieve beweging van de vlotter ten opzichte van de

golven, zullen slammingverschijnselen zelden voorkomen. Indien echter -

om eender welke reden- de vlotterdiepgang toch vrij klein is, is het raadzaam
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om een vlottervorm te kiezen die slechts kleine impactdrukken en -krachten

ondervindt. Valtesten werden uitgevoerd op zowel kleine als grote schaal

om slamming op point-absorbers te onderzoeken. Zoals verwacht, zijn de

drukken gemeten nabij de onderkant van de hemisfeer significant groter dan

deze waargenomen op de conus met een tophoek van 90°.

Wanneer de diepgang groot genoeg is, blijken realistische slaglengte-
restricties dominanter te zijn dan slammingrestricties. Een grotere slaglengte

is in het bijzonder voordelig in de meer energetische golfklasses. Het is

echter niet steeds praktisch haalbaar om de maximale slaglengte te vergroten,

aangezien ze meestal onderhevig is aan technische restricties, zoals de beperk-

te hoogte van het platform waarin de vlotters zich bevinden of de beperkte

grootte van hydraulische zuigers in het geval een hydraulische conversie

gebruikt wordt. De gevolgen van de geı̈mplementeerde slaglengterestricties

voor het geabsorbeerd vermogen zouden minder ernstig kunnen zijn dan in

dit werk werd vastgesteld, indien een tijdsafhankelijke controle toegepast

zou worden, die de vlotter extra kan afremmen wanneer zijn verplaatsing te

groot dreigt te worden. In dat geval is de optimale tuning slechts negatief

beı̈nvloed gedurende enkele kortstondige momenten, in plaats van tijdens de

volledige golfklasse. Het vergt echter een zeer nauwkeurig en betrouwbaar

controlesysteem.

In energetische golven met lange periodes worden de optimale contro-
lekrachten zeer groot. De optimale tuningskracht, in het bijzonder, kan

enorm groot worden in verhouding tot de benodigde dempingskracht. Als de

generator verondersteld is om deze tuningskracht te leveren, zou dat kunnen

resulteren in een oneconomisch ontwerp van de generator. De krachtrestrictie

kan deze tuningskracht substantieel verkleinen, echter, met een aanzienlijke

vermindering van de absorptieperformantie tot gevolg. Een tweede probleem

dat kan opduiken, als de generator de tuningskracht levert, is dat kleine

afwijkingen in de grootte en fase van deze tuningskracht nefast kunnen

zijn voor het geabsorbeerd vermogen van de vlotter. Om die reden is het

aan te raden de boei te tunen met een mechanisme dat onafhankelijk is

van de generator, bijvoorbeeld met latching of door het toevoegen van een

supplementaire massa.

Tot zover werden de ontwerpaspecten toegepast op een geı̈soleerde point-

absorber. In praktijk bestaan verscheidene point-absorbertoestellen uit meer-
dere oscillerende vlotters. Bijgevolg is het van belang nader te onderzoeken
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hoe deze interagerende vlotters zich gedragen en wat de invloed van hun

interactie is op de ontwerpparameters en op het geabsorbeerd vermogen.

Configuraties van 12 en 21 dicht bij elkaar geplaatste vlotters, met een diameter

van 5 m, respectievelijk 4 m, werden nader bestudeerd. Zoals verwacht is het

geabsorbeerd vermogen van een vlotter in een raster met meerdere, dicht bij

elkaar geplaatste vlotters gemiddeld kleiner dan dat van een geı̈soleerde boei,

als gevolg van het schaduweffect. Hoe strenger de restricties, hoe minder

uitgesproken dit effect is, aangezien de voorste vlotters minder vermogen

absorberen en er dus meer vermogen overblijft voor de achterste vlotters in

het raster. Om die reden werd ook vastgesteld dat de reductie in geabsorbeerd

vermogen, als gevolg van de implementatie van restricties, minder ernstig

is voor een groep point absorbers dan voor één point absorber alleen. De

restricties hebben een ‘afvlakkend’ effect op het geabsorbeerd vermogen van

de boeien, wat betekent dat het verschil in vermogen tussen de voorste en

achterste boeien in het raster vermindert naarmate de restricties strenger zijn.

Tevens bleek dat toepassing van de optimale controleparameters voor een

enkele boei resulteert in een suboptimaal functioneren van de groep point-

absorbers. De beste performantie voor een groep werd bereikt door elke

vlotter individueel te tunen, m.a.w. elke vlotter heeft zijn eigen optimale

controleparameters, afhankelijk van de positie in het raster. Met deze

individuele tuning en voor de vermelde configuraties, met 12 grote of 21

kleinere boeien, werd geschat dat ter hoogte van Westhinder op het Belgisch

Continentaal Plat een jaarlijkse hoeveelheid energie in de grootteorde van

1 GWh geabsorbeerd kan worden.





Summary
Introduction

The global energy problem is frequently spotlighted nowadays. Over the last

decades, the energy demand has considerably increased. The European Union

imports approximately 50 % of its energy and this number is estimated to

increase to 70 % by 2030. This puts the European Union in a dependent

and hence economically vulnerable position. Most of the energy imports

concern fossil fuels which contribute to global warming. One of the answers to

overcome these problems lays in the exploitation of renewable energy sources.

Although huge amounts of power are available in the ocean waves, wave

energy is probably the least-known resource among the renewable energies.

Several conversion technologies have been invented, such as overtopping

devices, oscillating water columns and point absorber systems. Point absorber

systems consist of small buoys oscillating in the ocean waves. By damping

their motion, electricity is produced. Similar to wind energy farms, point

absorbers are intended to operate in arrays to produce considerable amounts

of power. Some devices are even composed of several, interacting point

absorbers, integrated in one unit. The design and optimization of single and

multiple, closely spaced point absorbers is the subject of this thesis.

Problem statement and objectives

Point absorbers are often tuned towards the characteristics of the incident wave

frequencies to increase the power absorption. This tuning enlarges the buoy

motions significantly. In some earlier research, point absorbers were either

modelled without tuning, yielding disappointing power absorption numbers,

or tuning was considered, but the focus often lied on power absorption

maximization in unconstrained conditions. This may result in extremely large

strokes and may even cause the buoy to rise out of the water and experience

slamming phenomena upon re-entry. Apart from this problem, the validity of

linear theory -which is often applied- can be questioned in those cases.
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To avoid too large strokes, excessive control forces and slamming prob-

lems, several practical restrictions are imposed on the buoy motions in this

work. The influence of those restrictions on the optimal control parameters

and power absorption is assessed for single and multiple, closely spaced point

absorbers. Secondly, the validity of linear theory to describe the motion of

a point absorber is evaluated by means of experimental tests. Finally, the

effects of slamming have been studied more in detail, in terms of pressures and

loads as well as occurrence probabilities in order to obtain realistic, tolerable

slamming levels.

Methodology and results

Numerical models in frequency and time domain have been developed to

describe the hydrodynamic behaviour of a heaving point absorber in regular

and unidirectional irregular waves. The model is based on linear theory and

receives input on the hydrodynamic parameters from the commercial BEM

code WAMIT. The point absorber can be externally controlled by means of

a linear damping and a linear tuning force. The frequency domain model is

used to optimize the power absorption for different buoy geometries, within

certain constraints. The time domain model is used to assess the occurrence

probabilities of emergence for different buoy shapes and slamming constraints.

The numerical models have been validated by experimental tests with a

heaving point absorber in the wave flume of Flanders Hydraulics Research

in Antwerp. A good correspondence is found between the experimental

results and the results from the numerical modelling. In regular waves, the

agreement is good in non-resonance zones. In irregular waves, representing

typical sea states on the Belgian Continental Shelf, the numerical simulations

overestimated the experimental power absorption generally only with 10 % to

20%, dependent on the shape. Hence, the numerical models produce satisfying

results for those applications that are of interest.

With the frequency domain model, numerical simulations in irregular

waves are run for varying geometrical parameters, such as the buoy

diameter, draft and shape. An increase of the buoy diameter leads to a

significant rise of the absorbed power, whereas variations in the buoy draft

influence the power extraction only to a limited extent. For the same waterline

diameter and draft, the power absorption by a conical buoy with apex angle

90° is only 4 % to 8 % better than a hemispherical buoy. Since the
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hydrodynamic performance appears to be quite similar for shapes with the

same size and small viscous losses, it is expected that other aspects, like

slamming loads, membrane action and material costs, are likely to have a

more dominant influence in the final shape layout than the hydrodynamic

performance of the shape.

As mentioned earlier, the optimization process of the absorbed power

takes into account certain constraints. The implemented restrictions are a

slamming, stroke and force constraint. The first restraint is intended to reduce

the occurrence probability of rising out of the water. The stroke constraint

limits the maximum buoy displacement and the force constraint diminishes the

control forces, in case they are to be generated by the power take-off system.

The three limiting conditions are satisfied by adapting the control parameters.

Generally the damping is increased and the buoy needs to be tuned away from

resonance. These measures lead to smaller power absorption values than the

optimal values obtained without restrictions.

Slamming phenomena depend significantly on the equilibrium draft. If

a sufficient buoy draft can be provided compared to the relative motion of the

buoy to the waves, slamming problems will rarely occur. If -for any reason- the

buoy draft is rather small, it is advised to choose a buoy shape that experiences

small impact pressures and loads. Drop tests have been performed to assess

bottom slamming on small and large scale point absorber buoys. As expected,

the pressures measured near the bottom of the hemisphere are significantly

larger than those registered on a cone with an apex angle of 90°.

When the buoy draft is large enough, realistic stroke restrictions are found

to be more dominant than the slamming constraints. A larger stroke length is

particularly beneficial in the more energetic sea states. However, increasing

the maximum stroke in the design is often practically not feasible, since it is

usually determined by technical restraints, such as the limited height of the

platform enclosing the floaters or the limited height of the hydraulic rams

if a hydraulic conversion is used. The penalty of the implemented stroke

constraints in this work could be less severe if a time-dependent control is

applied which additionally brakes the floater, when its displacement becomes

too large. In that case the optimal tuning is only negatively affected during

some temporary time frames, instead of during the entire sea state. However,

a very accurate and reliable control system is required.

In energetic waves with large periods, the optimal control forces become
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very large. In particular the optimal tuning force might be enormous, compared

to the required damping force. If this tuning force is supposed to be delivered

by the power take-off system, it could result in an uneconomic design of

the latter. The force restriction may reduce this tuning force substantially,

however, with a serious drop in absorption performance as a consequence.

A second problem that may arise if the tuning is to be provided by the power

take-off, is that small deviations in the magnitude and phase of this tuning force

may be pernicious for the power absorption of the buoy. For these reasons it

is advised to tune the buoy with a mechanism that is independent of the power

take-off, e.g. with latching or by adding a supplementary inertia.

So far, the described design aspects have been applied to a single body. In

practice, several point absorber devices consist of multiple oscillating buoys.
Hence, it is of interest to investigate how these interacting bodies behave and

what the influence of their interaction is on the design parameters and power

absorption. Array configurations of 12 and 21 closely spaced buoys, with

diameters of 5 m and 4 m, respectively, have been studied. As expected, the

power absorption of a point absorber in an array of closely spaced bodies is

on average smaller than that of an isolated buoy, due to the wake effect. For

more stringent constraints, this effect is less pronounced, since the front buoys

absorb less power and thus more power remains available for the rear buoys in

the array. For this reason, it is found that the power absorption reduction due

to the implementation of constraints is less severe for an array configuration

than for a single buoy. Hence, the restrictions have a ‘smoothing’ effect on

the power absorption of the buoys, meaning that the difference in performance

between the front and rear buoys is diminished as the constraints are more

restrictive.

It is also observed that applying the optimal control parameters for a

single body, results in a suboptimal performance of the array. The best array

performance is obtained with individually tuned buoys, i.e. each buoy has

its own optimal control parameters, dependent on the position in the array.

With this individual tuning, it is estimated that the yearly energy absorption at

Westhinder on the Belgian Continental Shelf of the considered arrays, with 12

large or 21 smaller buoys, is in the order of magnitude of 1 GWh.
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bext external damping coefficient [kg/s]

Bext external damping matrix (NxN) [kg/s]
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Cw wetting factor [-]

d buoy draft [m]
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dw water depth [m]

D buoy waterline diameter [m]

Df depth function [-]
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f frequency [Hz]

fn natural frequency [Hz]

fp peak frequency [Hz]

F force [N]

Farch Archimedes force [N]

Fd damping force [N]
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velocity [m]
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K stiffness matrix (NxN) [kg/s2]

Kr radiation impulse response function [kg/s2]
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L wave length [m]
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m̄a normalized added mass (for heave motion) [kg]

ma,∞ high frequency limit of the added mass (for heave motion) [kg]

mbr mass to brake the buoy motion [kg]

msm small mass (used to estimate the friction force) [kg]

msup supplementary mass [kg]

mtot total mass [kg]

M buoy mass matrix (NxN) [kg]

Ma added mass matrix (NxN) [kg]

Msup supplementary mass matrix (NxN) [kg]
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n vector normal to body surface [-]

nf number of frequencies [-]

p pressure [bar = 105 Pa]

p0 arbitrary constant in Bernoulli’s equation [bar = 105 Pa]

Pabs absorbed power [W]

Pabs,av average power absorption [W]
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r radial coordinate [m]

R radius of hemisphere - waterline radius of point absorber [m]

R∗ Pearson correlation coefficient [-]

Rb distance to body [m]

SFA
force amplitude spectrum [N2s]

SzA buoy displacement amplitude spectrum [m2s]

Sζ wave amplitude spectrum [m2s]

t time [s]

T period [s]

Tn natural period [s]

Tp peak period [s]

U entry velocity [m/s]

U0m measured velocity at initial time step [m/s]

v velocity vector [m/s]

V submerged buoy volume [m3]

z buoy position - vertical coordinate [m]

zpl platform motion [m]

Z buoy position vector (Nx1)[m]

Zm mechanical impedance [m/s]

Zrad radiation impedance [m/s]

β deadrise angle [deg][rad]

βi angle of wave incidence [deg][rad]

βmot position phase angle [deg][rad]
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βFex heave exciting force phase angle [deg][rad]

βv velocity phase angle [deg][rad]

γ peak enhancement factor [-]

ζ wave elevation, in slamming context: water elevation at

intersection with body [m]

ζd damping factor [-]

η power absorption efficiency (= ratio of incident power to

power available within the device width) [-]

λp capture width [m]

ρ mass density of fluid [kg/m3]

σ spectral width parameter [-]

φ velocity potential [m2/s]

φI incident wave potential [m2/s]

φR radiation potential [m2/s]

φD diffraction potential [m2/s]

ω angular frequency [rad/s]

ωn natural angular frequency [rad/s]



Glossary
The glossary is partly based on the ‘Marine Energy Glossary’, developed by

The Carbon Trust and Entec (2005).

Absorption
efficiency

The ratio of the absorbed power to the incident

power available within the width of the device (see

also efficiency).

Absorption width Width of the wave front containing the same

available power as the power ‘absorbed’ by the

device in the same wave climate.

Buoy Floating body, part of a point absorber system. Its

horizontal dimensions are small compared to the

incident wavelengths.

Capacity factor The ratio of the average power production of

a device to the rated power production. This

corresponds to the energy production during a large

period of time divided by the installed capacity

multiplied by the same time period.

Capture width Width of the wave front containing the same

available power as the useful power captured by the

device in the same wave climate. (Capture width

is sometimes used to refer to the ‘produced’ power

instead of the ‘absorbed’ power.)

Efficiency Ratio of output power to input power. However, the

exact meaning is context dependent. In the context

of this work, it means the ratio of the absorbed

power to the incident power available within

the width of the device (‘Absorption efficiency’).

Component efficiencies, e.g. turbine efficiency

and generator efficiency are not included. The

‘overall efficiency’ is the multiple of the absorption

efficiency with the component efficiencies.
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Heave Vertical motion of object.

Ideal fluid An inviscous fluid.

Installed capacity The maximum power that the device can deliver,

generally corresponding to the installed capacity of

the generator.

Irrotational flow Flow with zero vorticity.

Latching A way to realize phase control. In case of point

absorbers, the body is locked or ‘latched’ during

a certain time and then released. Latching can

make the buoys operate closer to or in resonance

conditions and may hence increase the power

absorption. It is particularly interesting for systems

with a smaller natural period than the incident wave

periods.

Power matrix A table displaying the power production for different

sea states. Since a sea state is characterized by a

representative height (e.g. Hs) and a representative

period (e.g. Tz or Tp), the power matrix has axes of

height and period.

Rated power Maximum power that can be produced, generally

determined by the installed capacity of the

generator.

Response amplitude
operator

Frequency dependent parameter, describing the

response of a system to a wave with amplitude equal

to unity.

Scatter diagram A table showing the occurrence frequencies of

several sea states at a certain location. With a scatter

diagram and a power matrix of a device, the yearly

energy production can be determined.

Tuning ratio Ratio of the natural period of the tuned point

absorber (including the supplementary mass) to the

period of the incident wave.
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HYDRODYNAMIC DESIGN OPTIMIZATION OF WAVE

ENERGY CONVERTERS CONSISTING OF HEAVING

POINT ABSORBERS





Introduction

Situation and history

The development of renewable energy technologies is gaining considerable

importance nowadays. A particular incentive for some developed regions

like the European Union to stimulate the development of renewable energy

applications is their vulnerable position, due to the dependence on imports of

fossil fuels from other countries. A second reason is the shortage of supply

of those fossil fuels and a third motivation comprehends the global warming

issues. Inspired by these concerns, the European Council has set some targets

in 2007 to tackle climate change and the energy problem, known as ‘20 20 20

by 2020’. These key targets are [1]:

• A 20 % share of renewable energy in 2020. For comparison, in 2005,

only 8.5 % of the final energy consumption in the European Union was

covered by renewable energy [2].

• A reduction of at least 20 % in greenhouse gas emissions by 2020

compared to the values of 1990 [3], which might rise to 30 % if other

developed countries are committing to comparable emission reductions.

• A saving of 20 % in energy consumption through energy efficiency.

Renewable energy sources are defined as sources that are ‘inexhaustible’

or than can be replenished in a short period of time. Examples are solar, wind

and geothermal energy, hydropower, biomass (wood waste, municipal solid

waste and biogas) and ocean energy. Compared to other, well-established

renewable energy technologies, ocean energy applications are generally still

in the testing-phase or pre-commercial stage. They can be subdivided in five

categories: wave energy, tidal energy, marine current, temperature gradient

and salinity gradient [4]. The focus of this work lies on wave energy, which is

a concentrated form of wind energy. Waves originate from wind passage over

the surface of the sea.
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Research on wave energy was initiated after the oil crisis in 1973.

Pioneering researchers were Salter [5], Budal and Falnes [6–8] and Evans

[9, 10]. Most of the research at the time was dedicated to oscillating bodies.

In the 1980s, when the oil prices declined, the interest in wave energy nearly

disappeared. Funding for wave energy research increased again in the late

nineties, due to the Kyoto conference on the reduction of CO2 emissions and

the growing awareness of shortness and insecurity of energy supply. Up to

date, several different techniques have been invented to convert the energy

from the waves into electrical energy. In 2006, about 53 different wave energy

technologies have been reported in [4]. They are typically classified according

to the type of conversion:

• A point absorber consists of a buoy with horizontal dimensions that

are small compared to the incident wave lengths. The buoy oscillates

according to one or more degrees of freedom. Energy is absorbed

by damping the buoy motion and it is converted into electricity by a

generator. An example of a pitching point absorber is Salter’s duck

[5]. Some heaving multi-point absorber systems are the FO3 [11], the

Manchester Bobber [12] and the Wave Star [13].

• An oscillating water column generally consists of a hollow structure

that is partially submerged below the mean sea level. Due to the waves,

the water level in the chamber rises and falls and the air above the

water column is compressed, respectively, expanded through a turbine.

The turbine is connected to a generator, which converts the mechanical

energy into electrical energy. Pico power plant [14] is an example of an

oscillating water column.

• An overtopping device captures overtopped waves in a reservoir above

sea level. The water is returned to the sea through low-head turbines.

Examples are the Wave Dragon [15] and the Sea Slot-cone Generator

(SSG) [16].

• An attenuator is typically a slender, flexing device, installed parallel to

the wave propagation direction. A well-known example is the Pelamis

[17].

Devices that are facing the waves (installed parallel to the wave crests)

are called terminators. Some oscillating water columns and overtopping
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devices operate as a terminator.

• Others. The last category comprises all other technologies that do

not fit the aforementioned descriptions. Some sources [4, 18, 19] have

additional categories such as the ‘submerged device based on pressure

differential’. The Archimedes Wave Swing is an example of this type,

but it might also be regarded as a special, submerged point absorber.

Those numerous devices are based on a whole range of different technolo-

gies. Even within the category of point absorbers, several ideas and concepts

have been launched, involving a variety of engineering disciplines. Hence,

wave energy research is spread over many different topics. Since most of

the concepts are not yet in a mature nor commercial stage, it might not be

surprising that various aspects have not yet been fully studied up to date.

This study focuses on some specific hydrodynamic design aspects and tries

to highlight some important phenomena that need to be taken into account in

the design process of heaving point absorber systems.

Objective and approach

Earlier research on point absorbers mainly focussed on power absorption max-

imization, often in unconstrained conditions. Although substantial theoretical

work as well as numerical and experimental studies have been performed,

almost none of the projects resulted in the construction of a prototype device.

Gradually, the practical feasibility became more important, mainly through

the impulse of private investors. More recently, for instance, some researchers

implemented motion constraints or slamming restrictions in their control to

avoid unrealistic results, e.g. [20,21]. The basis of the present work is inspired

on the latter study by Vantorre, Banasiak and Verhoeven.

The aim of this research work is to optimize the design of heaving

point absorbers, taking into account several realistic restrictions, originating

from practical limitations. For this purpose, a numerical model has been

developed in MATLAB that solves the equation of motion of heaving point

absorbers in frequency and time domain. The model is fed with input on the

hydrodynamic parameters, obtained with a commercial BEM code, WAMIT

[22]. It has been validated by means of experimental tests in the wave flume
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of Flanders Hydraulics Research. With the numerical model, the influence

of the geometrical buoy parameters is investigated in irregular unidirectional

waves. Furthermore, the performance of closely spaced, interacting bodies is

studied for the wave conditions on the Belgian Continental Shelf. The control

parameters of the different point absorbers are individually optimized, leading

to a non-negligible increase in power absorption, compared to applying the

optimal control parameters of a single body.

The restrictions implemented in the numerical model are stroke, control

force and slamming constraints. The stroke constraint originates from me-

chanical limitations on the stroke of the point absorber, e.g. imposed by the

limited height of a hydraulic piston. The force control restriction is introduced

to decrease the control forces, particularly for the case where the tuning is

to be delivered by the power take-off system. This restriction is imposed by

electromechanical and/or economic limitations. The third constraint is the

slamming constraint, intended to reduce the probability of the buoys to rise

out of the water and being subjected to bottom slamming. This constraint is

imposed by the hydrodynamic limitations and for this reason, special attention

will be drawn to this phenomenon. Water-entry phenomena are associated with

certain hydrodynamic pressures and loads. These impact problems are studied

by means of small scale and large scale drop tests. In addition, occurrence

probabilities of slamming phenomena have been assessed numerically. The

hydrodynamic impacts and occurrence probabilities may serve as input for the

structural design of the floater.

This PhD research is funded by a PhD grant of the Institute for the

Promotion of Innovation through Science and Technology in Flanders. Some

of this work has been conducted within the framework of the SEEWEC1

project. SEEWEC is European project in which 11 different research institu-

tions collaborated to ameliorate the design of a multiple point absorber system,

called the FO3, developed by Fred Olsen Ltd. Figure 1 shows a picture of the

laboratory rig, named Buldra, built on a scale 1/3.

1SEEWEC: Sustainable Economically Efficient Wave Energy Converter, EU project within

the 6th framework programme.
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Figure 1: Picture of Buldra at Jomfruland, Norway. ©Fred Olsen

Outline of this work

The first Chapter of this work provides the reader with a short theoretical

background. The basics of hydrodynamics theory are outlined and the

fundamental principles of point absorber theory are explained. A literature

review on the state of the art of the different aspects treated in this thesis, is

given at the beginning of each Chapter.

In the second Chapter, the considered point absorber concept is described

and an introduction to WAMIT is given. Next, the details of the frequency

domain model are given. The calculation of the power absorption and

implementation of the constraints are explained. Finally, simulation results

for different geometrical design parameters and constraints are presented.

The third Chapter contains the implementation of the time domain model

and a comparison of the outcome with the results of the frequency domain

model.

Chapter four deals with the physical tests in the wave flume of Flanders

Hydraulics Research in Antwerp. The hydrodynamic parameters obtained

with WAMIT are compared with the experimental data obtained from decay

tests and wave exciting force experiments. Performance tests in regular and

irregular waves have been carried out for different buoy shapes and drafts and

are used for the validation of the numerical models.
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In Chapter five, the methodology to assess the performance of multiple

closely spaced point absorbers is described and applied to two array configura-

tions. Three different strategies to determine the optimal control parameters of

multiple bodies are compared. The influence on the angle of wave incidence

and effects of tuning errors on the array performance is assessed in this

Chapter. In a last part, the yearly energy absorption at Westhinder on the

Belgian Continental Shelf is estimated.

Chapter six starts with an extensive description of literature results on

water-entry problems of axisymmetric bodies. Next, the laboratory test-setup

and results of small scale drop tests are given. The drop tests are performed

with three test objects: a hemisphere and two cones with deadrise angles of

20° and 45°.

In Chapter seven, large scale outdoor drop tests are presented. Two large

composite test bodies are lifted up to 5 m by a crane and then dropped in the

Watersportbaan, a canal in Ghent. The pressure, deceleration and deformation

of the bodies are measured and presented.

Chapter eight combines the knowledge on bottom slamming loads with

time domain simulations of oscillating point absorbers. The time domain

model is used to determine occurrence probabilities of emergence and the

probability of the associated impact loads for a buoy operating in three

different sea states. Several levels of slamming restrictions are implemented

and the required stringency of slamming constraints is evaluated.

In the final Chapter, the most important findings of this work are high-

lighted and some recommendations for future research are given.

Chapters 2, 4, 5, 6 and 8 are partly or nearly entirely based on peer-

reviewed conference papers or journal papers.
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CHAPTER 1

Theoretical background

� � �
In this Chapter, a theoretical background is given on hydrodynamics
theory and point absorber theory in a concise way. This Chapter
is particularly intended for the reader who is not familiar with these
subjects. The purpose of the first part is to briefly describe the
underlying theory of WAMIT, the software program used to study the
wave-body interactions in the next Chapters. The basics of linear
potential theory as well as the assumptions behind it are reviewed. It
is clarified how the forces acting on the floating body are determined.
In a second part, the solution of the differential equation, describing the
motion of the oscillating body, is derived. At first, the solution for a
mass-spring-damper system is considered, which is then extended for a
point-absorber subjected to external control forces, such as tuning and
damping forces. Finally, some important point absorber characteristics
are described and explained.

1.1 Introduction

In the next Chapters, the software program WAMIT [1] will be utilized

to determine the hydrodynamic forces, experienced by the oscillating point

absorber. The outcome of WAMIT is used as input in the frequency and time

domain models that solve the equation of motion of a controlled, heaving point

absorber. Since it is essential to have a good understanding of the theory and

assumptions behind the ‘black box’, some principles of hydrodynamics theory
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based on linear potential theory are described in the next Sections as well as

some basics about point absorbers. Further elaboration and more details can

be found in the literature. A large amount of books and courses is available,

particularly on hydrodynamics theory, among them [2–5].

1.2 Hydrodynamics

1.2.1 Fluid mechanics

The equation of continuity together with the Navier-Stokes equations describe

the motion of a fluid. The continuity equation is based on the concept

of conservation of mass, the Navier-Stokes equations are based on the

conservation of momentum. The latter equations express that changes in

momentum of fluid particles are dependent on an internal viscous term and on

the external pressure applied on the fluid. The Navier-Stokes equations are the

fundamental basis of almost all Computational Fluid Dynamics (CFD) codes.

Consisting of a coupled system of non-linear partial differential equations, the

Navier-Stokes equations are generally difficult and time-consuming to solve.

Hence, to facilitate the practical applicability, some assumptions are often

introduced. Since the purpose of this Section is to briefly describe the theory

on which WAMIT is based, the emphasis is laid on linear potential theory for

inviscid fluids. The assumptions made are: the fluid is incompressible and

inviscid (= ideal); the flow is irrotational and the effect of surface tension is

neglected.

Potential flow

In the next paragraphs, a Cartesian coordinate system is adopted with three

orthogonal axes: x, y and z. The z-axis is assumed vertical and upward

directing. The velocity vector of a fluid particle is indicated with the symbol

v = [v1; v2; v3]. Since the flow is assumed irrotational, i.e. ∇ × v = 0, the

velocity vector can be written as the gradient of the velocity potential, denoted

by the scalar φ:

v = ∇φ (1.1)

Combining this equation with the equation of continuity for incompressible

fluids, i.e.∇ · v = 0, results in the Laplace equation:
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∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 (1.2)

Bernoulli’s equation

For inviscid fluids, the Navier-Stokes equations can be simplified, resulting

in equations known as the Euler equations. Integration of the latter yields

Bernoulli’s equation:

p = −ρ
∂φ

∂t
− 1

2
ρ(∇φ)2 − ρgz + p0(t) (1.3)

where p0 is an arbitrary constant, that is independent of space for irrotational

flow. Linearizing Bernoulli’s equations leads to Eq. (1.4):

p = −ρ
∂φ

∂t
− ρgz + p0(t) (1.4)

The pressure consists of a hydrodynamic and a hydrostatic part, corresponding

to the first and second term, respectively, in Eq. (1.4). In order to determine the

hydrodynamic pressures, a velocity potential needs to be found that satisfies

the Laplace equation (1.2). Moreover, the velocity potential must satisfy

several boundary conditions. These conditions are divided in kinematic and

dynamic boundary conditions and will be discussed in the next Section.

Boundary conditions

Kinematic boundary conditions
In an ideal fluid, a fluid particle located at the surface of a body at a certain time

instant, will remain lying on that body surface. The fluid particle can neither

go through nor come out of the body boundary. In other words, the normal

velocity component of a fluid particle on a motionless solid surface must be

equal to zero:

∂φ

∂n
= 0 on the body surface (1.5)

where n denotes the unit vector normal to the body surface in the considered

point. For instance on the seabed, this condition must be fulfilled for z = −dw,

with the water depth denoted by dw. For a moving body, with a normal velocity
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component vn at its surface in the considered point, the boundary condition is

given by:

∂φ

∂n
= v · n = vn on the body surface (1.6)

The kinematic boundary condition on the free surface expresses that a fluid

particle initially lying on the free surface will remain on the free surface. This

means that z− ζ(x, y, t) must be a constant at the free surface or alternatively:

D
Dt

[z − ζ(x, y, t)] = 0 on the free surface (1.7)

where the operator D
Dt is the total derivative: D

Dt = ∂
∂t + v1

∂
∂x + v2

∂
∂y + v3

∂
∂z .

Hence, Eq. (1.7) is equivalent with:

∂φ

∂z
=

∂ζ

∂t
+ v1

∂ζ

∂x
+ v2

∂ζ

∂y
on the free surface (1.8)

The particle velocity components are small compared to the wave velocity

and the derivatives of the wave elevation along x and y direction, i.e. ∂ζ
∂x and

∂ζ
∂y are also small, since the wave elevation is assumed small compared to the

wave length. Hence, the products in the second and third term of Eq. (1.8) are

of second order and can be omitted. This results in the linearized kinematic

boundary condition:

∂ζ

∂t
=

∂φ

∂z
on the free surface (1.9)

Dynamic boundary conditions
The dynamic boundary condition on the free surface relies on the assumption

that the pressure outside the fluid is constant. This can be expressed as:

Dp

Dt
= 0 on the free surface (1.10)

Substitution of the expression for the pressure (1.4) in Eq. (1.10) yields:

D
Dt

(−ρ
∂φ

∂t
− ρgz + p0(t)) = 0 on the free surface (1.11)

Combining the latter expression (1.11) with the kinematic boundary condition

on the free surface, i.e. z = ζ(x, y, t), gives:
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∂2φ

∂t2
+ g

∂ζ

∂t
= 0 on the free surface (1.12)

If the wave amplitude is small compared to the wave length, which is assumed

within linear theory, the free surface conditions may be linearized, i.e. the

kinematic and dynamic boundary conditions may be applied at the still water

level (SWL), instead of at z = ζ, as it actually should be. Taking this

linearization into account and substituting Eq. (1.9) in condition (1.12) gives

the linearized boundary condition on the free surface:

∂2φ

∂t2
+ g

∂φ

∂z
= 0 at z = 0 (1.13)

1.2.2 Regular progressive waves

A progressive wave travels in a particular direction and transfers energy, in

contradiction to a standing wave. The first to develop the theory for linear

progressive waves was Airy. The theory is based on the assumption of small

amplitudes and is therefore called the small amplitude wave theory or Airy

theory.

The velocity potential φI (in literature also often indicated by φ0) of an

incident regular progressive wave must satisfy the Laplace equation (Eq. (1.2))

and the following boundary conditions:

• the boundary condition at the seabed (Eq. (1.5))

• the boundary condition at the free surface (Eq. (1.13))

The solution for a regular, plain progressive wave is given by:

φI =
gζA

ω

cosh(kw(z + dw))
cosh(kwdw)

sin(kwx− ωt + δ) (1.14)

The derivation of this solution can be found in many reference works,

among them in Chapter 3 of [2] and Chapter 1 of [3]. In Eq. (1.14), the

gravitational acceleration is denoted by g, the amplitude of the undisturbed

wave is given by ζA, the angular frequency of the wave is indicated with ω and

the phase angle with δ. The symbol kw is the wavenumber and is defined as:

kw =
2π

L
(1.15)
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where L is the wavelength, that can be derived from the dispersion relation:

ω2

g
= kwtanh(kwdw) (1.16)

Eq. (1.16) expresses a relationship between the wave frequency and the

wavelength. With linear potential theory, the dynamic wave pressure and the

fluid particle velocities can be obtained. Both quantities are used to determine

the mean available power per unit crest length, as the time averaged product

of the hydrodynamic plus hydrostatic force and the particle velocities in the

direction of the wave propagation:

Pavail =
1
T

T∫
0

ζ∫
−dw

p v1(dz · 1)dt =
1
8
ρgH2Cg (1.17)

where T is the wave period, H the wave height (= 2·ζA), Cg is the group

velocity given by:

Cg = nC =
C

2

(
1 +

2kwdw

sinh(2kwdw)

)
(1.18)

and C is the wave velocity, defined as the ratio of the wavelength to the wave

period.

The depth function Df is introduced as:

Df (kwdw) = 2ntanh(kwdw)=
[
1+

2kwdw

sinh(2kwdw)

]
tanh(kwdw)(1.19)

Substitution of Eqs. (1.16) and (1.19) in Eq. (1.17), yields the following

expression for the average available wave power per unit crest length:

Pavail =
ρg2Df (kdw)ζ2

A

4ω
(1.20)

1.2.3 Wave-Body interactions

An offshore structure that is freely floating in ocean waves has six degrees

of freedom: three translational and three rotational degrees of freedom

(Figure 1.1).
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• Surge: horizontal, longitudinal motion along the x-axis.

• Sway: horizontal, transverse motion along the y-axis.

• Heave: vertical motion along the z-axis.

• Roll: angular motion around the x-axis.

• Pitch: angular motion around the y-axis.

• Yaw: angular motion around the z-axis.

Figure 1.1: Definition of the coordinate system and the 6 degrees of freedom.

Some structures are not freely floating, but are restrained to fewer degrees

of freedom due to e.g. their connection to the seabed. For instance, the point

absorber that will be considered in this study, is restrained to heave mode

only. For generality, the described theory in this Section will be applied to

all six modes of motion. The body displacements and rotations are comprised

in the six-dimensional generalized vector ξ and the velocity components are

comprised in the generalized vector v.

When wave-body interactions are considered, a velocity potential needs

to be found that does not only satisfy the Laplace equation and the boundary

conditions on the seabed and the free surface, but also the boundary conditions

on the submerged body surface and a boundary condition at infinity. To find a
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solution for the velocity potential, the problem is split up in subproblems, each

resulting in a velocity potential. The appropriate velocity potential of the entire

problem is then obtained by linearly superimposing the velocity potentials of

the subproblems. Two additional problems need to be considered: the radiation

problem and the diffraction problem.

The radiation problem

The body undergoes a forced harmonic motion in originally still water. Due

to this forced motion, waves are radiated. The corresponding flow is described

by the radiation potential, indicated by φR. The potential can be expressed as:

φR =
6∑

i=1

ξiφ
(1)
i (1.21)

where φ
(1)
i is the potential per unit displacement amplitude in mode i. The

radiation potential must fulfill the previously described boundary conditions

plus the boundary condition on the body:

∂φi

∂n
= vini (1.22)

Moreover, the velocity potential must fulfill a radiation condition at infin-

ity, also called the ‘far field radiation condition’, expressing the conservation

of energy. It can be shown [3] that the potential must be of the form:

φi = jCf
ejkwRb

√
Rb

for Rb →∞ (1.23)

where Rb is the distance to the body and Cf a constant. The conservation of

radiated energy is expressed in the denominator with
√

Rb.

The diffraction problem

The diffraction problem is studied on the body, while it is kept fixed in a regular

wave field. The flow of the diffracted waves is described by the diffraction

potential, indicated by φD or also commonly denoted by φ7. The diffraction

potential must satisfy the Laplace equation (1.2), the boundary condition on

the seabed (1.5) and on the free surface (1.9). Furthermore, the sum of the
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incident and diffracted potential must fulfill the body boundary condition, i.e.

∂(φI +φD)/∂n = 0 on the submerged surface of the body, Sb. This leads to:

∂φD

∂n
= −∂φI

∂n
on Sb (1.24)

The diffraction potential must also satisfy the far field radiation as

formulated in (1.23) for the radiation potential. Hence, most of the boundary

conditions are identical to those described for the radiation potential. However,

the boundary condition at the body surface is different: the flow has a

predescribed velocity normal to the body surface.

Note that some authors indicate the previously mentioned diffraction

potential by φs, the ‘scattered potential’. In that case, the term ‘diffraction

potential’ is then often used to refer to the sum of the incident potential and

scattered potential.

1.2.4 Pressures and forces

When a solution is found for each of the subproblems, the total velocity

potential φ can be computed and is given in Eq. (1.25), assuming that all

phenomena are harmonic in time with angular frequency ω.

φ = φI + φR + φD

= Re

[(
6∑

i=1

ξ̂iφ̂i + φ̂I + φ̂D

)
ejωt

]
(1.25)

where φ(t; x, y, z) = Re[φ̂(x, y, z) · ejωt]. The hat symbol signifies the

complex amplitude of the velocity potential and the body displacement vector.

The pressure is then obtained from Bernoulli’s equation (1.4), assuming p0 =
0.

p = −ρ
∂φ

∂t
− ρgz

= −ρ Re

[
jω

(
6∑

i=1

ξ̂iφ̂i + φ̂I + φ̂D

)
ejωt

]
− ρgz (1.26)

The hydrodynamic and hydrostatic forces (Fh) and moments (Mh) are

determined by integration of the pressure on the submerged body surface Sb:
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Fh =
∫∫
Sb

pndS (1.27)

Mh =
∫∫
Sb

p(r× n)dS (1.28)

where n denotes the normal vector on Sb and r is the position vector. The

forces and moments are often expressed in one generalized force vector with

six degrees of freedom, denoted by F. The first term in Eq. (1.26) becomes the

‘radiation force’, indicated with Frad. It consists of a part in phase with the

acceleration and a part in phase with the velocity:

Frad,j =
6∑

i=1

−maji

d2ξi

dt2
− bhydji

dξi

dt
(1.29)

where maji is known as the ‘added inertia’ and bhydji
as the linear ‘hydrody-

namic damping’. The index ji denotes that the force acts in the direction of j

and is induced by an oscillation in the direction of i. Integration of the second

term, containing the incident wave potential, gives the ‘Froude-Krylov force’.

This is the force which the body experiences from the incoming wave, as if

the body itself does not disturb the wave field. Integration of the third term,

with the diffraction potential, results in the ‘diffraction force’. The sum of

the Froude-Krylov force and the diffraction force is called the ‘exciting wave

force’ or shortly ‘exciting force’, denoted by Fex. Integration of the last term

in Eq. (1.26) yields -after subtraction of the gravity forces- the hydrostatic

restoring force, indicated with Fres.

When all the forces acting on a floating structure are known, the motion of

the structure can be derived from Newton’s second law of motion:

6∑
i=1

[
(mji + maji)

d2ξi

dt2
+ bhydji

dξi

dt
+ kjiξi

]
= F̂exje

jωt (1.30)

where mji and kji are the elements on the jth row and ith column of the

inertia matrix and stiffness matrix, respectively. Eq. (1.30) contains a set of

coupled differential equations. When the body is restricted to one degree of
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freedom (e.g. a freely heaving buoy), only a single differential equation is left.

In the next Section the solution of this differential equation is discussed. In

the subsequent Sections, external damping and tuning forces will be added

to obtain the equation of motion of the considered point absorber. Since only

heave mode is considered in the rest of this thesis, the index ‘3’ will be dropped

to denote the heave mode. Hence, in the next Sections and Chapters, the

following notation will be used:

m = m33

ma = ma33

bhyd = bhyd33

k = k33

Fex = Fex3

v = v3

1.3 Point absorbers

1.3.1 Mass-spring-damper system

The behaviour of a heaving point absorber can be compared to that of a

mechanical oscillator, composed of a mass-spring-damper system with one

degree of freedom, subjected to an external force in the direction of the degree

of freedom. A schematic representation is given in Figure 1.2. Some basic

principles of mass-spring-damper systems will be rehearsed in this Section in

a concise way. More details can be found in the literature, e.g. [2], [5].

The system is linearly damped with damping coefficient bd. An external

harmonic force is applied on the system, with amplitude FA and angular

frequency ω. According to Newton’s law, the equation of motion, Eq. (1.31),

consists of an inertia force md2z
dt2

, a damping force bd
dz
dt , a restoring force kz,

and the external force FAsin(ωt):

m
d2z

dt2
+ bd

dz

dt
+ kz = FAsin(ωt) (1.31)

The homogeneous or transient solution of this differential equation corre-

sponds with the solution for a free oscillation. Omitting the external force
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Figure 1.2: Schematic representation of a mass-spring-damper system.

(FAsin(ωt) = 0) results in Eq. (1.32):

m
d2z

dt2
+ bd

dz

dt
+ kz = 0 (1.32)

Assuming a solution of the form:

z = zA · eqt (1.33)

with zA and q unknown constants. Substitution of z in Eq. (1.32) gives:

(
mq2 + bdq + k = 0

) · zAeqt = 0 (1.34)

Since Eq. (1.34) must be fulfilled for all t, it can be simplified to:

mq2 + bdq + k = 0 (1.35)

This quadratic equation has two solutions for q:

q1,2 = − bd

2m
±
√(

bd

2m

)2

− k

m
(1.36)

When the discriminant D equals zero, Eq. (1.35) has only one solution. In

that case the oscillation is critically damped, meaning that the systems returns

to its equilibrium position in the quickest possible way without vibrating
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around the equilibrium position. The damping coefficient associated with this

case, is called the critical damping coefficient, bc. Solving D = 0 for bd gives

the critical damping coefficient:

bc = 2
√

km = 2mωn (1.37)

with ωn the natural pulsation of the system, given by Eq. (1.38):

ωn =

√
k

m
(1.38)

The ratio of the damping coefficient to the critical damping coefficient is called

the damping ratio and is denoted by ζd:

ζd =
bd

bc
(1.39)

If ζd > 1, the system is overcritically damped. An overdamped system

returns to its equilibrium position in a non-oscillatory way, requiring more time

than a critically damped system (with the same initial conditions). In case ζd

< 1, the system is called an underdamped system. The considered heaving

point absorber can generally be considered as an underdamped mechanical

oscillator.

Figure 1.3 shows the difference in response between an overdamped,

underdamped and critically damped system.

For an underdamped system, the values of q can be rewritten as Eq. (1.40),

utilizing Eqs. (1.37-1.39):

q1,2 = −ζdωn ± iωn

√
1− ζ2

d (1.40)

According to Eq. (1.33) and Eq. (1.36) the solution of z becomes:

z = A1e
q1t + A2e

q2t (1.41)

The constants A1 and A2 are determined by the initial conditions of the

system. Since q1,2 are complex conjugate values, A1 and A2 need to be a

complex conjugate pair as well for z to be real. Replacing A1 and A2 by the

expressions in Eq. (1.42) results in an equivalent expression for the motion z,

which is given in Eq. (1.43):
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Figure 1.3: Motion curves of an underdamped, overdamped and critically damped

system.

{
A1 = 1

2zAf (sinβf − i cosβf )

A2 = 1
2zAf (sinβf + i cosβf )

(1.42)

z = zAf e−ζdωntsin(
√

1− ζ2
d ωnt + βf ) (1.43)

where the index f denotes ‘free oscillation’. The exponential function e−ζdωnt

is responsible for the decreasing amplitude effect. This function is represented

by black dotted lines in Figure 1.3. The sine function causes the oscillations at

a frequency equal to the damped natural angular frequency, ωd:

ωd =
√

1− ζ2
d ωn (1.44)

The damped free oscillations of a system disappear after a number of

oscillations. The number of oscillations depends on the damping in the system.

The equation of motion can alternatively be expressed in the form of Eq. (1.45),

which is equivalent with Eq. (1.43), adopting the following relationships:

C1 = zAf cosβf and C2 = zAf sinβf .
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z = e−ζdωnt(C1 cosωdt + C2 sinωdt) (1.45)

When an external force is applied on the system, as in Eq. (1.31), the

complete solution of the equation of motion consists of the sum of the free

oscillation, dependent on the initial conditions, and the forced oscillation

or steady-state oscillation, which is called the particular solution of the

differential equation. This particular solution of Eq. (1.31) is of the form:

z = zAs sin(ωt + βs) (1.46)

with zAs the amplitude of the steady-state oscillation and βs the phase angle

between the external force and the motion of the system. The index s denotes

‘steady state’. The parameters, zAs and βs, can be found as explained in

Appendix A:

zAs =
FA[

(k −mω2)2 + (bω)2
]1/2

(1.47)

and

tanβs =
−bdω

k −mω2
(1.48)

To conclude, the complete response of a mass-spring-damper system

subjected to a regular external force is given by:

ztotal = zfree + zforced

= zAf e−ζdωntsin(
√

1− ζ2
d ωnt + βf )

+zAs sin(ωt + βs) (1.49)

(1.50)

1.3.2 Equation of motion of a heaving point absorber

In this Section, the response of a point absorber, oscillating in a harmonic wave

with respect to a fixed reference is discussed. The motion of the point absorber

is restricted to the heave mode only. A schematic view of the considered point

absorber is given in Figure 1.4.
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Figure 1.4: Schematic representation of a heaving point absorber with applied

supplementary mass.

In equilibrium position the floater has a draft d. Due to the vertical wave

action, the floater has a position z from its equilibrium position. The equation

of motion of this point absorber can be described by Newton’s second law:

m
d2z

dt2
= Fex + Frad + Fres + Fdamp + Ftun (1.51)

where m is the mass of the buoy and d2z/dt2 the buoy acceleration. Fex is

the exciting wave force, Frad the radiation force. As stated in Section 1.2, the

radiation force can be decomposed -with linear theory- in a linear added mass

term and a linear hydrodynamic damping term:

Frad = −ma(ω)
d2z

dt2
− bhyd(ω)

dz

dt
(1.52)

The hydrostatic restoring force, Fres, is the Archimedes forces (Farch)

minus the gravity force (Fg). This force corresponds to the spring force in
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Eq. (1.31). With a linear spring constant k, the hydrostatic restoring force can

be expressed as:

Fres = Farch − Fg = ρV (t)−mg = −kz (1.53)

where V (t) is the instantaneous, submerged buoy volume. The spring constant

or hydrostatic restoring coefficient is expressed as: k = ρgAw, where Aw is

the waterline area.

Fdamp is the external damping force, exerted by the power take-off (PTO)

system and Ftun the tuning force to phase-control the buoy. In Section 1.3.5,

it will be explained why a point absorber is typically phase-controlled. The

damping and tuning forces are determined by the power take-off and control

mechanism, respectively, and are in practical applications typically non-linear.

However, for simplicity, they are often assumed linear. In that case the

damping force becomes:

Fdamp = bext
dz

dt
(1.54)

with bext the linear external damping coefficient originating from the PTO and

enabling power extraction.

A linear tuning force can be realized for instance by means of a supple-

mentary mass term [6] or an additional spring term [7]. A supplementary mass

term has been applied in the present study. A principal representation of the

supplementary mass, msup, is given in Figure 1.4. The supplementary inertia

is realized by adding two equal masses at both sides of a rotating belt. In that

way, the inertia of the system can be increased without changing the draft of

the floater. The tuning force is expressed as:

Ftun = msup
d2z

dt2
(1.55)

Other possibilities to effectuate phase-control are discussed in Section 1.3.5.

Taking into account the previous considerations, the equation of motion of the

presented heaving point absorber can be rewritten as:
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(m + msup + ma(ω))
d2z(t)
dt2

+ (bhyd(ω) + bext)
dz(t)
dt

+ kz(t) = Fex(ω, t)
(1.56)

The two external parameters, bext and msup, have to be optimized in order

to maximize the absorbed power. These optimizations will be described in

Chapter 2. Several restrictions will be introduced, in order to avoid unrealistic

solutions, such as extremely large buoy motions.

The steady state solution of Eq. (1.56) has been determined in Section 1.3.1

by Eq. (1.46): z = zA sin(ωt + βmot), where zA en βmot are given by:

zA (ω) =
Fex,A (ω)√

[k − (m + msup + ma(ω)) · ω2]2 + [(bhyd(ω) + bext)ω]2

(1.57)

βmot = βFex − arctan
(

(bhyd(ω) + bext)ω
k − (m + msup + ma(ω))ω2

)
(1.58)

Alternatively, complex notation can be used, simplifying the mathematical

expressions. With v the vertical velocity component and j the imaginary unit,

the buoy motion parameters become:

v =
dz

dt
= vA cos(ωt + βv) = Re[v̂ ejωt]

z =

t∫
0

vdt =
vA

ω
sin(ωt + βv) = Re[

v̂

jω
ejωt]

dv

dt
=

d2z

dt2
= −vAω sin(ωt + βv) = Re[jω v̂ ejωt]

The equation of motion Eq. (1.56) becomes:

Re[[jω (m + msup) + bext +
k

jω
]v̂ ejωt] = (F̂ex + F̂rad) ejωt (1.59)

with F̂ex and F̂rad, the complex amplitudes of Fex and Frad. Introducing the

mechanical impedance, Zm = jω m + bext + k
jω , Eq. (1.59) is expressed as:
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Zm v̂ = F̂ex + F̂rad (1.60)

Analogous, the radiation force in Eq. (1.52) can be formulated as:

Frad = Re
[
[−jω ma(ω)− bhyd(ω)] v̂ ejωt

]
(1.61)

The radiation impedance, Zrad, is introduced as: Zrad = −jω ma(ω) −
bhyd(ω). Hence, the complex amplitude of the radiation force can be written

as:

F̂rad = −Zradv̂ (1.62)

This results in a concise expression for the equation of motion:

(Zm + Zrad) v̂ = F̂ex (1.63)

1.3.3 Power absorption

A harmonically oscillating body is assumed, with velocity v, and subjected to

a force F (t):
F (t) = FA cos(ωt + βF )

v(t) = vA cos(ωt + βv)

The power averaged over a period T can be expressed as:

Pav =
1
2
FAvA cos(βF − βv) (1.64)

In complex notation, Eq. (1.64) becomes:

Pav =
1
2
Re[F̂ · v̂∗] (1.65)

(1.66)

with ∗ indicating the complex conjugate. The average absorbed power of a

point absorber is equal to the average excited power minus the average radiated

power:

Pabs,av = Pex,av − Prad,av (1.67)
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According to Eq. (1.64), the average exciting power can be expressed as:

Pex,av =
1
2
Fe,AvAcos(γ) (1.68)

with γ = βFex − βv the phase shift between Fex,A and vA. Combining

Eq. (1.52) and Eq. (1.64) gives the average radiated power:

Prad,av =
1
2
Re[Zradvv∗] =

1
2
bhydv

2
A (1.69)

with bhyd = Re[Zrad].
Hence, the average power absorption is given by:

Pabs,av =
1
2
Fe,AvA,icos(γ)− 1

2
bhydv

2
A (1.70)

or, alternatively, Pabs,av can be expressed as the power absorbed by the power

take-off system:

Pabs,av =
1
2
bextv

2
A =

1
2
bextω

2z2
A (1.71)

Note that the term ‘power absorption’ is generally used to indicate the

‘average power absorption’ and is simply denoted by ‘Pabs’. When the time-

dependent power absorption is meant, it is usually explicitly mentioned.

1.3.4 Absorption width

The ‘absorption width’ or ‘absorption length’, denoted by λp, is the crest

length over which the total available power corresponds to the absorbed power

or, in other words, the ratio of the absorbed power to the average available

power per unit crest length. It is also called the ‘capture width’. However, the

term capture width generally takes into account the useful power instead of the

absorbed power and thus includes the power losses.

λp =
Pabs

Pavail

=
2L

π

bhyd(ω)bext ω2

[k−(m+ma(ω)+msup)ω2]2+(bhyd(ω)+bext)2ω2
(1.72)

Dividing the absorption width by the diameter of the device results in

the ‘efficiency’. Note that the meaning of the word ‘efficiency’ is context-
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dependent. In this case, it only refers to the absorption efficiency and not to the

efficiency during any other conversion step, e.g. turbine efficiency, generator

efficiency, etc. The absorption efficiency can be very large, even larger than

100 %. This phenomenon is called the ‘point-absorber effect’ or ‘antenna

effect’ and is explained by the fact that the point absorber is able to absorb a

larger fraction of the power than what is available over its diameter.

In a regular wave with wave length, L, the maximum absorption width of a

heaving point absorber is theoretically (with linear theory) equal to the wave

length divided by 2π.

λp,max =
L

2π
(1.73)

This result was independently derived by Budal and Falnes [8], Evans [9]

and Newman [10]. For an axisymmetric body with three degrees of freedom:

heave, surge and sway, the maximum absorption width is equal to: λp = 3
2πL

[10].

The proof of Eq. (1.73) is given here, according to Falnes [5].

The maximum power absorption occurs when the derivative to the velocity

of Eq. 1.70 equals zero: dPabs,av/dvA = 0. Hence, the optimum amplitude of

the velocity is:

vA,opt =
Fex,A

2bhyd
cos(γ) (1.74)

Consequently, the maximum value of the average power absorption is:

Pabs,av,max =
|Fex,A|2
8bhyd

cos2(γ) (1.75)

The optimum phase shift is obtained for γ = 0. This means that, in optimal

conditions, the buoy velocity is in phase with the heave exciting force. The

amplitude of the exciting force is rewritten as follows, with fex the transfer

function for the heave exciting force:

Fex,A = fex · ζA. (1.76)

The expression for the maximum average absorbed power becomes:

Pabs,av,max =
f2

ex,A

8bhyd
ζ2
A (1.77)
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The hydrodynamic damping coefficient for heave is [5]:

bhyd =
ωkw

2ρg2D(kwdw)
f2

ex,A for heave (1.78)

with kw the wave number and D(kwdw) the depth factor.

Substitution of Eq. (1.78) in Eq. (1.77) gives:

Pabs,av,max =
ρg2D(kwdw)

4ωkw
ζ2
A (1.79)

The total available average power is given by Eq. (1.80):

Pavail =
ρg2D(dwkw)

4ω
ζ2
A (1.80)

The maximum absorption width is found to be equal to L/2π:

λp =
Pabs,av,max

Pavail
=

1
kw

!=
L

2π
(1.81)

Eq. (1.78) expresses a relationship between the exciting wave force Fex and

the hydrodynamic damping coefficient bhyd. A large hydrodynamic damping

coefficient at an angular frequency ω indicates that the system has a large

capacity to radiate waves at that frequency. According to Eq. (1.78), the body

experiences for that frequency also a large excitation force. Hence, a point

absorber that is a good damper at an angular frequency ω is also a good receiver

for waves with the same frequency.

The maximum absorption width can also be obtained directly from

Eq. (1.72). The denominator is minimal when the term [k − (m + ma(ω) +
msup)ω2] is equal to zero. This means that the angular frequency of the system

must equal to the natural angular frequency ωn:

ω =

√
k

m + maω + msup
≡ ω0 (1.82)

The numerator is maximal for bhyd(ω) = bext. When both conditions are

fulfilled, the value for the maximum absorption width is indeed L/(2π). Note

that this is a theoretical optimum. In reality, the buoy velocities will be so

large that second order effects become important. Maximum experimental

absorption widths are smaller and occur for larger damping values as will be
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illustrated in Chapter 4.

1.3.5 Phase control

Generally, the natural frequency of a point absorber system is higher than

the wave frequency so that the condition in Eq. (1.82) is not fulfilled if no

supplementary mass is applied. The natural frequency can be decreased by

adding supplementary mass, as explained in Section 1.3.2, by a flywheel

mechanically coupled with the vertical motion of the buoy, or by an additional

spring term with negative spring coefficient. The effect of this tuning is shown

in Figure 1.5. The solid line shows the water elevation. This line would

correspond to the buoy position if the mass of the buoy were negligible. The

dashed line illustrates the position of the buoy in case the inertia of the point

absorber is increased so that the natural frequency of the device corresponds

to the wave frequency. This is called ‘optimal’ control (tuning).

Water elevation
Position of resonating buoy (with large inertia)
Position of latched buoy (with small inertia)

Figure 1.5: Schematic representation of phase control, based on Falnes [5].

In practical applications it might be difficult to realize the tuning by

changing the supplementary inertia dependent on the incoming waves. The

tuning force, as described in Eq. (1.55) can also be delivered by the power

take-off system. In that case, it might be required to return some energy

back to the sea during some small fractions of each oscillation cycle and
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benefit from this during the remaining time, as stated by Falnes [11]. For

this reason ‘optimum control’ is also denoted by ‘reactive control’. It is clear

that in order to obtain this optimum control in practice, a reversible energy-

converting mechanism with very low conversion losses is required [11]. It will

be shown in this PhD thesis that the required tuning forces and associated

instantaneous power levels might be much larger than the damping force

and the corresponding power absorption values, respectively. Hence, these

tuning forces will influence the design of the power take-off system and might

possibly result in an uneconomic solution. The tuning forces can be limited,

however, this can be associated with large power losses, depending on the

restrictions and the sea states, which will be illustrated in the next Chapters.

Another phase control technique is ‘latching’. A mechanism holds

the floater in a fixed position when it has reached an extreme excursion,

i.e. when the velocity equals zero. The floater is released again at a

certain time (approximately one quarter of the natural period Tn [11]) before

the next extremum in the exciting force occurs. The motion of a point

absorber subjected to latching control is illustrated with the dash-dotted line

in Figure 1.5. Latching induces a non-linear response of the point absorber.

This control technique has been applied in experimental test setups, for

instance with the SEAREV device, resulting in a significant increase in power

absorption [12].
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CHAPTER 2

Frequency domain
modelling

� � �
A linear frequency domain model has been employed to compute the
behaviour of a heaving point absorber system. The hydrodynamic
parameters are obtained with WAMIT, a software package based on
boundary element methods. A linear external damping coefficient
is applied to enable power absorption and a supplementary mass is
introduced to tune the point absorber to the incoming wave conditions.
The external damping coefficient and supplementary mass are the
control parameters, which need to be optimized to maximize the power
absorption. Two buoy shapes are evaluated with different waterline
diameters and drafts. Several constraints are implemented: two
restrictions are imposed on the (relative) buoy motion, i.e. a slamming
and a stroke restriction. A third constraint is imposed on the total
control force that can be applied on the buoy. These restrictions appear
to have a slightly negative to seriously harmful impact on the power
absorption.
This Chapter is partly based on ‘Numerical Modelling of Wave Energy
Absorption by a Floating Point Absorber System’ by G. De Backer et
al. [1] and ‘Performance of a point absorber heaving with respect to a
floating platform’ by G. De Backer et al. [2].
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2.1 Introduction

Whether the numerical models, used to simulate wave energy converters,

are based on frequency or time domain approaches, they usually rely on the

application of boundary element methods (BEM), also referred to as boundary

integral equation methods (BIEM) or panel methods. Boundary element

methods are applied in many different areas such as fluid dynamics, acoustics

and electromagnetics. They have been extensively used in the offshore industry

for over 30 years [3]. With a boundary element method, the numerical

discretization is performed on the boundary of an object, contrary to the

finite element method (FEM), where -in fluid dynamics- the fluid volume is

discretized. BEM are used to solve partial differential equations that can be

formulated as integral equations, with the velocity potential as the unknown in

fluid dynamics applications. Since the numerical simulations in this study are

also based on a BEM package, a short review is given on numerical modelling

of wave energy devices, focussing on BEM applications.

In 1980 Standing [4] predicted the hydrodynamic damping, the added

mass and the pressure amplification ratio at the centre of a submerged duct

device (Vickers device) and calculated the pitch response, the power absorption

efficiency and reaction forces of a 2D pitching ‘duck’ with a BEM code named

NMIWAVE. The results from the 2D duck were compared with experiments

by Salter and a good agreement was found. In the nineties, Pizer [5] employed

a custom made BEM code to evaluate the performance of a solo duck. Later

on Yemm [6] and Pizer [7] numerically modelled the Pelamis wave energy

converter with the BEM approach. In 1996 Lee et al. [8] studied three types of

oscillating water columns with the low-order 3D BEM version of WAMIT [9].

An additional difficulty with OWCs is the presence of an interior domain

within the chamber. Lee et al. applied two different approaches to deal with

this problem. The ‘direct approach’ consists of adapting the dynamic boundary

conditions on the free surface of the aperture. The second approach is based on

the application of ‘generalized modes’, which are extra modes of motions that

are introduced to describe the motion of a virtual, weightless and deformable

piston, representing the free surface of the OWC chamber. Two years later

Brito-Melo et al. [10] presented an adaptation of the BEM code AQUADYN

[11], developed at the Ecole Centrale de Nantes, France, to study OWCs. The

direct method was applied to account for the imposed oscillatory pressure

within the chamber of the OWC. The use of BEM codes for the prediction
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of the performance of OWCs has been experimentally validated by Delauré

and Lewis [12, 13], by applying the technique based on generalized modes in

WAMIT.

Apart from oscillating water columns, BEM packages have been used

to model the performance of point absorber systems. Arzel [14] studied

the hydrodynamic parameters of a heaving buoy, oscillating with respect to

a submerged reference plate. Energy is absorbed from the relative motion

between the two bodies. AQUADYN has been used to determine the exciting

and radiation parameters in frequency and time domain; the time domain

impulse response functions are obtain by inverse Fourier transform of the

frequency domain parameters. Justino [15] studied the performance of

five spherical, submerged point absorbers, also with the numerical program

AQUADYN. He evaluated heaving, surging and swaying spheres with different

interdistances.

Vantorre et al. [16] investigated the hydrodynamic performance of several

buoy shapes with the BEM code Aquaplus [17]. The considered shapes are a

hemisphere, a cone with apex angle 90° and a compound shape, combining

two conical surfaces (a shape with 60° top angle combined with a conical

part with a 120° top angle). All shapes have a submerged, cylindrical upper

part. The compound shape was expected to be most favourable, because of the

large wetted area close to the free water surface, making the buoy benefit from

higher wave excitation forces. The smaller top cone assures a sufficient draft,

reducing the probability of slamming. However, physical experiments revealed

that high viscous losses due to intensive vortex shedding were associated with

this compound shape, resulting in less power absorption.

Payne et al. [18] have used the higher-order method of WAMIT to

investigate the performance of a sloped wave energy device The device

consists of an oscillating buoy rigidly connected to an inclined submerged tube

which is open at both ends. The tube is fitted with a piston that can translate

along the tube axis. The body of water contained inside the tube provides the

piston with a large added inertia. Energy is extracted by damping the relative

motion between the piston and the rest of the device. The numerical results are

validated with experimental tests in [3].

The SEAREV device, developed at the Ecole Centrale de Nantes by

Clément et al. [19], has also been extensively numerically modelled with -

among others- BEM codes, more specifically AQUADYN and ACHILD3D
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[20]. More recently, Taghipour et al. [21] numerically modelled the FO3

device in WAMIT. The interaction between the platform and multiple bodies

are studied, by introducing generalized modes. Since many WEC developers

and researchers are currently using BEM codes to model their devices, the

mentioned list is non-exhaustive. A more elaborate review on the use of BEM

packages to model wave energy devices is given by Payne in [22].

2.2 Concept

The point absorber concept has been discussed in Section 1.3.2 of Chapter 1.

A similar schematic representation is given in Figure 2.1. The point absorber

system consists of a buoy that is restricted to heave mode only. The motion of

the buoy with respect to a fixed reference is linearly damped to enable power

absorption.

 

Supplementary 
inertia 

External damping 
(PTO) 

ζ 

z 

Figure 2.1: Schematic representation of a heaving point absorber with applied

supplementary mass.

In the frequency domain, the equation of motion of the point absorber

(Eq. (1.56)), subjected to a harmonic excitation with angular frequency ω, can

be formulated as:

[−ω2(m+ma+msup)+jω(bext+bhyd)+k
]
ẑ = F̂ex (2.1)
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where ẑ is the complex amplitude of the buoy position and F̂ex the complex

amplitude of the heave exciting force. As aforementioned in Chapter 1, the

mass of the buoy is denoted by m, the added mass by ma the hydrodynamic

damping coefficient by bhyd and the hydrostatic restoring coefficient by k. The

force associated with bext has to be exerted by the power take-off (PTO) and is

called the damping force. A supplementary mass term is added to the equation

to realize a tuning force proportional with the acceleration of the buoy, as

explained in Chapter 1. The hydrodynamic parameters ma, bhyd and Fex are

dependent on both the buoy shape and wave frequency and are calculated with

the BEM software package WAMIT.

2.3 WAMIT

WAMIT [9] is a software program developed for the computation of wave

loads and motions of floating or submerged offshore structures. It is based

on linear (and second-order) potential theory. As stated before, the velocity

potential is determined with the boundary element method. WAMIT solves

the diffraction and radiation problem for a given geometry and for given fre-

quencies and returns the first order hydrostatic and hydrodynamic parameters.

A separate version (6S) has a second-order module, capable of computing

second-order non-linear quantities. The version employed in this work (v6)

is restricted to first order potential theory only.

2.3.1 WAMIT input

Generally, four input files need to be prepared by the user to run WAMIT,

namely the potential control file, the force control file, the configuration file

and the geometry definition file. Different input possibilities exist, which are

well explained in the user manual [9]. Although several input manners are

possible and some parameters may be specified in more than one file, a general

idea of the input expected in the four input files is given below.

• Potential Control file (.pot file). In this file, the number of bodies, N , and

the water depth are specified. The position of each body with respect to a

fixed xyz-axis must be mentioned too. Hence, in case N identical bodies

are to be evaluated, only one geometry definition file of a single body is

required and the positions of the N bodies are listed here. The user must
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also indicate whether the radiation and/or the diffraction problem need

to be solved. The frequencies of interest and the wave heading angles

are listed in this file.

• Force Control file (.frc file). Here, the user indicates the hydrodynamic

parameters that have to be calculated. The centre of gravity of the body

must be specified as well as the matrix of the body radii of gyration and

the coordinates of field points, if needed.

• Configuration file (.cfg file). In this input file, the user can specify

several parameters and computation options. Examples are: the choice

between the direct or iterative solver, the maximum number of iterations

in case the latter solver is chosen, etc.

• Geometry Definition file (.gdf file). This file contains the geometrical

description of the body. Since the free surface boundary conditions are

linearized, only the part of the body below the mean water level needs

to be specified. In the next Section, some more light will be shed on the

description of the geometry.

Geometry description

Two different approaches are possible to discretize the body surface. The first

method is the low-order method (or panel method), the second method is the

higher-order method.

In the low-order method, the body surface is approximated with small

quadrilateral panels. The velocity potential is assumed constant in each panel.

Hence, the integral equations with the velocity potential as unknown, consist

of a set of piecewise constant integrals that must be satisfied at the centroid of

each panel.

The panels are described by the coordinates of each vertex. This coordinate

list can be generated in several ways, but probably the most easy way is by

using the CAD package MultiSurf [23]. MultiSurf is a geometric modelling

program, providing the tools to create the body surfaces. An example of a mesh

is presented in Figure 2.2. The generated mesh can be exported to a PAT-file,

which is then converted into the required GDF file with a special MultiSurf

add-on.
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Figure 2.2: MultiSurf mesh, representing the cone-cylinder body surface.

A more efficient method is the higher order method, where the velocity

potential is represented by continuous B-splines and the body surface by

smooth continuous surfaces, called ‘patches’. The patches can be described

analytically or by means of B-spline functions. This higher-order option

generally leads to more accurate results than the low-order method for the

same CPU time. However, CPU time is generally not an issue in the present

work, since the considered bodies are small and axisymmetric. Due to the

axisymmetry only a quarter of the body needs to be modelled, requiring

very few computation time. Hence, both methods have been applied, but no

significant differences were found.

2.3.2 WAMIT output

Several quantities can be evaluated with WAMIT, among them added mass

and damping coefficients, exciting forces and moments, response amplitude

operators, hydrodynamic pressure and fluid velocity on the body surface and

in the fluid domain, free-surface elevation, drift forces and moments, etc. [9].

WAMIT also has a frequency to time domain (F2T) option to compute the

impulse response functions based on the frequency domain hydrodynamic

output parameters.

For the present study, the relevant output parameters are the added mass
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(ma) and hydrodynamic damping (bhyd) coefficients for heave mode and the

heave wave exciting force (Fex). These parameters are returned by WAMIT

in a normalized form (Chapter 4 of [9]). The normalized added mass and

hydrodynamic damping are indicated with a bar and are defined as:

m̄a =
ma

ρL3
s

for heave mode (2.2)

b̄hyd =
bhyd

ρL3
sω

for heave mode (2.3)

F̄ex,A =
Fex,A

ρgζAL2
s

for heave mode (2.4)

(2.5)

where Ls is the length scale and ζA the wave amplitude. Note that other

normalization rules may apply for other modes than the heave mode. A

MATLAB script has been written to facilitate the dimensionalization process

and to extract the relevant parameters from the WAMIT output files to be used

as input for the MATLAB frequency domain program.

2.4 Design parameters

2.4.1 Buoy geometry

Shape

Two buoy shapes are considered: a conical shape with an apex angle of 90° and

a hemisphere, both extended by a cylindrical part. The shapes are shown

in Figure 2.3. In the framework of the SEEWEC project, some additional

shapes have been evaluated, among them a tulip-like shape and a number of

cylindrical shapes with small draft.

Draft and diameter

Simulations are run for five different waterline diameters, D, ranging between

3.0 and 5.0 m. For each buoy diameter, three different drafts are evaluated,

corresponding to a submerged cylindrical part of 0.5, 1.0 and 2.0 m. Figure 2.4

gives an overview of the considered buoy diameters and drafts.
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(a) (b)

Figure 2.3: Evaluated buoy shapes: (a) cone-cylinder: ‘cc’, (b) hemisphere-cylinder:

‘hc’.
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Figure 2.4: Evaluated buoy diameters and drafts.

2.4.2 Wave climate

The calculations in this Chapter are performed for eight reference sea states,

displayed in Table 2.1. The first sea state covers Hs values from 0.00 to 0.50 m,

the second sea state covers the range between 0.50 m and 1.00 m, and so on.

The combinations of Hs and Tp are representative for the North Sea area. The

considered reference water depth is 50 m. In the next Chapters, the focus will

be laid on the Belgian Continental Shelf, more specifically on the Westhinder

buoy location.
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Table 2.1: Reference sea states

Sea state Hs [m] Tp [s]

1 0.25 6.70

2 0.75 6.70

3 1.25 6.70

4 1.75 7.40

5 2.25 8.11

6 2.75 8.81

7 3.25 8.81

8 3.75 9.52

The wave amplitude spectra, SζA
(f), are based on the parameterized JONSWAP

spectrum [?, 24]:

SζA
(f) = αs H2

s f4
p f−5γβsexp

(
−5
4

(
fp

f

)4
)

(2.6)

with γ the peak enhancement factor (γ = 3.3), fp the peak frequency and αs

and βs:

αs =
0.0624

0.230 + 0.0336 γ −
(

0.185
1.9+γ

) (2.7)

βs = exp

(
−(f − fp)

2

2σ2f2
p

)
(2.8)

The value of the spectral width parameter σ depends on the frequency:

σ =

{
0.07 f < fp

0.09 f ≥ fp
(2.9)

The calculated wave amplitude spectra corresponding with the eight sea states

are shown in Figure 2.5.
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Figure 2.5: JONSWAP wave amplitude spectrum for 8 sea states.

2.5 Hydrodynamic parameters

Figure 2.6 gives the hydrodynamic parameters of the cone-cylinder shape,

denoted by ‘cc’, with waterline diameter D = 5 m versus the frequency

bandwidth relevant to cover the spectra of the above defined sea states. The

added mass is shown in Figure 2.6(a). Note that a smaller draft is associated

with a larger added mass in this frequency range. This is also observed for

the hydrodynamic damping coefficient and the amplitude of the heave exciting

force, as presented in Figures 2.6(b) and 2.6(c), respectively. This feeds the

supposition that a smaller draft will result in a larger power absorption. For

the zero frequency limit of the heave exciting force, a value of approximately

197.5 kN/m1 is obtained with WAMIT. This corresponds to the value of the

hydrostatic force per unit displacement: ρgAw, with Aw the waterline area (=

πR2). Figure 2.6(d) shows the phase angle of the heave exciting force as a

function of the frequency. The phase difference between the exciting force and

incident wave is very small (βFex < 5°) in the range of the peak frequencies,

i.e. fp between 0.1 and 0.17 Hz (6 s < Tp < 10 s). The hydrodynamic

parameters for the hemisphere cylinder shape (hc) with a waterline diameter of

5 m are shown in Figure 2.7. Those parameters appear to be somehow smaller

1Value computed for f = 0.008 Hz.
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compared to the cone-cylinder shape, so it might be expected that the latter

will be a slightly better wave absorber.
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Figure 2.6: Hydrodynamic parameters for the cone-cylinder shape, D = 5 m, d = 3,

3.5, 4.5 m.

2.6 Power absorption

2.6.1 Response in irregular waves

The response in irregular long-crested waves is obtained by superimposing

the responses in regular waves. The wave amplitude of those regular wave

components is derived from the JONSWAP spectrum (Section 2.4.2):

ζA = 2
√

SζA
(ω)Δω (2.10)
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Figure 2.7: Hydrodynamic parameters for the hemisphere-cylinder shape, D = 5 m,

d = 3, 3.5, 4.5 m.

The spectrum has been covered by 40 equidistant frequencies, ranging

between 0.22 rad/s and 1.88 rad/s with Δω = 0.043 rad/s (or 0.035 Hz < f <

0.3 Hz with Δf = 0.0068 Hz). For comparison Vantorre and Banasiak et

al. [16] applied the superposition principle with 20 frequencies and Ricci et

al. [25] with 75 frequencies. It has been observed that simulations based on 20

frequency components are reliable, except in unconstrained conditions. In that

case, the buoy resonates and its response is overpredicted for supplementary

mass values corresponding to a natural period that is equal to a discrete

frequency component close to the peak frequency in the spectrum. Hence,

power absorption peaks are observed for those particular values of the natural

frequency of the system, which do not occur if the spectrum is composed
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of a larger number of frequencies with smaller Δf . In the latter case, the

power absorption varies smoothly for varying supplementary mass. Since CPU

time is generally not an issue (except when multiple bodies are considered),

the number of frequencies for single body simulations has been increased

in more recent applications (Chapter 8) to 150 frequencies. The difference

in power absorption2, obtained with 40 and 150 frequency components, was

found to be not significant: in unconstrained conditions the difference was

smaller than 1.5 %, in constrained conditions the difference is even smaller

than 1 %, which is not necessarily due to the number of frequencies. Such

small differences may also be attributed to the selected accuracy settings of

the optimizer. However, since the computation time is relatively small in most

cases, it is advised to use a large number of frequency components for future

work.

The spectrum of the amplitude of the floater position is defined as:

SzAi(ω) = SζAi
(ω)

z2
Ai

ζ2
Ai

(2.11)

Assuming Rayleigh distribution of the floater motion amplitudes, some charac-

teristic values can be obtained such as the significant amplitude of the buoy

motion:

zA,sign = 2

√√√√√
∞∫
0

SzAidω (2.12)

In irregular waves, the available power over the diameter D of the point

absorber is expressed by [26]:

Pavail,D = D

∞∫
0

ρgCg(ω)Sζ(ω)dω (2.13)

The absorbed power in a regular wave has been given by Eq. (1.71) in Chap-

ter 1. By applying linear superposition of the buoy responses, expression (2.14)

for the power absorption in irregular waves can be obtained:

2Power absorption determined on a cone-cylinder shape with waterline diameter 5 m and

draft 3 m.
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Pabs =

∞∫
0

bextω
2

(
zA

ζA

)2

Sζ(ω)dω (2.14)

The absorption efficiency, or briefly efficiency, denoted by η, is defined as the

ratio of the absorbed power to the incident wave power within the device width:

η =
Pabs

Pavail,D
(2.15)

The absorbed power, and hence the efficiency, are influenced by the external

damping coefficient, bext, and the buoy velocity, which is dependent on both

bext and msup. These two parameters have to be optimized to maximize the

power absorption, taking into account several constraints. The optimization

is carried out in MATLAB with an exhaustive searching method. Vantorre

et al. [16] determined the hydrodynamic parameters with Aquaplus [17]

and performed the optimization process in Microsoft Excel. Both methods

gave very similar results, which differed usually less than 5 %, except in

unconstrained conditions or conditions where the imposed constraints did

not have any influence. This is due to the relatively small number of

frequencies in [16]. When 20 frequencies are adopted in the MATLAB model,

the results correspond well with [16]. Kaasen performed also frequency

domain simulations on a single point absorber and on multiple point absorbers

[27]. The hydrodynamic parameters are calculated with WAMIT. Comparable

simulations have been run in the framework of the SEEWEC project yielding

similar results. For instance, the difference in maximum power absorption

that has been found for a hemisphere-cylinder shape with D = 3.5 m in

unconstrained conditions, is less than 1 % compared with the present model.3

2.6.2 Implementation of restrictions

Slamming restriction

Slamming is a phenomenon that occurs when the buoy re-enters the water, after

having lost contact with the water surface. The buoy experiences a slam, which

may result in very high hydrodynamic pressures and loads. These impacts

have a very short duration, with a typical order of magnitude of milliseconds.

3This comparison is based on the results of slide 32 of [27].
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Fatigue by repetitive slamming pressures can be responsible for structural

damage of the material. More information on slamming will be given in

Chapters 6-8.

A restriction has been implemented, requiring that the significant amplitude of

each buoy position relative to the free water surface elevation should be smaller

than a fraction α of the draft d of the buoy:

(z − ζ)A,sign ≤ α · d (2.16)

where the index ‘A,sign’ stands for significant amplitude and α is a parameter

that is arbitrarily chosen equal to unity in this Chapter. This means that

slamming is still allowed in the 13.5 % highest waves, if Rayleigh distribution

is assumed for the relative buoy positions. In Chapter 8 several levels of

slamming restrictions are investigated by varying this α-value.

In order to implement this restriction in the numerical model, the motion

of the point absorber relative to the wave needs to be known. Considering a

harmonic wave component ζA cosωt, this relative buoy motion can be written

as:

zrel,wave = zA cos(ωt + βmot)− ζA cosωt (2.17)

where βmot is the phase angle of the buoy position. Using the trigonometric

sum formulas, this expression becomes:

zrel,wave = (zA cosβmot − ζA) cosωt− zA sinβmot · sinωt (2.18)

from which the relative motion amplitude can be easily derived:

zA,rel,wave =
√

(ζA − zA cosβmot)
2 + z2

A sin2βmot (2.19)

The significant value of this relative motion amplitude can be determined in

an analogous way as was done for the absolute motion zA,sign in Eqs. (2.11 -

2.12).

The velocity of the buoy relative to the vertical velocity of the water surface,

vrel can be expressed as follows:

vrel = −ωzAsin(ωt + βmot) + ωζAsinωt (2.20)
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The amplitude of this relative velocity is:

vrel,A = ω

√
(ζA − zAcosβmot)

2 + (zAsinβmot)
2 (2.21)

It will be shown that the slamming restriction might require a decrease

of the tuning parameter msup and/or an increase of the external damping

coefficient bext. Not only the occurrence probability of slamming will be

reduced by this measure, but also the magnitude of the associated impact

pressures and loads will decrease, since they are dependent on the impact

velocity of the body relative to the water particle velocity and this impact

velocity will decrease when the control parameters of the buoy are adapted

according to the imposed restriction.

Stroke restriction

In practice, many point absorber devices are very likely to have restrictions

on the buoy motion, e.g. imposed by the limited height of the rams in case of

a hydraulic conversion system or by the limited height of a platform structure

enclosing the oscillating point absorbers (e.g. as in Figure 1 of the introductory

Chapter). Therefore a stroke constraint is implemented, imposing a maximum

value on the significant amplitude of the body motion:

zA,sign ≤ zA,sign,max (2.22)

Three maximum levels are considered: a maximum significant amplitude

of 1.34 m, 2.00 m and 2.68 m. Assuming Rayleigh distribution of the buoy

motions, this restriction means that a stroke of e.g. 5.00 m is exceeded for

0.09 %, 4.39 % and 17.55 % of the waves, respectively4. The first constraint is

rather stringent: in less than one oscillation out of 1000 the maximum stroke

is exceeded. For comparison, the third stroke constraint is very weak for the

same maximum stroke of 5 m: in almost one oscillation out of five the available

stroke is surpassed. In practice, when the maximum stroke is nearly reached,

an additional mechanism will have to brake the floater motion. The kinetic

energy of the floater might be absorbed by e.g. fenders attached to the structure

4A maximum stroke of 5.00 m was considered as a realistic constraint within the SEEWEC

project.
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that encloses the point absorber. When the floater frequently hits the fender, the

average power absorption will be negatively influenced, as well as the lifetime

of the structure. To reduce the probability of this phenomenon, either a more

stringent constraint must be chosen, or a larger available stroke length must be

considered. If, for instance, the maximum available stroke length is 10 m, then

the latter constraint would correspond to an exceedance probability of 0.09 %,

whereas the first constraint (zA,sign,max = 1.34 m) would correspond to an

exceedance probability of only 0.8· 10−10%. This is clearly too strict and will

affect the power absorption significantly. Hence, the relative stringency of a

certain constraint depends on the available stroke length. The implementation

of constraints on the body motion also increases the reliability of the linear

model, which is based on the assumption of small body motions.

Force restriction

In some cases, the optimal control parameters for maximum power absorption,

result in very large control forces. The tuning force, in particular, might

become very large and can even be a multiple of the damping force. If this

tuning force is to be delivered by the PTO, it might result in a very uneconomic

design of the PTO system. For this reason it is relevant to study the response of

the floaters in case the total control force is restricted. If the force spectrum is

expressed as: SFA,i
= F 2

A,i/(2Δf ) and the significant amplitude of the force

is defined as FA,sign = 2
√∫∞

0 SFA,i
(f)df , then the significant amplitude of

the damping and tuning force, respectively, are given by:

Fbext,A,sign = 2

√√√√√
∞∫
0

SFbext,A
(f)df (2.23)

Fmsup,A,sign = 2

√√√√√
∞∫
0

SFmsup,A
(f)df (2.24)

A restriction will be imposed on the significant amplitude of the total force,
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expressed as:

Ftot,A,sign = 2

√√√√√
∞∫
0

(
SFbext,A

(f) + SFmsup,A
(f)

)
df (2.25)

Simulation results will be presented where Ftot,A,sign is limited5 to 100 kN

and 200 kN.

In case the tuning is not provided by the generator, e.g. when applying

latching or a supplementary inertia, it would be appropriate to consider

separate restrictions on the tuning and damping force. However, in that case,

no major problems are expected, since the damping force is found to be small,

as aforementioned, and the tuning force is expected to be significantly smaller

when latching is applied or even inexistent when a supplementary inertia is

added to the system.

The equation of motion of a heaving point absorber with respect to a

floating reference (e.g. a floating platform) is given in Appendix B. It concerns

a simplified case in which the point absorber is positioned in the centre of the

platform. Hence, only the heave mode of the platform needs to be taken into

account. More general applications of oscillating point absorbers with respect

to a floating platform can be found in [21] and [27].

2.6.3 Influence of design parameters

Buoy shape and draft

Figure 2.8 shows the simulation results for the two buoy shapes with varying

draft. Optimal control parameters have been determined, taking into account

the slamming restriction and the stroke restriction defined as: zA,sign,max =

2.00 m. All buoys have a diameter of 5 m.

Figure 2.8(a) presents the power absorption versus the significant wave

height. The Hs-values are associated with peak periods as defined in Table 2.1.

The results of the cone-cylinder are presented in solid lines, those of the

hemisphere-cylinder are given in dashed lines. For the three different drafts, it

turns out that the cone-cylinder performs slightly better than the hemisphere-

cylinder shape, however, the difference between both shapes is very small

5In the framework of the SEEWEC project, limitations of the total control force to the

presented magnitudes were considered as reasonable constraints.



56 FREQUENCY DOMAIN MODELLING

(between 4 % and 8%). Furthermore, the power absorption is larger for smaller

drafts. This was expected, since it was observed from Figures 2.6(b)-2.6(c)

that the hydrodynamic damping coefficient and heave exciting force are larger

for smaller drafts. The presented figures do not take into account any losses

due to mechanical friction, viscous losses, turbine nor generator losses in the

conversion system and are therefore not equal to the produced electrical power.

The absorption efficiency is shown in Figure 2.8(b). Figures 2.8(c) and

2.8(d), show the significant amplitude of the buoy position and of the relative

buoy position divided by the draft of the buoy, respectively. Note that

the applied stroke restriction is dominant on the slamming restriction: the

significant amplitude of the relative buoy position is smaller than the draft

of the buoy for all sea states; it is never equal to the draft, because the applied

stroke constraint appears to be more stringent. Indeed, the absolute motion of

the buoy is limited for the intermediate and larger sea states, as can be seen in

Figure 2.8(c). This explains the drop of the absorption efficiency for larger sea

states. In the smaller sea states, the buoys oscillate in unconstrained conditions.

The absorption efficiency is large, however, smaller than the theoretical

maximum absorption efficiency in regular waves (L/(2πD, Chapter 1), since

the applied control in irregular waves is always ‘suboptimal’ due to the use of

frequency-invariant parameters of supplementary mass and external damping.

Hence, pure resonance cases as for regular waves are not obtained. It is

expected that especially in these smaller sea states the power absorption can

be increased by applying frequency-dependent control forces.

The control parameters are presented in Figures 2.8(e) and 2.8(f). Note that

the peak periods of the three smallest sea states are equal, yielding the same

optimal values for the external damping and supplementary mass. The peak

period of the sixth and seventh sea states (Hs = 2.75 m and 3.25 m) are also

equal, however, in order to satisfy the stroke restriction, the supplementary

mass is slightly decreased and the external damping is increased for Hs =

3.25 m compared to Hs = 2.75 m. When comparing Figures 2.6(b) and 2.7(b)

with Figure 2.8(e), it may be observed that the external damping coefficient is

significantly larger than the hydrodynamic damping coefficient for the more

energetic sea states. These large values are required to satisfy the stroke

restriction.

The significant amplitude of the damping and tuning force is shown in

Figures 2.8(g) and 2.8(h), respectively. The significant amplitude of the total
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force is plotted in Figure 2.8(i). This total force is particularly relevant in

case the tuning force has to be provided by the generator, apart from the

damping force. Except for the large sea states, the tuning force is considerably

larger than the damping force. For this reason it might of interest to realize

the tuning in another way (e.g. with latching, by means of a flywheel, etc.)

than with the generator, in order to avoid an uneconomic design of the latter.

Further considerations on this aspect will be mentioned in Chapter 4. In the

intermediate and large waves, the tuning force remains more or less constant

and the damping force is considerably increased compared to the smaller

waves as a result of the stroke constraint.

Similar results are presented in Appendix C for the five different diameters

and for three combinations of constraints:

(1) only the slamming restriction,

(2) the slamming restriction, combined with the intermediate stroke restriction,

i.e. zA,sign,max = 2.00 m,

(3) the slamming restriction, combined with the same stroke restriction and the

least stringent force constraint, i.e. Ftot,A,sign,max = 200 kN.

Buoy diameter

The impact of the diameter is illustrated in Figure 2.9 displaying the power

absorption of a cone-cylinder with diameters of 3 and 5 m. Whereas the

selected drafts seemed to limitedly influence the power absorption, changing

the diameter has a significant effect on the absorbed power. When comparing

two buoys with the same draft (d = 3.5 m), the volume ratio is 2.0 and the ratio

of the absorbed power varies between a factor of 1.8 (smallest sea state) and

2.7 (largest sea state). Hence, the smallest diameter is only beneficial in the

two smallest sea states, assuming the volume is a measure for the material cost.

However, since each unit is assumed to be equipped with its own PTO-system,

important additional costs per unit will exist, most probably making the larger

diameter also economically more attractive in the smaller sea states. Attention

must be drawn to the fact that the influence of the diameter on the power

absorption depends on the applied restrictions. In Appendix C, simulation

results are presented for a case where also a force restriction is applied. In

that case, the advantage of the larger diameters is somehow diminished, since

larger diameters involve larger forces, resulting in an increased penalty when

the same force restrictions are applied as for the smaller buoys. Hence, it
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Figure 2.8: Figure continues on next page.
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Figure 2.8: Figure continues on next page.
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Figure 2.8: Comparison between cone-cylinder and hemisphere-cylinder for different

drafts. Hs-classes: defined in Table 2.1, diameter = 5 m, constraints: slamming

restriction, stroke restriction: zA,sign,max = 2.00 m, no force constraint.
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would be beneficial to adjust the force restrictions to the dimensions of the

buoy, however, this will result in raised costs for larger buoys. To conclude, the

optimum diameter has to be determined for a particular device and a particular

location, taking into account the relevant restrictions and incorporating a cost

assessment. In the next Chapters of this work, a diameter of 5 m will generally

be adopted.
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Figure 2.9: Power absorption for the cone-cylinder: comparison between diameters.

Hs-classes: defined in Table 2.1.

2.6.4 Influence of restrictions

The effect of different restrictions will be investigated for the cone-cylinder

shape with a diameter of 5 m and a draft of 3 m. The evaluated restriction

combinations are:

• SL: Slamming constraint, no stroke nor force constraint.

• SL-STR1.34: Slamming constraint, stroke constraint: zA,sign,max =

1.34 m, no force constraint.

• SL-STR2.00: Slamming constraint, stroke constraint: zA,sign,max =

2.00 m, no force constraint.

• SL-STR2.68: Slamming constraint, stroke constraint: zA,sign,max =

2.68 m, no force constraint.

• SL-STR2.00-F100: Slamming constraint, stroke constraint: zA,sign,max

= 2.00 m, force constraint: Ftot,A,sign,max = 100 kN.
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• SL-STR2.00-F200: Slamming constraint, stroke constraint: zA,sign,max

= 2.00 m, force constraint: Ftot,A,sign,max = 200 kN.

Simulation results are presented in Figure 2.10. The first graph (Fig-

ure 2.10(a)) shows the average power that can be absorbed with optimized

control parameters satisfying the constraints. As noticed before, the slamming

constraint is the weakest constraint in this case. For bodies with a very small

draft, this constraint may, however, transform into a quite stringent restriction.

The power absorption for limited stroke cases is presented in black, showing

that a large amount of power is lost when only a small stroke is possible. The

most stringent constraints are clearly the force restrictions, given in red. The

penalty of the most stringent force constraint is extremely large. The tuning

and damping force have to be so small that serious amounts of power cannot

be absorbed anymore in the intermediate and higher sea states. This is also

illustrated in Figure 2.10(b) where the power absorption efficiency is shown.

The large available power in the higher sea states is not efficiently absorbed.

Figures 2.10(c) and 2.10(d) show the significant amplitude of the buoy

position and of the relative buoy position divided by the buoy draft, respec-

tively. It can be seen from which sea state the stroke constraints and slamming

constraint, respectively, start to effectuate their influence. The external

damping coefficient and supplementary mass are given in Figures 2.10(e) and

2.10(f). It is remarkable how the damping coefficient is increased in order

to satisfy the stroke constraints. In order to fulfill the force constraints, the

damping is kept rather constant, but the supplementary mass is extremely

small. The value of the supplementary mass even decreases for increasing

Hs and thus for generally increasing Tp. This means that the buoy is tuned

further away from resonance in the large sea states to avoid very large control

forces. The damping and tuning forces are indeed significantly smaller in those

cases where the force restrictions apply, as can be seen in Figures 2.10(g)

and 2.10(h). The significant amplitude of the total control force is given in

Figure 2.10(i). However, note the very large tuning forces that are required

to deliver the power levels, associated with the weakest constraints (SL and

SL-STR2.68). Attention should be drawn to the fact that these are only the

significant amplitudes of the tuning forces. The maximum forces that are

involved are even larger. Hence, it is very unlikely that the generator will be

designed to deliver these tuning forces and the corresponding instantaneous,

large power levels. As stated before, it is expected to be more beneficial to
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realize the control with a separate control mechanism, e.g. through latching.

Figure 2.11(a) shows the power absorption6 as a function of the supple-

mentary mass and external damping coefficient for sea state 4, i.e. Hs = 1.75 m

and Tp = 7.40 s. The magnitude of the power absorption is indicated by the

colour bar legend. Note that similar power absorption values can be obtained

with different combinations of supplementary mass and external damping

coefficients. The dotted contour line on the graph represents the slamming

constraint. The area enclosed by this line has to be avoided to fulfill the

slamming restriction. The optimal power absorption in the remaining area is

44 kW for this sea state, which is indicated by a circle on the graph. The Figure

clearly illustrates the effect of tuning the point absorber, which is effectuated

here by adding inertia (msup) to the device. The tuning ratio Tn/Tp in this case

is 99 %. The power that can be absorbed with an untuned buoy is significantly

smaller than that of a tuned buoy.

When adding the stroke restrictions to this graph, Figure 2.11(b) is

obtained. To fulfill these restrictions, the damping is considerably raised, and

the tuning is slightly decreased. The optimal power absorption levels drop

from 42 kW to 37 kW and 29 kW when going from the weakest to the most

stringent stroke constraint. In Figure 2.11(c) the two force constraints are

displayed as well. As observed before, the force restrictions require much

smaller values of the supplementary mass. The tuning ratio Tn/Tp drops to

87 % and 67 %, respectively, considering the aforementioned force constraints

(Ftot,A,sign ≤ 200 kN and Ftot,A,sign ≤ 100 kN). The power that can be

absorbed within these constraints is only 28 kW and 17 kW, respectively, as

indicated with the red circles.

Similar results are displayed in Figure 2.12 for sea state 7 (Hs = 3.25 m

and Tp = 8.81 s). The optimum values are again indicated with circles. The

influence of the restrictions is even more significant for this more energetic

sea state. The maximum power that can be absorbed, by imposing only the

slamming constraint is 117 kW (Tn/Tp = 94 %). When the stroke restrictions

are taken into account (from weak to stringent) the power absorption decreases

from 102 kW to 82 kW and finally to 58 kW. Note that the contour lines

around the optimum values are locally parallel with the power absorption

colours. This means that similar power absorption values might be obtained

with slightly different control parameters, dependent on the accuracy settings

6These plots are based on 150 frequency components.
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Figure 2.10: Figure continues on next page.
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Figure 2.10: Figure continues on next page.
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Figure 2.10: Evaluation of different restrictions for the cone-cylinder shape. Hs-

classes: defined in Table 2.1, diameter = 5 m, draft = 3 m.
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(a) Slamming restriction.

(b) Slamming and stroke restriction.

Figure 2.11: Figure continues on next page.
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(c) Slamming, stroke and force restriction

Figure 2.11: Power absorption [kW] versus bext [ton/s] and msup [ton]. Buoy: cc,

D = 5 m, d = 3 m, Hs-class: Hs = 1.75 m and Tp = 7.40 s.

Figure 2.12: Power absorption [kW] versus bext [ton/s] and msup [ton]. Buoy: cc,

D = 5 m, d = 3 m, Hs-class: Hs = 3.25 m and Tp = 8.81 s.
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of the optimizer. The power absorption drops even further when the force

restrictions are taken into account: the weakest constraint gives a maximum

power level of 57 kW (Tn/Tp = 63 %), the most stringent constraint allows

only to absorb 32 kW (Tn/Tp = 47 %). This is about one third of the power

that can be absorbed when only the weakest stroke constraint is implemented.

Hence, the impact of the constraints is illustrated once more. The graphs

are also useful to get an idea of the sensitivity of the control parameters. In

practical cases the applied control parameters might be erroneously slightly

different from the intended control parameters and the influence of ‘mistuning’

effects can be derived from those figures.

2.7 Conclusion

Bymeans of a linear frequency domain model, the behaviour of a heaving point

absorber is simulated and the absorbed power is assessed. The hydrodynamic

parameters of the oscillating buoys are derived with the BEM code WAMIT.

A conical and hemispherical buoy shape are evaluated, both with a cylindrical

upper part. Five different waterline diameters (between 3 m and 5 m) and

three different drafts are considered. Three types of constraints are introduced:

a slamming restriction, a stroke restriction and a force restriction. The first

constraint reduces the occurrence probability of emergence events. The stroke

restriction limits the point absorber stroke length and the force constraint limits

the total force that is required to realize the control and damping of the system.

The influence of several combinations of these restrictions is evaluated.

The main conclusions that may be drawn are:

- Only small differences in performance between the conical and hemispherical

shapes are noticed. Generally, the cone-cylinder performs slightly better than

the hemisphere-cylinder.

- The power absorption rises for larger waterline diameters and smaller drafts

(if the draft is large enough to avoid slamming). However, the waterline

diameter significantly influences the power absorption, whereas the impact of

the evaluated buoy drafts appeared to be rather limited.

- For the considered test cases, the slamming restriction had a smaller impact

on the power absorption compared to the stroke restrictions. However, the

stringency of this restriction is dependent on the draft of the buoy and on the

probability of slamming that can still be allowed. These aspects will be studied
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more in detail in Chapter 8.

- The stroke restrictions decrease the power extraction significantly, especially

in more energetic waves.

- The required tuning forces have a much higher contribution to the total force

than the required damping forces. Restricting those forces may have a very

negative influence on the power absorption. Hence, it might be advantageous

to realize the tuning of the system in another way than by making use of the

PTO.
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CHAPTER 3

Time domain model:
implementation

� � �
In this Chapter the implementation of a time domain solver is described.
The equation of motion of the point absorber buoy is expressed with
Cummins’ integro-differential equation. The hydrodynamic parameters
are determined with the boundary element package WAMIT and its
F2T tool. Prony’s method has been applied to transform the integro-
differential equation into a set of ordinary differential equations that
are solved with the common fourth-order Runge-Kutta method. A
comparison between the results obtained with the frequency and time
domain models is presented.

3.1 Introduction

Up to now, in the majority of applications, frequency domain models have

been used to describe the behaviour of wave energy converters (WECs) [1].

However, the use of time domain models is indispensable in some cases,

e.g. when non-linear effects need to be included, such as non-linear power

take-off forces or viscous forces. Time domain implementations are also

required if time series responses are of interest, or when responses in transient

regime are important. The most complete approach is probably offered by

Computational Fluid Dynamics (CFD) models, dealing with -approximations

of- the Navier-Stokes equations. Since CFD models are complex and time-
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consuming, even with current computer capacity, the use of boundary element

methods combined with potential theory is still very important. Most authors

have used the latter approach to model the behaviour of a WEC in time domain

[2–7] and also the presented implementation is based on this approach.

3.2 Equation of motion

With linear theory, the equation of motion of a floating body, oscillating in

heave mode is written as (see Chapter 1):

m
d2z

dt2
= Fex + Frad + Fres + Fdamp + Ftun (3.1)

If the power take-off forces are assumed linear and the body is responding

to a harmonic excitation, the ordinary differential equation has an analytical

solution, as described in Chapter 1 and the time-dependent response in

irregular waves can be obtained with the superposition principle. However,

when non-linear effects are included, e.g. in Fdamp or Ftun, the superposition

principle cannot be applied. Therefore, in naval hydrodynamics the body

response in irregular seas is often expressed as an integro-differential equation,

based on Cummins’ decomposition [8]. For a heaving point absorber, this

results in:

(m + ma,∞)
d2z(t)
dt2

+ Fdamp

(
d2z(t)
dt2

,
dz(t)
dt

, z(t)
)

+Ftun

(
d2z(t)
dt2

,
dz(t)
dt

, z(t)
)

+

t∫
0

Kr(t− τ)
dz(τ)
dτ

dτ +kz(t) = Fex(t) (3.2)

The radiation forces are expressed as an instantaneous added mass term

ma,∞
d2z(t)
dt2

and a convolution product
∫ t
0 Kr(t − τ)dz(τ)

dτ dτ , where ma,∞ is

the infinite frequency limit of the added mass and Kr the radiation impulse

response function (IRF), also called radiation force kernel, retardation function

or memory function. The radiation impulse response function (IRF) can be

computed directly in time domain with boundary element methods such as

ACHIL3D [9] or TiMIT [10]. The radiation IRF can also be obtained indirectly

by Fourier transformation of the frequency domain hydrodynamic parameters
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of added mass and damping, which can be computed with frequency domain

BEM codes like WAMIT [11] and AQUAPLUS [12] as pointed out previously.

In that case the memory function Kr is obtained from [8]:

Kr(t) =
2
π

∞∫
0

bhyd(ω)cos(ωt)dω (3.3)

where bhyd is the hydrodynamic damping coefficient. The indirect method

has been applied and the frequency to time domain (F2T) utility provided by

WAMIT has been used to determine Kr. Figure 3.1 shows the radiation im-

pulse response function for a heaving hemisphere with radius 1 m, determined

by WAMIT F2T. The correspondence with the result obtained with Achil3D

is very satisfying. The difference between both curves is displayed by making

use of the y-axis on the right-hand side. Mind the different scale of this axis

compared to the left y-axis.

0 5 10 15 20
−2000

−1000

0

1000

2000

3000

4000

5000

Time [s]

K
r [k

g/
s2 ]

ACHIL3D
WAMIT F2T
Difference

−200

−150

−100

−50

0

50

100

150

200

D
iff

er
en

ce
 [k

g/
s2 ]

Figure 3.1: Radiation impulse response function for a hemisphere (R = 1 m)

oscillating in heave mode.
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3.3 Implementation

3.3.1 Prony’s method

In order to solve Eq. (3.2) directly, the solution of the convolution integral

has to be known at every time step, which might require considerable CPU

time. Therefore, the impulse response function is approximated by a sum

of exponential functions with Prony’s method and the integro-differential

equation can be transformed into a system of ordinary differential equations

(ODEs), as explained below. The method has been developed by Duclos

and Clément et al. [13] from the Ecole Centrale de Nantes. Apart from

this method, other techniques exist to obtain a state-space representation of

Eq. (3.2), e.g. the method of Yu and Falnes [14]. However, the method by

Duclos and Clément et al. [13] is applied here, since it is very fast and efficient,

as stated by Ricci [2]. For completeness, the algorithm of Prony is included in

Appendix D.

With Prony’s method, the retardation function, Kr, is expressed as:

Kr(t) =
Ne∑
i=1

αie
βit (3.4)

with Ne the number of exponential functions. The couples (αi, βi) are

either real values, either complex values. In the latter case they are always

associated with a complex conjugate couple.

Introducing I(t) as:

I(t) =

t∫
0

Kr(t− τ)
dz(τ)
dτ

dτ (3.5)

and combining equations (3.4) and (3.5), we get:

I(t) =

t∫
0

Ne∑
i=1

αie
βi(t−τ) dz(τ)

dτ
dτ

I(t) =
Ne∑
i=1

t∫
0

αie
βi(t−τ) dz(τ)

dτ
dτ (3.6)

Ii(t) is defined as:
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Ii(t) =

t∫
0

αie
βi(t−τ) dz(τ)

dτ
dτ (3.7)

Deriving the latter expression to time results in:

İi = βiIi + αi
dz(t)
dt

(3.8)

In this way the convolution integral can be replaced by a sum of first order

differential equations with constant coefficients:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I =
Ne∑
i=1

Ii

İi = βiIi + αi
dz(t)
dt

Ii(0) = 0

(3.9)

With y1 = z(t) and y2 = dz(t)
dt , the system of differential equations to be

solved, can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = y2

ẏ2 =

Fex(t)−ky1−Fdamp−Ftun−
Ne∑
i=1

Ii

m+ma,∞

İ1 = β1I1 + α1y2

...

İNe = βNeINe + αNey2

(3.10)

These differential equations are numerically integrated with the fourth-

order Runge-Kutta method. The implementation has been carried out in

MATLAB [15].

3.3.2 Selection of exponentials

With Prony’s method we approximate the radiation kernel by a sum of a

hundred or two hundred exponential functions at first. Thereafter a selection

is made of a few couples (αi, βi) who have the most important contribution.
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To evaluate the quality of the approximation the relative error is calculated at

each time step:

Ek =

|
Ne∑
i=1

αie
βitk −Kr(tk)|

max
tk∈[0,tNt ]

|Kr(tk)| (3.11)

In order to have an idea of the overall error, the mean relative error is

calculated as:

E =
1
Nt

Nt∑
k=1

Ek (3.12)

where Nt is the number of time steps. The number of exponential functions

can be reduced significantly without exceeding a predefined mean relative

error level. An example is given in Figure 3.2(a) for a hemisphere with

diameter 5 m and a cylindrical upper part of 0.5 m. The original radiation

IRF, calculated with WAMIT F2T, is shown in a black solid line together

with 2 approximations. The blue dash-dot line represents an approximation

with 200 exponential functions, the red dashed line shows an approximation

with only 6 exponential functions. The difference between the original

IRF and the two approximations is shown in Figure 3.2(b), obtained by

subtracting the approximations from the original IRF. The approximation with

200 exponential functions corresponds nearly perfectly with the original IRF.

The approximation based on 6 exponential functions deviates locally from the

original IRF, however, the difference is relatively small. The good agreement

between these approximate curves and the original IRF is confirmed by the

error calculations. The mean relative error for the first approximation is only

0.02 %, whereas for the second approximation it is 0.31 %, which is still a very

small number.

The time gain on the other hand is significant: only 6 additional differential

equations have to be integrated instead of 200. The number of exponential

equations, Ne, is selected automatically, based on two conditions: Ne should

be as small as possible and the mean relative error for the approximation should

be smaller than 1.00 %. For the considered shapes, this requirement is easily

fulfilled with 5 to 6 exponential functions.
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Figure 3.2: Radiation impulse response function on a hemisphere-cylinder shape

(D = 5 m, d = 3 m) for heave mode.

3.4 Time domain solver

In this Section some results of the time domain solver are shown and compared

to frequency domain results.

The response amplitude operator (RAO) of the buoy position is defined

as the ratio between the displacement amplitude of the uncontrolled floater,

responding to a harmonic excitation, and the incident wave amplitude. The

RAO can be calculated directly with WAMIT. It has been computed with the

time domain model from the steady state response of the floater to a regular

incident wave. The input parameters for the time domain model, i.e. the

radiation impulse response function and the exciting force transfer function,

are obtained with WAMIT. Figures 3.3(a) and 3.3(b) show the comparison

between the RAO values obtained directly withWAMIT and indirectly with the

time domain model for the shapes described in Chapter 2, i.e. the hemisphere-

cylinder and cone-cylinder shape, respectively (D = 5 m, d = 3 m). The

differences between both outputs can be read from the y-axis on the right side

of the Figures. The RAO has been evaluated for 140 equidistant frequencies

ranging between 7.958 10−3 Hz and 1.114 Hz (ω ∈ [0.05, 7.00], T ∈ [0.90 s,

125.76 s]). As expected, the time domain RAOs correspond very well to those

calculated by WAMIT. Only very small differences are observed around the

resonance frequency where the models are sensitive to slight differences in
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input parameters.

The time domain model has been used with a linear damping force

(proportional to the velocity) and a force with constant amplitude (and sign

equal to the velocity sign) to simulate the power extraction force. A linear

damping force has been applied for the comparison with the frequency domain

model. An example of a simulated body response is given in Figure 3.4. The

body position and velocity are given for the cone-cylinder shape (D = 5 m, d =

3 m) with control parameters msup = 100 ton and bext = 80 ton/s, in an irregular

wave characterized by Hs = 2.75 m and Tp = 7.78 s. The incident wave

has been generated with WaveLab [16] using the parameterized JONSWAP

spectrum. The effect of the tuning can be clearly observed from the graph.

The point absorber displacement is lagging compared to the incident wave and

it experiences a slightly larger elevation. This kind of time domain simulations

will be extensively treated in Chapter 4, where the results will be compared

with experimentally measured time series.

Power absorption results are presented in Figures 3.5(a) and 3.5(b) for the

cone-cylinder and hemisphere-cylinder shape (D = 5 m, d = 3 m), respectively.

The Figures show the time-averaged power absorption for varying values of

the supplementary mass and external damping coefficient in the same irregular

wave.

The incident wave has a duration of 5000 s. This duration should be long

enough to give a representative value of the time-averaged power absorption,

as pointed out by Ricci [2]. The time step is set at 0.02 s and hence, the

number of time steps to be evaluated equals 250 000. The CPU time for one

simulation -with given control parameters msup and bext- is almost 15 minutes

on an 1.83 GHz Intel processor with 1 GB RAM. With a time step of 0.50 s, the

simulation time is approximately 10 s and the accuracy is still good (difference

in power absorption compared to Δt = 0.02 s is < 0.5 %). The graph shows a

very good agreement between the time domain and frequency domain results1.

As mentioned before, further applications of the time domain model will

be presented in Chapter 4, where it is validated with physical test results.

1Note that for the same control parameters the hemisphere absorbs more power than the

cone in some cases. This is due to the fact that the mass of the hemisphere is 62 % larger than

the mass of the cone. Consequently, the hemisphere has a larger natural period and is thus better

tuned towards the incident wave characteristics than the cone shape. If the control parameters

are optimized for both shapes, then the cone shape will generally perform better, which has

been illustrated in Chapter 2.
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(D = 5 m, d = 3 m) for heave mode.
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Figure 3.3: RAO obtained with the time domain solver compared to the RAO directly

determined with WAMIT.
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Figure 3.4: Body response determined with the time domain model for msup =

100 ton and bext = 80 ton/s in an irregular wave characterized by Hs = 2.75 m and Tp

= 7.78 s.

Furthermore the model will be utilized in Chapter 8 to estimate floater impact

velocities and occurrence probabilities of slamming phenomena.

3.5 Conclusion

A time domain model has been implemented in MATLAB. The equation

of motion of the heaving point absorber is described by Cummins’ integro-

differential equation and converted into a set of ordinary differential equations.

This has been done by approximating the radiation impulse response function

by a sum of exponential functions with Prony’s method. The time domain

model uses input from WAMIT for the hydrodynamic parameters (infinite

frequency limit of the added mass, exciting force and radiation impulse

response function). The output results are in good agreement with the

frequency domain results.
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Figure 3.5: Comparison between frequency and time domain model for an irregular

wave characterized by Hs = 2.75 m and Tp = 7.78 s.



86 TIME DOMAIN MODEL: IMPLEMENTATION



Bibliography
[1] Cruz (editor) J., Ocean energy: current status and perspectives. Springer,

2008.

[2] Ricci P., Saulnier J., ao A.F., Pontes T., Time-domain models and

wave energy converters performance assessment. In: 27th International

Conference on Offshore Mechanics and Arctic Engineering, Portugal,

2008, pp. 1–10.

[3] Babarit A., Optimisation hydrodynamique et contrôle optimal d’un
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CHAPTER 4

Experimental validation of
numerical modelling

� � �
The results of an experimental investigation on a heaving point absorber
are presented. The physical tests are used to validate numerical
simulations of the behaviour of the point absorber based on linear
theory. Floater response and power absorption are evaluated in
regular and irregular waves representing a mild wave climate. A good
correspondence is found between the physical and numerical results.
In irregular waves the difference between numerical and experimental
power absorption is generally smaller than 20%. In regular waves the
correspondence is good as well, except in the resonance zone; i.e. when
the natural frequency of the buoy is tuned towards the resonance
frequency of the incident wave. In this case, non-linear effects such as
viscous damping and a non-linear hydrostatic restoring force become
important due to the high velocities and displacements of the point
absorber. However, pure resonance cases are often not preferred in
practical applications. In general it is concluded that the numerical
results are in good accordance with the experimental results and hence,
linear theory can be used to predict the point absorber behaviour in
mild energetic waves in non-resonance conditions.
This Chapter is partly based on ‘Experimental investigation of the
validity of linear theory to assess the behaviour of a heaving point
absorber at the Belgian Continental Shelf’ by G. De Backer et al. [1].
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4.1 Introduction

Wave energy converters are often designed and optimized by means of

numerical methods. The behaviour of point absorbers and oscillating water

columns (OWCs) has also been extensively described analytically. These

numerical and analytical methods are generally based on assumptions, of

which some are not always well satisfied for wave energy applications.

For example, linear theory assumes small waves and small body motions,

a condition that might be violated when phase-control is applied to point

absorbers. In spite of this, linear theory is still often used to assess the

performance of point absorbers. In Chapter 2 and 3 numerical simulations have

been presented based on linear water wave theory and a linearized equation of

motion. The validity of linear theory for point absorber applications will be

assessed in this Chapter by means of experimental wave flume tests.

Pioneering experimental research work on point absorbers has been per-

formed by Budal et al. in 1981 [2]. They presented tests of a point absorber

oscillating in heave mode, in irregular waves and subjected to phase control.

In the eighties as well, Vantorre [3] performed numerical and experimental

tests on a two-body point absorber system. In 2005 Vantorre, Banasiak and

Verhoeven [4] compared numerical and experimental results of the hydraulic

performance of a heaving point absorber. The numerical simulations were

performed with the 3D panel method software AQUAPLUS. The present

research work is a sequel of this study.

At the Ecole Centrale de Nantes (France) the SEAREV device has been

extensively studied both numerically and experimentally. Validations of linear

and non-linear models are presented in [5–7]. Payne at al. [8] compared

numerical BEM simulations of the sloped IPS buoy, with experimental tests

carried out in the Edinburgh Curved Tank. Fairly good agreements between

numerical and experimental heave responses were obtained for large damping

values. For smaller damping values the correspondence was good outside

the resonance frequency bandwidth. Experimental research on closely spaced

arrays of point absorbers has been carried out by Weller [9] and Stallard [10]

and initial comparisons with the BEM software WAMIT are presented in [11].

In this Chapter, the hydrodynamic parameters and the performance of a

point absorber will be investigated for different tuning and damping conditions.

Several types of tests have been conducted: decay tests, wave exciting force

tests and power absorption performance tests in regular and irregular waves.
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The majority of tests in the wave flume have been run by Kim De Beule [12]

in the framework of a master dissertation, supervised by the author of this PhD

thesis. The experimental results are compared with numerical simulations,

based on linear theory. The numerical hydrodynamic parameters are computed

with WAMIT, and the equation of motion has been solved in the frequency and

time domain models described in Chapters 2 and 3.

4.2 Experimental setup

4.2.1 Wave flume

The experimental tests are conducted in the wave flume of Flanders Hydraulics

Research (FHR) in Antwerp, Belgium. The flume has a length of 70 m, a width

of 4 m and a depth of 1.45 m. The wave paddle is driven by a hydraulic piston.

The water depth in the flume is 1 m for all test cases. The model is installed at a

distance of 12 m from the paddle. At 15 m from the paddle a screed beach was

built in the wave flume with a small slope of 1/40, as indicated in Figure 4.1.

At a distance of 43 m, respectively 55 m from the paddle a protection dam

and breakwater were built in the flume for other experimental purposes. Since

active absorption is not applied in the flume, absorbing material was placed

in front of the dam at a distance of 35.7 m from the paddle in order to avoid

too much disturbance due to reflection in the wave flume. Three wave gauges

are placed in front of the point absorber and one behind the point absorber.

A reflection analysis is carried out with the three wave gauges in front of the

test object. In order to assess the reflection in the wave flume, the test setup

is removed from the flume. The position of the wave gauges is determined

according to the criteria of Mansard and Funke [13]. The analysis is performed

in WaveLab, a software tool for data acquisition and data analysis developed at

Aalborg University (Denmark) [14]. Reflection coefficients, Cr, between 9 to

18 % have been found. More details about the reflection analysis can be found

in Appendix E.

4.2.2 Scale model

The test setup consists of a floating body, oscillating with respect to a fixed

structure. The buoy is connected to a rod, which is attached to a rotating

belt (Figure 4.2). The belt is supported by three bearings and a pulley
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Figure 4.1: Position of test setup in wave flume (dimensions in [m]).

that is connected to rotating shaft. On this rotating shaft, the measurement

instrumentation is installed. The test setup is modelled on a scale 1/15.9.

This scale is based on the ratio of the diameter of the test body to a full

scale diameter of 5 m (see Section 4.2.3). The experimental investigation is

a continuation of the study carried out by Vantorre et al. [4]. The test setup has

been rebuilt and is improved in some ways: the internal friction in the model

has been reduced by a factor of two and the measurement of the damping force

and buoy motion has been enhanced. A picture of the new test setup is given

in Figure 4.3.

The floating body is indicated by number 1. The bottom part is made of

polyurethane and it is connected to a cylindrical part of PVC. In order to reduce

the friction, the number of bearings is reduced and higher quality bearings are

used. The original steel guiding rod with circular cross section significantly

bended under the action of large horizontal hydrodynamic forces. This resulted

in large friction forces in the bearings and even in damage of those bearings.

For this reason the steel bar has been replaced by a stiff aluminium profile

(no 2), with cross section 7.4 x 1.9 cm, increasing the bending stiffness

by a factor of 6.4 (EI = 4.3 kN/m2). The aluminium profile is guided

by two carriages which are mounted on the frame structure. Furthermore,

the motion of the point absorber is registered by an optical encoder (no 3)

instead of a potentiometer. The encoder is mounted on a horizontal, rotating

shaft connected to the pulley. The damping force is realized by means of a

mechanical brake (no 4) consisting of a circular element covered by a felt that

can be pressed on a wheel that is mounted on the rotating shaft (Figure 4.4).

The damping force is measured by a force transducer (no 5) and torque sensor

(no 6) which gave very similar results. A tuning force proportional to the buoy
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Figure 4.2: Schematic representation of test model.

acceleration has been applied by adding supplementary mass. Weights are

placed on top of the buoy and in the counterweight bin (no 7) at the other side

of the belt [4].

It is important to know the magnitude of the internal friction in the test

setup in order to be able to implement this friction force in the numerical

model. The friction force is measured outside the flume. An equilibrium

position of the system is obtained by putting weights in the counterweight

bin so that the total mass on the one side of the belt is equal to the total mass

on the other side. In a next step, a small mass msm (approx 1 kg) is added

to induce the motion of the point absorber. The acceleration z̈ is measured

and the friction force Ffric is determined from Eq. (4.1), assuming a constant

acceleration, and hence, a constant internal friction force.

(mtot + msm) z̈ = Ffric −msmg (4.1)

where mtot is the total mass of the system that is accelerated (without the extra

small mass). In this way, the magnitude of the internal friction force has been

estimated at 2.2 N for the enhanced test setup.
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Figure 4.3: Experimental setup: point absorber with test rig.

Figure 4.4: Measurement instrumentation.
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4.2.3 Design parameters

Buoy geometry

Two buoy shapes have been tested: a cone and hemisphere shape, both with a

cylindrical upper part. The cone has an apex angle of 90°. The diameter D of

the cylinders is 31.5 cm, which is equivalent to a prototype diameter of 5 m on

a scale 1/15.9. Three different drafts are evaluated (d = 18.9 cm, 22.1 cm and

28.4 cm) corresponding to a draft of 3 m, 3.5 m and 4.5 m in prototype size, as

indicated in Fig. 4.5. The draft is varied by adapting the weights on top of the

floater.

Figure 4.5: Cone-cylinder and hemisphere-cylinder shapes with three different drafts

(prototype dimensions in m).

Damping and tuning forces

The damping force, Fd, is varied by changing the masses on top of the

mechanical brake in Fig. 4.4 (no 4). The resulting damping force is a block

signal, i.e. a force with a constant magnitude and a sign dependent on the sign

of the velocity. This magnitude will be indicated as Fd,A and will be further

referred to as the amplitude of the damping force, although -strictly speaking-

it is not a real amplitude.

Fd = Fd,A sgn(
dz

dt
) (4.2)
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The tuning force is proportional to the acceleration of the buoy and can be

changed by varying the weights on top of the floater and in the counterweight

bin. Since the weight is varied at both sides of the belt, changing the

supplementary mass has no influence on the draft of the buoy. The adjustable

supplementary mass allows for covering a frequency zone further from and

closer to resonance. Since the point absorber system is a mass-spring-damper

system, the relationship between the supplementary mass and the natural

frequency of the floater can be expressed as:

ωn =

√
k

m + ma(ω) + msup
(4.3)

where k is the hydrostatic restoring coefficient, m the mass of the buoy,

ma(ω) the added mass and msup the supplementary mass.

4.2.4 Wave climate

Sea states

The point absorber has been tested in both regular and irregular waves. The

latter characterize the wave conditions on the Belgian Continental Shelf (BCS).

Scatter diagrams based on buoy measurements at Westhinder, located 32 km

from shore on the Belgian Continental Shelf, have been used to define nine sea

states. Table 4.1 displays the sea states and Figure 4.6 shows the corresponding

occurrence probabilities (OP). Note that more than 80 % of the Hs-values

is smaller than 1.5 m. The average available wave power at Westhinder is

4.64 kW/m [15].

Table 4.2 shows the regular and irregular wave characteristics selected for

the power absorption tests in the wave flume. Froude scaling has been used

to obtain the prototype values. The figures represent the measured values,

based on the measurements of a wave gauge placed at the position of the

point absorber, when the device was removed from the flume. The waves

in the flume are generated based on the parameterized JONSWAP spectrum

with peakedness factor γ = 3.3. The analysis of the wave gauge signals

has been performed with the software programme WaveLab [14]. The wave

data is registered at 50 Hz, the data from the other measurement equipment

is registered at 25 Hz. It was found that the measured wave heights in the

flume are slightly smaller than the target wave heights, whereas the measured
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Table 4.1: Sea states at Westhinder based on measurements from 1-7-1990 until 30-

6-2004 (Source of original scatter diagram: Flemish Ministry of Transport and Public

Works (Agency for Maritime and Coastal Services, Coastal Division) [16]).

Sea state Hs [m] Tp [s]

1 0.0-0.5 5.24

2 0.5-1.0 5.45

3 1.0-1.5 5.98

4 1.5-2.0 6.59

5 2.0-2.5 7.22

6 2.5-3.0 7.78

7 3.0-3.5 8.29

8 3.5-4.0 8.85

9 4.0-4.5 9.10
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Figure 4.6: Occurrence probability of sea states (SS) at Westhinder buoy in Belgium,

based on [16].

and target periods correspond well. Therefore, the measured sea states do

not correspond exactly to the sea states of the BCS. It must be noted as well

that the reliability of the Hs- and Tp-values is small, since they are based on

very short time series (approx 118 s). This rather short duration has been

chosen to avoid influences of any energy building up effects in the flume.

The measured irregular wave trains are used as input in the numerical time
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Table 4.2: Regular and irregular waves at prototype and model scale.

Prototype scale Model scale

Regular waves H [m] T [s] H [cm] T [s]

1.65 5.42 10.4 1.36

1.62 6.37 10.2 1.60

2.29 6.97 14.4 1.75

Irregular waves Hs [m] Tp [s] Hs [cm] Tp [s]

0.98 6.33 6.2 1.59

1.52 7.29 9.6 1.83

domain model. Hence, the small reliability of the Hs- and Tp-values is of less

importance, since the main purpose is to compare numerical and experimental

results, based on the same time series.

Wave generation and time series selection

When a test is started on the control computer, a pressure of more than a

hundred bar is exerted on the wave paddle, causing slight paddle oscillations.

Consequently small waves are generated disturbing the water surface. There-

fore a rest period of 600 s is introduced after the start of a test to obtain a

still water surface before the paddle is instructed to generate the wave series.

The wave generation lasts 200 s in case of regular waves and 400 s in case of

irregular waves. The selected wave trains for data analysis are much shorter

in order to minimize the influence from the waves reflected on the absorbing

material. Since no active absorption is applied in the flume, rather small

durations and a small start cutoff point need to be chosen. The start cutoff

point is determined by the sum of:

- The time Δt1 for the wave to be totally developed, preferably ≥ 10 s

(including the 2 s wave ramp time).

- The time Δt2 for the wave to travel from the paddle to the model,

depending on the wave period. For a wave period of 1.36 s, respectively 1.75 s

the required time is 8.8 s, respectively 6.9 s.

It has been decided to choose the start cutoff point at 15 s after the start

of the wave generation. The time domain model is started at least 5 s before

the start cutoff point to avoid any influence from the initial conditions. The

duration of the time frame to be analysed can be quite short for regular waves,
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since the point absorber response in regime conditions remains identical.

Hence, a time frame of 20 s is sufficient for data analysis of regular waves.

For irregular waves, the considered time frame is set at 118 s. As pointed out

before, this rather short duration makes it difficult to characterize the waves

statistically in an accurate way. However, the numerical and experimental

models can be compared in a correct manner, since exactly the same wave

trains are considered in both cases.

4.3 Results

4.3.1 Decay tests

In a decay test, the buoy is released from an initial position different from

its equilibrium position in originally still water. Hence, the buoy undergoes

a damped free oscillation. From the recorded decaying motion, relevant

hydrodynamic parameters of the point absorber can be derived, such as the

hydrodynamic coefficients of added mass and damping. Decay tests have

been performed for the hemisphere-cylinder (hc) shape for different drafts and

different values of supplementary mass. A test matrix is given in Table F.1 of

Appendix F. An example of a decaying buoy motion is given in Figure 4.7,

showing the measured and numerically determined buoy position for the

hc, with draft 22.1 cm and msup = 8.1 kg. The point absorber is initially

submerged at a distance equal to its draft plus 0.15 m. The same initial

condition is implemented in the numerical model, resulting in very similar

results. The correspondence is particularly good in the beginning. About 6 s

after releasing the floater, the influence of the radiated waves reflected on the

side walls of the flume become clearly visible in the experiment. Furthermore,

the amplitude of the numerical oscillations is slighty higher and the damped

natural period in the numerical decay curve seems to be slightly smaller than

in the experimenal curve.

From a decay test, the natural angular frequency ωn, the added mass ma

and the damping factor ζd can be derived. The floater describes a free damped

oscillation, which can be mathematically expressed as:

z(t) = a exp(−ζdωnt) sin(ωdt + φ) (4.4)

Eq. (4.4) is fitted to the measured position of the buoy, as shown in
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Figure 4.7: Measured and numerically determined buoy position during decay test.

Test object: hc, d = 22.1 cm, msup = 8.1 kg.

Figure 4.8. The very initial part of the curve is omitted for the fitting to avoid

the influence of static friction and the last part is excluded too to avoid the

influence of reflected waves.
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Figure 4.8: Fitting of expression for a damped free oscillation to the experimentally

measured buoy position. Test object: hc, d = 22.1 cm, msup = 8.1 kg.

The added mass is obtained from the measured natural angular frequency

ωn of the buoy with Eq. (4.5):

ma =
k

ω2
n

−mbuoy −msup (4.5)

By performing these tests for varying supplementary masses, the added

mass is obtained for different natural frequencies. Figure 4.9 shows a compari-

son between the experimental and numerical values of the dimensionless added

mass for three different drafts d of the hemisphere-cylinder. The numerical
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results are obtained with WAMIT. The values in the experiments are found to

be somewhat higher than the numerical results. This corresponds with the fact

that the damped natural period appeared to be slightly smaller in the numerical

simulations, compared to the experimental results, as observed in Figure 4.7.

The hydrodynamic damping could not be derived in an accurate way due to

the influence of the internal friction in the system.
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Figure 4.9: Experimentally and numerically determined added mass for three

different drafts (d/D is the draft to diameter ratio). Test object: hc.

4.3.2 Heave exciting wave forces

The heave exciting wave forces are measured on the buoy while it is held fixed

in regular waves with varying period. The brake is tightly screwed on the

shaft, so that the exciting force on the buoy is entirely transferred to the load

cell. With the torque sensor mounted on the shaft, the exciting wave force

is derived as well. Note that the internal friction force needs to be added to

the value obtained from the measurements, since only the part larger than the

friction force is transferred to the sensors.

Figures 4.10 and 4.11 show the amplitudes of the first harmonic component

of the heave exciting forces as a function of the (dimensionless) frequency on

the cone-cylinder (cc) and hemisphere-cylinder (hc) shapes for two different

drafts. The tests are performed in regular waves with a wave height of 8.0 cm

and wave periods of 1.11, 1.35, 1.60 and 1.75 s (ω2R/g = 0.51, 0.35, 0.25
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and 0.21). The test matrix is given in Table F.2 of Appendix F. The numerical

findings are quite well confirmed by the experiments. Firstly, the exciting

forces are higher for the cone shape than for the hemisphere shape. Secondly,

for both shapes, larger exciting forces are associated with smaller buoy drafts.

At a period of 1.59 s (ω2R/g = 0.25) an increased value of the exciting force

is measured. This effect has also been observed by Vantorre et al. [4] and is

caused by wave reflection from the side walls of the flume.
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Figure 4.10: Measured and numerically determined heave exciting force on the cone-

cylinder.
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Figure 4.11: Measured and numerically determined heave exciting force on the

hemisphere-cylinder.
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4.3.3 Power absorption tests

In regular and irregular waves, tests are run for several values of the damping

force and supplementary mass. The variation of the supplementary mass leads

to different ratios of the natural period of the system to the incident (peak)

wave period or, in other words, different levels of tuning are obtained. The

absorbed power is determined by multiplying the buoy velocity with the total

damping force, consisting of the measured damping force and the friction force

in the system, estimated as described in Section 4.2.2. The test matrices for

regular and irregular waves are presented in Tables F.3-F.6 of Appendix F.

Regular waves

The response of the heaving cone-cylinder buoy in a regular wave with a wave

height of 10.2 cm and a period of 1.60 s is shown in Figure 4.12(a). The buoy

draft is 22.1 cm and the applied damping force (with constant magnitude) is

3.0 N (excluding the friction force). This corresponds to a damping force of

12 kN in prototype. A supplementary mass of 18.5 kg (74.12 ton in prototype)

has been added to the system, which is about twice the buoy mass, resulting

in a ratio ωn/ω equal to 83 %. This explains the phase lag between the

buoy position and the wave on the one hand and the large buoy amplitude

of almost two times the wave amplitude on the other hand. The buoy is

not yet fully operating at resonance, since in that case the phase lag would

be approximately 90°, assuming the phase of the exciting force is close to

zero degrees for this frequency range1. Furthermore, it can be noticed that

the numerical and experimental buoy response correspond quite well in these

conditions. Figure 4.12(b) shows the damping force measured by the force

transducer (exp, f) and torque sensor (exp, t). The damping force is a block

wave, instead of a harmonic wave, which is in phase with the buoy velocity.

In Figure 4.12(c) the measured damping force and tuning force are

compared for the same test conditions. Note the large amplitude of the

tuning force, even for this suboptimal tuning case. The amplitude of the

tuning force is 10 times larger than the amplitude of the measured damping

force and corresponds to a value of 120 kN in prototype dimensions. When

the tuning ratio of this buoy is increased to 90 %, the amplitude of the

registered tuning force is multiplied by a factor of two. This illustrates that

1The phase of the exciting force is 4.0° for this shape and for T = 1.60 s.
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(b) Damping force measured with the force transducer (exp, f) and torque sensor (exp, t).

15 20 25 30
−50

0

50

Time [s]

[N
]

Damping force (exp) Tuning force (exp)

(c) Measured damping force and tuning force.

15 20 25 30
0

2

4

Time [s]

[W
]

Pabs (exp, f) Pabs (exp, t) Pabs (num) Pabs, av (exp)

(d) Measured and numerically determined power absorption (measurements by force

transducer (exp, f) and torque sensor (exp, t)).
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(e) Difference between measured and numerically determined power absorption.

Figure 4.12: Experimentally and numerically determined time series. Test object: cc,

d = 22.1 cm, msup = 18.5 kg, Fd,A = 3.0 N, wave characteristics: H = 10.2 cm and

T = 1.60 s.
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operating close to resonance might require very large tuning forces, if the

intrinsic inertia of the device is rather small. Figure 4.12(d) gives the time-

dependent power absorption, experimentally and numerically determined. The

difference between the numerical and experimental power absorption is shown

in Figure 4.12(e). Mind the different scale of the y-axis. The numerical

average power is 1.4 W, indicated by the dash-dotted line in Figure 4.12(d).

The measured averaged power is 1.3 W, which is a difference of 7 %. When

the supplementary mass is increased, the difference becomes much larger, as

will be shown later. The ratio between the maximum instantaneous power and

the average power is about 1.6. Note that viscous losses are not included in the

numerical model, which might explain the difference between the numerical

and experimental values. Both numerical and experimental power absorption

figures do not represent produced power values, since PTO losses or other

conversion losses are not taken into account in the presented numbers.

Figure 4.13 shows the power absorption efficiency as a function of the

dimensionless damping coefficient applied on the cone-cylinder (cc) buoy.

The absorption efficiency is defined as the ratio of the absorbed power to the

incident wave power, available over the diameter of the buoy. An ‘equivalent’

external damping, bext, has been derived for the experiments, based on the

expression for the average power (Eq. (1.71) of Chapter 1):

Pabs =
1
2
ω2bextz

2
A (4.6)

The experimental data are compared with the numerical frequency domain

model for different tuning levels. Near resonance (Tn/T = 96 %) the motion

amplitudes become very large and linear theory is not able to predict the point

absorber behaviour anymore. However, when the buoy operates further from

resonance (Tn/T = 83%), the numerical and experimental values correspond

well. This is in agreement with Durand et al. [5] where numerical simulations

based on linear and non-linear theory are validated with experimental tests on

the SEAREV device. In the resonance zone only the non-linear model is able

to predict the power absorption in an accurate way.

The discrepancy in this near resonance case is particularly large for small

external damping values. At low damping, the buoy motion is large and

the influence of the non-linear hydrostatic restoring force becomes important.

Also the buoy velocity is large, which is associated with viscous effects causing

energy dissipation. These effects are not taken into account in WAMIT.
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Figure 4.13: Power absorption efficiency as a function of the dimensionless damping

coefficient for several ratios of Tn/T . Test object: cc, D = 5 m, d = 3.5 m, wave

characteristics: H = 1.62 m, T = 6.37 s.

Similar conclusions can be drawn, based on the measurements of the heave

response of a sloped wave energy converter concept by Payne et al. [8].

Only for low damping values, the numerically predicted amplitude (with

WAMIT) appeared to be much larger (about 65 %) than the experimental

values at resonance frequency. For increased external damping, the agreement

between measurements and numerical simulations significantly improved.

The correspondence was also very good for small damping values in the

frequency ranges outside resonance. This is also observed in Figure 4.13. The

correspondence between numerical and experimental values seems to worsen

somehow for larger damping values in the off-resonance zone. It is not entirely

clear why this happens, but it could be attributed to the friction force. This

force might have been larger than estimated when the external damping is

increased, since the buoy motions are quite small in that case and the static

friction, being larger than the dynamic friction, becomes important.

According to linear theory, efficiencies larger than 100 % are found -due

to the point absorber effect described in Chapter 1- whereas the experiments

have a maximum efficiency of almost 60 % for this particular tuning case.

Theoretically, maximum power absorption is obtained at Tn/T = 100 % and

bext = bhyd. However, in practice the optimal damping will be higher,

in order to reduce undesired energy losses, related to large buoy velocities.
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Note that for smaller tuning ratios Tn/T , the maximum power absorption

occurs for larger damping values, in both the experiments and numerical

simulations. Similar findings were formulated by Vantorre et al. [4]. However,

the experimental efficiencies measured in [4] are about 10 to 20 % higher

in absolute figures. Several differences may have caused this dissimilarity.

First of all, a different test setup has been employed, with different intrinsic

properties. For example the internal friction in the new setup is estimated

to be reduced by a factor of two. Since the contribution of the friction

force is considered in the total power absorption, possible inaccuracies in the

estimation of this force result in inaccurate power absorption values. Secondly,

the data processing has been performed in a different way. For instance

small under- or overestimations of the incident wave amplitude may induce a

considerable error in the incident wave power, since a quadratic relationship

exists between the available power and wave amplitude, having its direct

implication on the absorption efficiency.

Irregular waves

The cone and hemisphere have been tested in two irregular wave trains with

varying tuning parameters and damping forces. The measured wave elevations,

the measured damping force and estimated friction force (Section 4.2.2) are

used as input in the numerical time domain model. Figure 4.14 displays the

measured and calculated buoy motion parameters, forces and power absorption

as a function of time for the cone-cylinder with a draft of 22.1 cm, a

supplementary mass of 18.5 kg (= 2·mbuoy; Tn/Tp = 83 %) and a measured

damping force of 3.5 N. The wave is characterized by a significant wave

height of 6.2 cm and a peak period of 1.59 s. In Figure 4.14(a) the wave

elevation is shown, together with the measured buoy position. Even though

the tuning is suboptimal, it is clearly visible how the buoy motion is lagging

relative to the wave, resulting in larger buoy motions. Figure 4.14(b) compares

the measured buoy motion and the numerically determined buoy position.

The correspondence is excellent, showing that linear theory can indeed be

used to predict the point absorber behaviour for small waves and small buoy

motions. Figures 4.14(c) and 4.14(d) display the wave elevation, together

with the buoy velocity and acceleration, respectively. Note that the buoy

velocity is more or less in phase with the wave elevation, as a result of the

tuning. Figure 4.14(e) illustrates the tuning and damping forces. The tuning
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force fluctuates significantly, dependent on the acceleration of the buoy. In

Figure 4.14(f) the numerically determined radiation force and exciting wave

force are plotted. The radiation force is rather small, particularly in comparison

to the hydrostatic force, which is shown in Figure 4.14(g). The hydrostatic

force (or hydrostatic restoring force) is calculated as the Archimedes force

minus the gravity force. A constant spring coefficient has been considered.

Finally, Figure 4.14(h) displays the instantaneous power absorption, nu-

merically determined and experimentally measured based on the force trans-

ducer signal. The difference between both curves is shown in Figure 4.14(i)

on a different scale. As expected, the correspondence between numerical

and experimental results is quite good, particularly in the zone where the

buoy motions are small. Note the large fluctuations in instantaneous power

absorption in Figure 4.14(h). If no intermediate storage, e.g. by a hydraulic

accumulator, is provided, the produced power will also significantly vary

in time. However, the problem might not be too bad, since in practical

applications, multiple point absorbers will be installed in array configurations.

Hence, the total produced power will fluctuate less compared to a single body,

resulting in a higher quality of the power to be delivered to the grid. The time-

averaged power absorption of the considered time frame (118 s) is 0.42 W for

the experiments and 0.43 W for the numerical simulation. For clarity, only the

experimentally determined average value is indicated in Figure 4.14(h). The

ratio between the average power and the maximum value in this time frame of

118 s is about 6.7. Note that this ratio would even be quite larger if a much

longer, and hence more representative, time frame is considered. In practice,

the generator will not be designed for the very high, but exceptional peaks in

the design waves. Instead, these peaks are more likely to be truncated, with

power absorption losses as a consequence. The magnitude of these losses is

dependent on the rated (= maximum) power of the generator. It is obvious that,

if this rated power is close to the average power determined without truncation,

a considerable amount of power will be lost and the true average power will

be significantly smaller. Hence, these observations indicate that, in case the

device is not equipped with an intermediate storage, the capacity factor is

expected to be lower than for devices with a storage system.

In Figure 4.15 the results of a different test case have been displayed.

The buoy shape is the hemisphere-cylinder (hc) with a draft of 18.9 cm. It

has been employed in a more energetic irregular wave, characterized by Hs
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(a) Measured wave and measured buoy position.
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(b) Measured and numerically determined buoy position.
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(c) Measured wave and numerically determined buoy velocity.
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(d) Measured wave and numerically determined buoy acceleration.
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Figure 4.14: Figure continues on next page.
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(f) Radiation and exciting force (num).
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(h) Experimentally and numerically determined power absorption.
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Figure 4.14: Experimentally and numerically determined time series. Test object: cc,

d = 22.1 cm, msup = 18.5 kg, Fd,A = 3.5 N, wave characteristics: Hs = 6.2 cm, Tp =

1.59 s.
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= 9.6 cm and Tp = 1.83 s. The inertia of the system has been increased:

the buoy mass of the hemisphere is slightly larger than the cone (although

the applied draft is smaller) and the supplementary mass of the system has

been increased. Nevertheless, the tuning ratio Tn/Tp is only 76 %, since the

peak period is also increased. Additional to the friction force, a small external

damping force of 1.7 N has been applied. Figure 4.15(a) shows the measured

wave elevation and buoy motion. Again, the influence of the tuning can be

observed in the phase lag and motion amplification of the body response. The

correspondence between numerical and experimental buoy motions is very

good, as can be seen in Figure 4.15(b). Figures 4.15(c) and 4.15(d) present

the buoy velocity and acceleration. The forces acting on the body are shown

in Figures 4.15(e)-4.15(g). Mind the large tuning forces that occur, due to the

large inertia of the system on the one side and the large body accelerations on

the other side. The maximum tuning force in the considered time frame of

118 s is 79 N (prototype: 316 kN), whereas the maximum total damping force

(sum of friction force and external damping force) is only 3.9 N (prototype:

16 kN). The ratio between both values is approximately equal to 20 and it is

clear that it might be necessary to limit the tuning force to a certain value. A

restriction on the tuning force is particularly required if this force needs to be

delivered by the PTO system, in order to avoid overdimensioning of the PTO.

Figure 4.15(h) compares the numerical and experimental power absorption and

Figure 4.15(i) shows the difference between both power absorption time series.

Instantaneous deviations occur particularly when the buoy motions are larger

(e.g. during the last 6 s of the presented time frame). However, the average

power absorption values of the considered time frame (118 s) correspond very

well. The experimental average power absorption figure is 0.77 W and the

numerical value is 0.78W. This results in a ratio of maximum power absorption

to average power absorption of 4.5. Again, this ratio would considerably

increase as the length of the time frame increases, but it already gives an idea

of the large difference between maximum and average power that occurs even

in a short time frame.

Figure 4.15(j) illustrates the instantaneous power that is associated with

the tuning force. Huge instantaneous power levels are observed compared to

the useful power absorption. This is not surprising, since the control force

appeared to be a multiple of the damping force in Figure 4.15(e). It must

be stressed that the average power related to the tuning force is zero, since it
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(a) Measured wave and measured buoy position.
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(b) Measured and numerically determined buoy position.
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(c) Measured wave and numerically determined buoy velocity.
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(d) Measured wave and numerically determined buoy acceleration.
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Figure 4.15: Figure continues on next page.
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(f) Radiation and exciting force (num).
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(h) Experimentally and numerically determined power absorption.

60 65 70 75 80 85 90 95 100
−2

−1

0

1

2

Time [s]

[W
]

Difference Pabs, inst [W] (num) − Pabs, inst [W] (exp)

(i) Difference between experimentally and numerically determined power absorption.
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(j) Power absorption and power associated with the tuning force.

Figure 4.15: Experimentally and numerically determined time series. Test object: hc,

d = 18.9 cm, msup = 21.2 kg, Fd,A = 1.7 N, wave characteristics: Hs = 9.6 cm, Tp =

1.83 s.
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contains the product of the buoy acceleration and velocity, which have a phase

difference of 90°. Nevertheless, it seems unreasonable that an economical

design of the PTO will allow such a large power range, except in very small

waves where the useful power is small compared to the rated power. In

addition, small inaccuracies in the control may have a drastic effect on the

net power absorption.

These observations lead to two preliminary conclusions. First of all, a large

device inertia is very important. Systems with a relatively large inertia, e.g.

due to supplementary mass or a flywheel, may need only smaller additional

control forces to tune the buoys to the incident wave frequencies. Another

valuable alternative is the application of latching, i.e. locking and releasing the

point absorber at certain time instants to create the desired phase shift between

the exciting force and the buoy motion. This is likely to be more practically

feasible than realizing the tuning with the PTO.

Secondly, if the PTO is supposed to deliver the control forces, it is

advisable to implement restrictions on the control force in numerical models,

e.g. as introduced in Chapter 2 in order to obtain realistic power output

results. These restrictions are generally also associated with a reduction in

the occurrence probability of slamming and in the required maximum stroke,

since the buoys operate further away from resonance. It would be even better

to implement absolute restrictions, instead of constraints based on a statistical

parameter, and to apply control parameters that are adjustable in time even

within a certain sea state. In that case large control forces and large body

motions can be avoided in a specific time frame, without violating the power

absorption in the majority of the time. Since this requires more complicated

control engineering, it is beyond the scope of this work. However, it remains

an important issue, that should be addressed in future work.

Figure 4.16 shows the results of the same measurement, from 180 s after

the start of the wave generation. Due to energy building up effects in the flume,

most probably due to reflected waves to the side walls, the significant wave

height in the flume has been increased and the peak period decreased. Within

the time frame of 180 s to 220 s, the wave characteristics are: Hs = 13.8 cm and

Tp = 1.28 s. Note that the wave data analysis is not that reliable for such a small

number of waves (27), but at least it gives a rough idea of the characteristics.

Similar graphs as in Figures 4.14 and 4.15, showing buoy responses and forces,

are plotted. The reason why this time frame is shown too, is because of the
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large buoy responses that occur. Since the wave period has been decreased,

the buoy is tuned closer towards resonance (Tn/Tp = 109 % instead of 76 %),

and the buoy even rises out of the water several times. This is illustrated in

Figure 4.16(j), showing the relative buoy motion, i.e. the position of the buoy

relative to the wave elevation. The draft of the buoy is indicated with a dashed

line. When the relative motion of the buoy is larger than the buoy draft, the

buoy emerges and might be subjected to slamming. This happens five times

during the presented 40 s. This is an undesired control situation for practical

applications, since the occurrence probability of slamming is too large, as well

as the buoy motions and the tuning forces.

Figure 4.17(a) shows the power absorption efficiency for the cone-cylinder

as a function of the total damping force. The efficiency is numerically and

experimentally determined for two different buoy drafts with approximately

the same tuning ratio: Tn/Tp = 96 % - 97 % in the smallest irregular wave:

Hs = 0.98 m, Tp = 6.33 s (prototype dimensions). In Chapter 2 it was shown

numerically that buoys with a smaller draft -and similar waterline diameters-

absorb more power than buoys with a larger draft. This finding is confirmed

by the experiments. Furthermore, it is observed that the numerical power

absorption efficiencies, based on linear theory, are somewhat higher than the

experimental values. Similar conclusions can be made for the hemisphere,

of which the results are shown in Figure 4.17(b). Both the numerical

and experimental power absorption efficiencies are slightly smaller for the

hemisphere than the cone. This observation was also already pointed out in

Chapter 2.

In irregular waves, the general difference in power absorption is smaller

than 10 % in almost 70 % of the cone test cases and in 33 % of the

hemisphere test cases. In 76 % of the hemisphere tests, the difference in

power absorption is smaller than 20 %, which is still very good. In regular

waves the correspondence depended a lot on the ratio between the natural

period of the buoy to the wave period. In irregular waves, the technique

of applying a fixed supplementary mass for a certain sea state only allows

the buoy to be tuned towards a certain predominant frequency, such as the

peak frequency. Pure resonance cases, which can be obtained with latching,

are not achieved. Often they are even avoided, because they are associated

with very high buoy motions. Since the evaluated draft is rather large and

the buoy motions are relatively small in our test cases, the influence of non-
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(b) Measured and numerically determined buoy position.
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(c) Measured wave and numerically determined buoy velocity.
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(d) Measured wave and numerically determined buoy acceleration.
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Figure 4.16: Figure continues on next page.
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(h) Experimentally and numerically determined power absorption.
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Figure 4.16: Experimentally and numerically determined time series. Test object: hc,

d = 18.9 cm, msup = 21.2 kg, Fd,A = 1.7 N, wave characteristics: Hs = 13.8 cm, Tp =

1.28 s.
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linear effects, from e.g. viscous damping, and from the non-linearity of the

hydrostatic and hydrodynamic coefficients, remains at an acceptable level.

In general, smaller experimental power absorption efficiencies are found

compared to Vantorre et al. [4]. Some possible reasons have already been

mentioned in the Section about regular waves. The presented efficiencies are

based on short wave trains (118 s), which has its implication on the reliability

of the sea state characteristics (Hs, Tp and the available power). Nevertheless,

the influence of different parameters can still be investigated and the numerical

model can be validated with the experiments, by comparing the same wave

trains.

Figure 4.18 shows the power absorption efficiency as a function of the ratio

of the natural period of the point absorber versus the peak period in the smallest

irregular wave (Hs = 0.98 m, Tp = 6.33 s). Experimental and numerical values

are given for both the hemisphere and cone shapes with a similar damping

force of approximately 10 kN. As expected, the power absorption rises for

increasing values of the tuning ratio (Tn/Tp). It could seem remarkable

that the experiments with the cone-cylinder shape give a maximum power

output for a sub-optimal tuning case (Tn/Tp = 92 %). This can be explained

by the fact that the hydrostatic restoring coefficient k is assumed constant

when calculating the natural period. However, when the buoy amplitudes

are larger, the hydrostatic restoring coefficient becomes smaller, due to the

smaller waterline diameter, resulting in a higher natural period. This means

that the real ratio Tn/Tp is increased and resonance phenomena occur for

smaller values of the supplementary mass than initially expected. Although the

performance of the cone-cylinder shape and hemisphere-cylinder shape seems

to be quite equivalent, it should be mentioned that the required supplementary

mass to tune the hemisphere-cylinder is smaller, since its own weight is 41 %

higher than that of the cone-cylinder shape with the same draft (d = 3.5 m).

This requires smaller control forces for the hemisphere, probably resulting in

a cost reduction. However, the latter shape will be exposed to much higher

impact pressures and forces when bottom slamming on the buoy occurs [17].

This might increase the floater costs. On the other hand, the hemisphere is

able to withstand these forces better than the cone due to the membrane action

effect. Consequently, the choice between a hemispherical buoy, a conical buoy

or an intermediate shape will be more affected by other aspects than only by

its hydrodynamic performance.
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Figure 4.17: Power absorption efficiency for different drafts as a function of the

total damping force (sum of the external damping force and friction force). Wave

characteristics: Hs = 0.98 m, Tp = 6.33 s.
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Figure 4.18: Power absorption efficiency as a function of the relative natural period

of the system (Tn/Tp) for the cone- and hemisphere-cylinder with d = 3.5 m and a

damping force of 10 kN and 10.4 kN respectively. Wave characteristics: Hs = 0.98 m,

Tp = 6.33 s.

Figure 4.19(a) gives the power absorption efficiency as a function of the

dimensionless total damping force for the cone-cylinder shape in two different

irregular waves. For both sea states, a similar supplementary mass of 128 ton

has been applied. Since the peak periods of the two sea states are different,

this corresponds with different tuning ratios: Tn/Tp = 96 % (‘small’ wave:

Hs = 0.98 m - Tp = 6.33 s) and 84 % (‘large’ wave: Hs = 1.52 m - Tp =

7.29 s). Hence, the buoy is better tuned in the smaller wave and absorbs a

larger fraction of the available power, although in absolute values the power

absorption is largest in the more energetic wave (between 50 % and 110 %

larger than in the smaller wave). For the smaller wave, the power absorption

is not much affected by the value of the damping force. For the larger wave

though, the power absorption rises for increased damping force values and the

optimum is not yet obtained. The results for the hemisphere-cylinder shape are

presented in Figure 4.19(b). The supplementary mass is 85 ton, corresponding

to tuning ratios of 87 % and 76 % for the two respective sea states.

Figures 4.20(a) and 4.20(b) show the power absorption efficiency of the

cone and hemisphere, respectively, as a function of the dimensionless total

damping force for several tuning ratios Tn/Tp. The effect on the power

absorption of varying the tuning is significant and much more pronounced
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Figure 4.19: Power absorption efficiency as a function of the dimensionless total

damping force for the two different sea states.
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than the effect of changing the damping. For the hemisphere for instance,

if the tuning ratio is increased from 74 % to 93 %, the power absorption is

increased with a factor of approximately 2.3. However, as noted before, such a

large tuning ratio might not be practically interesting, because of the large buoy

motions that are involved and the large tuning forces that are required. For the

cone shape, the experimental efficiencies are observed to be slightly larger for

a tuning ratio of 92 % compared to a ratio of 97 %, due to the non-constant

hydrostatic restoring coefficient. This is in agreement with the findings from

Figure 4.18.

4.4 Conclusion

Experimental measurements have been performed to validate numerical simu-

lations based on linear potential theory and a linearized equation of motion. A

block shaped damping force has been applied to simulate power extraction

and a control force proportional to the acceleration has been realized by

adding supplementary mass to the system. The selected wave characteristics

are based on the measurements of Westhinder buoy, which is located at the

Belgian Continental Shelf. Generally, a satisfying correspondence is found

between the results from the experimental model and the numerical model.

For regular waves, the correspondence between experimental and numerical

power absorption is good in non-resonance frequency zones. When resonance

occurs, the buoy motions become large and the assumptions behind linear

theory are violated. In that situation linear theory overestimates the power

absorption by a large margin. In irregular waves, a difference of less than

10 % and 20 %, respectively, is generally found on the average experimental

and numerical power absorption for the cone-cylinder and hemisphere-cylinder

shape in the selected test cases. It is expected that a larger difference would

be found in more energetic waves and for tuned buoys with a smaller draft. In

that case slamming phenomena might occur and a non-linear model is required

to obtain accurate results. However, in practical situations slamming must be

avoided. Hence, it can be concluded that the linear model can be used for most

applications that are of practical interest.
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(b) Test object: hc, d = 3.5 m.

Figure 4.20: Power absorption efficiency as a function of the total damping force

(sum of external damping force and friction force) for different ratios of Tn/Tp. Wave

characteristics: Hs = 0.98 m, Tp = 6.33 s.
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CHAPTER 5

Performance of closely
spaced point absorbers with

constrained floater motion

� � �
In this Chapter the performance of point absorber arrays is numerically
assessed in a frequency domain model. Each point absorber is assumed
to have its own linear power take-off. The impact of slamming, stroke
and force restrictions on the power absorption is evaluated and optimal
power take-off parameters are determined. For multiple bodies optimal
control parameters are not only dependent on the incoming waves, but
also on the position and behaviour of the other buoys. Applying the
optimal control values for one buoy to multiple closely spaced buoys
results in a suboptimal solution, as will be illustrated. Other ways
to determine the power take-off parameters are diagonal optimization
and individual optimization. The latter method is found to increase the
power absorption on average with about 16 % to 18 %, compared to
diagonal optimization. At the end of the Chapter, the yearly absorbed
energy at Westhinder on the Belgian Continental Shelf is estimated.
This Chapter is an extension of ‘Performance of closely spaced point
absorbers with constrained floater motion’ by G. De Backer et al. [1].
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5.1 Introduction

Point absorbers are oscillating wave energy converters with dimensions that are

small compared to the incident wave lengths. In order to absorb a considerable

amount of power, several point absorbers are grouped in one or more arrays.

Some point absorber devices under development consist of a large structure

containing multiple, closely spaced oscillating bodies. Examples are Wave

Star [2], Manchester Bobber [3] and FO3 [4].

Several theoretical models dealing with interacting bodies have been

developed. Budal [5], Evans [6] and Falnes [7] adopted the ‘point absorber

approximation’ to derive expressions for the maximum power an array can

absorb. The approximation relies on the assumption that the bodies are small

compared to the incident wave lengths, so the wave scattering within the

array can be neglected while calculating the interactions. This means that the

exciting forces on the fixed devices are equal to those of isolated bodies. The

scattering of the radiated waves within the array is also neglected. The point

absorber theory gives good results for kwR <<1, with kw the wavenumber (=

2π/L) and R the floater radius [8]. A theory accounting more accurately for

the body interactions is the ‘plane-wave approximation’ [9–11], which is based

on the assumption that the bodies are widely spaced relative to the incident

wavelengths, so the radiated and circular scattered waves can be locally

approximated by plane waves. For closely spaced bodies, which is the focus of

this Chapter, this theory is not suitable as the wide spacing requirement is not

fulfilled, except for very short wave lengths. Satisfying computation results

are obtained with this method for values of kwdcc greater than unity [10, 12],

where dcc denotes the centre-to-centre spacing between two neighbouring

bodies. In the majority of studies, both theories have been applied to arrays

for unconstrained conditions. Contrary to the point absorber approximation,

the plane wave approximation is also suitable to study the power absorption of

an array in suboptimal conditions, as scattering might be relatively important in

that case [9,13]. Heaving point absorbers with constrained displacements have

been studied byMcIver [13,14] by means of the plane wave approximation and

by Thomas and Evans [15] with the point absorber approximation, although

less suitable. Motion restrictions appeared to significantly reduce the power

absorption capability of the array for longer wave lengths [13]. Apart from

regular waves, McIver et al. [14] also studied array interactions in irregular

unidirectional and directionally spread seas for a varying number of oscillators
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between 5 and 20, arranged in one or two lines. In unidirectional irregular

normal waves, the power absorption in unconstrained motions outperforms the

power extraction in constrained motions. In multidirectional seas, this effect

seemed to be clearly less pronounced.

More exact results on array hydrodynamics can be obtained by the ‘mul-

tiple scattering’ theory of Mavrakos [16]. This theory has been extensively

compared with the above mentioned approximate theories (the point absorber

approximation and plane wave approximation) [8, 17].

With current computer capacity, Boundary Element Methods (BEM) are

becoming more and more important to investigate interacting point absorbers.

Ricci et al. [18] compared results obtained with a BEM code to the point

absorber approximation and optimized the point absorber geometry and

interbody distance of two array configurations, each consisting of 5 floaters

in irregular waves with and without directional spreading. Taghipour et

al. [4] investigated the interaction of 21 heaving point absorbers in a floating

platform, known as the FO3 device, in unconstrained conditions. By means

of a mode expansion method, he was able to reduce the computation time to

calculate the body responses by a factor of 10 to 15. Recently, numerical

simulations of interacting floaters using the BEM package WAMIT [19] have

been successfully validated with experimental tests on arrays by Thomas et

al. [15].

The impact of constraints on a single point absorber has been described in

Chapter 2, showing that stroke and force restrictions might have a significant

impact on the power absorption. In this Chapter, the influence of slamming

and stroke restrictions as well as limitations on the power take-off (PTO)

forces are investigated for an array in a frequency domain model with WAMIT.

The results are compared with the performance of an isolated buoy under

the same restrictions. Apart from the total amount of power absorbed by

multiple bodies, attention is paid to the individual power absorption and the

difference in performance between the buoys within a certain configuration.

The control parameters are optimized with different strategies, among them

diagonal optimization and individual optimization.
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5.2 Methodology

5.2.1 Equation of motion

The equation of motion of an oscillating point absorber has been given in

Chapter 1, Eq. (1.51):

mz̈ = Fex + Frad + Fres + Fdamp + Ftun (5.1)

where m is the mass of the buoy and z̈ its acceleration. Fex is the exciting

force, Frad the radiation force, Fres the hydrostatic restoring force, Fdamp the

external damping force to extract power and Ftun the tuning force for phase-

controlling the buoy. The damping force is delivered by the power take-off

(PTO) system, whereas the tuning force can be exerted by the PTO or another

control mechanism. For simplicity, the PTO is assumed linear.

The equation of motion of N multiple bodies, oscillating in heave in a

regular wave with angular frequency ω, can be expressed as follows with linear

theory in the frequency domain:

− ω2(M+Ma(ω)+Msup) Ẑ+jω(Bext+Bhyd(ω)) Ẑ+KẐ = F̂ex(ω)
(5.2)

where Ẑ is the complex amplitude of the buoy positions, M the mass

matrix of the buoys, and K the matrix with hydrostatic restoring coefficients

or stiffness matrix. The added mass matrix and hydrodynamic damping matrix

are denoted by Ma and Bhyd, respectively. They are both symmetric N

x N matrices with the hydrodynamic interaction coefficients on the non-

diagonal positions. The vector F̂ex contains the complex amplitudes of the

heave exciting forces. The hydrodynamic parameters Ma, Bhyd and F̂ex are

obtained from the BEM software WAMIT [19]. Since the natural frequency of

the buoys is generally smaller than the incident wave frequencies, the buoys

are often tuned towards the characteristics of the incident waves to augment

power absorption. Similar to the previous Chapters, a tuning force proportional

to the acceleration has been implemented by means of a supplementary mass

matrix, Msup. Msup is a diagonal matrix, containing the supplementary mass

coefficients of each buoy on the diagonal: Msupjk
= m

(j)
sup Ijk, with m

(j)
sup the

supplementary mass for buoy j, I the NxN identity matrix and j, k ∈ [1, N ].
A linear external damping matrix, Bext, has been applied, enabling power
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extraction. The external damping matrix -also a diagonal matrix- is defined as:

Bextjk = b
(j)
ext Ijk.

The superposition principle is used to obtain the time-averaged power

absorption in irregular waves:

Pabs =
nf∑
i=1

1
2
ω2

i Z
∗
i BextZi (5.3)

where nf is the number of frequencies and Z∗i the complex conjugate

transpose of Zi. The calculations are performed for 40 frequencies, ranging

between 0.035 and 0.300 Hz. All buoys are assumed to be equipped with their

own power take-off system.

5.2.2 Constraints

Slamming constraint

In Chapter 2, a slamming restriction has been introduced to reduce the

probability of rising out of the water. A similar constraint is implemented

on each buoy of the array, requiring that the significant amplitude of the buoy

position relative to the free water surface elevation should be smaller than a

fraction α of the draft d of the buoy:

(z(j) − ζ(j))A,sign ≤ α · d (5.4)

where z(j) is the position of buoy j, ζ(j) the water elevation at the centre

of buoy j and α a parameter that is arbitrarily chosen equal to one. The water

elevation has been determined with the incident wave only, thereby neglecting

the radiated and diffracted waves from the buoys1.

This slamming restriction might require a decrease of the tuning parameter

msup and/or an increase of the external damping coefficient bext. Not only

the occurrence probability of slamming will be reduced by this measure, but

also the magnitude of the associated impact pressures and loads will drop,

since they are dependent on the impact velocity of the body relative to the

water particle velocity and this impact velocity will decrease when the control

parameters of the buoy are adapted according to the restriction imposed.

1Radiated and diffracted waves from the considered buoy j are neglected too, similar to the

method applied for an isolated buoy.
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Bottom slamming phenomena will be addressed more in depth in Chapters 6-8.

Stroke constraint

Several point absorber devices are very likely to have practical restrictions on

the buoy motion. Therefore a stroke constraint is implemented, similar to the

restriction implemented in Chapter 2, i.e. a maximum value on the significant

amplitude of the body motion is imposed:

z
(j)
A,sign ≤ z

(j)
A,sign,max (5.5)

In the examples that will be presented, a maximum value of the significant

amplitude of 2.00 m is chosen. Assuming Rayleigh distribution of the buoy

motions, this restriction means that a stroke of 4.90 m is exceeded for 5.0 %

of the waves. The implementation of constraints on the body motion increases

the reliability of the linear model, which is based on the assumption of small

body motions.

Force constraint

As illustrated in Chapters 2 and 4, the optimal control parameters for maximum

power absorption, may result in very large control forces, in particular caused

by large tuning forces. If this tuning force is to be exerted by the PTO, it

might result in a very uneconomic design of the PTO system. In that case it is

interesting to study the response of the floaters in case the total control force is

restricted, similar to the force constraint introduced in Chapter 2. If the force

spectrum is expressed as: S
(j)
F,i = F

(j)2
A,i /(2Δf ) and the significant amplitude

of the force is defined as F
(j)
A,sign = 2

√∫ nf

i=1 S
(j)
F,i · df , then the significant

amplitude of the damping and tuning force, respectively, for buoy j are given

by:

F
(j)
bext,A,sign = 2

√√√√√
∞∫
0

S
(j)
Fbext,A

(f)df (5.6)

F
(j)
msup,A,sign = 2

√√√√√
∞∫
0

S
(j)
Fmsup,A

(f)df (5.7)
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The significant amplitude of the total force, expressed in Eq. (5.8) will be

limited to 100 kN and 200 kN.

F
(j)
tot,A,sign = 2

√√√√√
∞∫
0

(
S

(j)
Fbext,A

(f) + S
(j)
Fmsup,A

(f)
)

df (5.8)

5.2.3 Optimization strategies

The relative performance of an array is often expressed by means of the ‘q-

factor’, defined as the maximum time-averaged total power absorbed by the

N bodies in the array divided by N times the maximum time-averaged power

absorption by a single point absorber.

q =
Pabs, max by array of N floaters

N · Pabs, max by an isolated floater
(5.9)

The q-factor expresses the performance of the array compared to isolated

buoys in ideal circumstances, i.e. when optimal tuning is assumed. Since

the control parameters are optimized for a certain sea state, rather than for

a particular frequency, the power absorption will be suboptimal, even in

unconstrained conditions. Hence, for the current purpose, a measure is needed

to express and compare the efficiency of different optimization strategies

applied to a given array in suboptimal conditions. Therefore a gain factor q̃

is defined as the ratio of the total power absorbed by the array to the power

absorbed by the point absorbers in isolation, subjected to the same constraints.

Three strategies to determine the control parameters for multiple bodies

will be compared: optimal control parameters from a single body, diagonal

optimization and individual optimization.

Optimal control parameters from a single body

In the first strategy, the optimal control parameters from a single body (OPSB)

are applied to all the bodies in the array. It should be kept in mind that

‘optimal parameters’ in this case means that these parameters lead to the

maximum possible power absorption within the imposed constraints and with

the described control and hence they do not necessarily give the absolute

maximum power absorption capability of the array. With this method all

bodies have the same control coefficients. However, the control forces, MsupZ̈
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and BextŻ, are not similar for the different buoys, since the buoy velocities

and accelerations differ in amplitude and phase. If msup,SB and bext,SB

are the single body optimal parameters for a specific sea state and a certain

combination of restrictions, then the absorbed power for the array is obtained

with the following control matrices:

Msup = msup,SB I and Bext = bext,SB I (5.10)

Diagonal optimization

With the second technique, all the buoys still get the same parameters, but they

are optimized with a simplex search (SS) method for unconstrained conditions

and a sequential quadratic programming (SQP) method for constrained condi-

tions. The methods are validated with an exhaustive searching (ES) method.

The latter method gives the same results as SS and SQP, however, SS and SQP

are much faster, which is important if very accurate results need to be obtained.

The supplementary mass matrix and external damping matrix are similar to

those in Eq. (5.10), but msup,DO and bext,DO are determined so that the total

absorbed power is maximal for the specific array (within the constraints). This

technique is called diagonal optimization (DO). It is also referred to as scalar

optimization [18].

Msup = msup,DO I and Bext = bext,DO I (5.11)

Individual optimization

With the last technique the floaters are individually optimized (IO), i.e. for

every floater separate values of m
(j)
sup and b

(j)
ext are determined. Note that

the control matrices are still diagonal matrices, however with non-identical

elements on the diagonal:

Msup =

⎡
⎢⎢⎢⎢⎣

m
(1)
sup

m
(2)
sup

. . .

m
(N)
sup

⎤
⎥⎥⎥⎥⎦ Bext =

⎡
⎢⎢⎢⎢⎣

b
(1)
ext

b
(2)
ext

. . .

b
(N)
ext

⎤
⎥⎥⎥⎥⎦

(5.12)
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IO has only been successfully applied in constrained conditions. The

optimization is carried out with a SQP method only, since a simple exhaustive

searching method would require too much CPU-time. If nmsup and nbext

values of m
(j)
sup and b

(j)
ext, respectively, are to be evaluated, the calculation of

the total power absorption needs to be performed (nmsup · nbext)
N times. If

e.g. 40 values for each control parameter are to be assessed for a configuration

of e.g. 12 floaters, the required number of power absorption calculations would

be 2.8 · 1038, which is not feasible. A drawback of the SQP algorithm for

individual tuning is that it might converge to a local maximum, depending

on the initial conditions. Hence, the choice of the initial conditions is very

important. The control parameters from diagonal optimization have been used

as initial values from which individual tuning parameters are obtained. It is

advised to check the output with simulations based on different starting values.

For instance, the control parameters obtained with individual optimization in a

slightly less or more energetic sea state can also be used as begin values. If the

number of buoys were small (preferably smaller than 6), the SQP algorithm

could be executed with a set of initial conditions for m
(j)
sup and b

(j)
ext (multistart

algorithm) to increase the chance of reaching the absolute maximum value.

Unfortunately, a multistart application is much too time-consuming for the

configurations that will be investigated in this Chapter, even if only two initial

values per parameter are selected.

5.3 Case study specifications

5.3.1 Configuration

Two multiple body layouts are considered, an aligned grid configuration with

21 buoys, as presented by Fred Olsen and applied to the FO3 device [4], and a

staggered grid configuration with 12 buoys. The layouts are shown in Figures

5.1 and 5.2, respectively. The buoys are placed in a square, fixed structure with

four supporting columns at the edges. However, the effects of diffraction and

reflection of waves on the columns will be further neglected in this study. The

interdistance between two successive rows is 8.0 m and 6.5 m, respectively.

The incoming waves propagate in the direction of the x-axis, as indicated

on the Figures. The buoys are assumed to oscillate in heave mode only. In

Figures 5.3 and 5.4 the buoy geometry is presented. A buoy consists of a cone
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shape with top angle 90° and a cylindrical upper part with a diameter of 4 m

for the configuration with 21 buoys and a diameter of 5 m for the array with

12 buoys. The equilibrium draft of the buoys is 2.5 and 3.0 m, respectively.

The total submerged volume, which can be a measured for the material cost, is

approximately the same for both configurations. However, it is expected that

the total component cost of the array with 12 floaters will be less than for the

grid with 21 buoys, since less power take-off units are required. Most results

are presented for the configuration with 12 buoys.

Figure 5.1: Configuration with 21 buoys in an aligned grid, dimensions in m.

Figure 5.2: Configuration with 12 buoys in a staggered grid, dimensions in m.
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Figure 5.3: Point absorber layout

for the configuration with 21 buoys,

dimensions in m.

Figure 5.4: Point absorber layout

for the configuration with 12 buoys,

dimensions in m.

5.3.2 Wave climate

In Chapter 4, nine sea states were defined based on scatter diagrams from

buoy measurements at Westhinder. The sea states with their corresponding

occurrence probabilities (OP) are displayed in Table 5.1. The mean water

depth at the Westhinder buoy is 28.8 m. The majority of calculations will

be carried out for the fifth sea state, characterized by a significant wave height,

Hs = 2.25 m and peak period, Tp = 7.22 s. The generated spectrum is based

on a parameterized JONSWAP spectrum [20,21].

Table 5.1: Sea states and occurrence probabilities at Westhinder based on

measurements from 1-7-1990 until 30-6-2004 (Source of original scatter diagram:

Flemish Ministry of Transport and Public Works (Agency for Maritime and Coastal

Services, Coastal Division)).

Sea state Hs [m] Tp [s] OP [%]

1 0.25 5.24 21.58

2 0.75 5.45 37.25

3 1.25 5.98 22.02

4 1.75 6.59 10.65

5 2.25 7.22 5.14
6 2.75 7.78 2.27

7 3.25 8.29 0.79

8 3.75 8.85 0.21

9 4.25 9.10 0.07
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5.4 Results

5.4.1 Unconstrained

In this Section, simulations are presented for unconstrained point absorber

motions and control forces on the configuration with 12 buoys. Figure 5.5(a)

shows the time-averaged power absorption for each floater. As expected, the

diagonal optimization (DO) method is more efficient than applying the optimal

parameters of a single buoy to the array (OPSB). The power absorption is

distributed very unequally between the buoys: the front buoys (in particular

Nos 3 and 8) absorb about 2.7 times more energy than buoy No 7 in the

back. Rather large buoy motions are observed in Figure 5.5(b), showing the

significant amplitudes of the position of the buoys. Figures 5.6(c) and 5.6(d)

present the external damping coefficients and supplementary mass coefficients,

respectively.

If diagonal optimization is applied, the total power absorption is ca

400 kW. This corresponds to an increase with almost 50 kW compared to

OPSB, as can be observed in Table 5.2. Although the power absorption of

the array is large, the gain factor q̃ is rather small (46 %), since the absorbed

power of an isolated buoy is quite large. It must be stressed, however, that this

unconstrained case leads to impractically large control forces (up to a value of

Ftot,A,sign of 400 kN) and floater motions, violating the assumptions behind

linear theory. Consequently, these power absorption figures will most likely

not be achieved in practical cases. Furthermore, as stated in the previous

Chapters, the power absorption figures do not take into account losses due

to mechanical friction, viscous losses, turbine and generator losses or any

other losses in the conversion system and hence, they do not correspond to

the produced electrical power.

In unconstrained conditions, an individual tuning (IO) did not lead to

any realistic solutions. Some buoys may be totally tuned towards resonance,

oscillating with very large amplitudes, while other buoys are kept still. This is

of course not a desired situation at all. Moreover, in unconstrained conditions

the optimization algorithm has a large chance to find a local maximum instead

of the absolute maximum, sometimes even without finding a solution which is

symmetric with respect to the x-axis. More realistic, constrained cases will be

addressed in the next Section.
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(b) Significant amplitude of motion.
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(d) Supplementary mass coefficients.

Figure 5.5: Simulation results in unconstrained conditions, with optimal control

parameters for a single body and diagonal optimization, sea state: Hs = 2.25 m, Tp =

7.22 s.

5.4.2 Constrained

Slamming and Stroke constraint

The power absorption and gain factor are determined for the three optimization

strategies, taking into account the slamming and stroke restrictions, as ex-

plained in Section 5.2.2. Table 5.2 shows that diagonal optimization performs

slightly better than the optimal parameters of a single body: the total power

absorption is 381 kW with OPBS and 389 kW with DO. A significant benefit

can be made by individually optimizing the control parameters of the floaters.

The power absorption becomes 443 kW with IO, which is an increase of about

14 % compared to DO or an increase of 54 kW. This figure corresponds
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with the amount of power absorbed by an isolated buoy, and illustrates the

large profit than can be made by individually tuning the buoys in case they

are closely spaced. For the configurations evaluated in [18], the benefit of

IO compared to DO was found to be less than one percent. This is most

probably due to the fact that the floaters are wider spread from each other

in [18]. The interdistance (centre-centre spacing) between two successive

rows, for which the two methods were evaluated, varied between 3 and 4

times the diameter D, whereas in the present configuration the interdistance

is about 1.3 D. The larger the interdistance, the more the behaviour of the

buoy resembles that of an isolated buoy and the less difference will be found

between the optimization techniques. Also the number of floaters is much

smaller in [18]: five floaters are considered compared to twelve floaters in the

present configuration. Particularly, the buoys in the back benefit considerably

from an individual tuning, as is shown in Figure 5.6(a), presenting the power

absorption for each buoy. Figure 5.6(b) shows the significant amplitude of

the buoy motions. The external damping and tuning parameters are shown in

Figures 5.6(c) and 5.6(d), respectively.

With IO, the power absorption is much better distributed among the

floaters. A maximum factor of 2.6 is found between the individual power

absorption of the front buoys and the rear buoys if DO is used, whereas only

a factor of 1.9 is observed when IO is utilized. With individual optimization

the buoys in the front absorb less power than with OPSB or DO, however,

the buoys in the back become more efficient. This is realized by detuning the

front buoys (small value of msup in Figure 5.6(d)), whereas the rear buoys,

on the other hand, are tuned very well to increase their velocity amplitude and

power absorption. Consequently, the power that is not absorbed anymore by

the front buoys can be absorbed by the buoys in the rows behind them. This

makes the influence of restrictions less drastic for an array than for a single

buoy. These conclusions will be even more pronounced when the constraints

are more stringent, as they will be in the next Sections.

All the buoys reach the maximum stroke value when IO is used, so the

stroke restriction is dominant (Figure 5.6(b)). The slamming constraint is

generally not critical in the presented examples for the given buoy dimensions

and sea state.
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(a) Time-averaged power absorption.
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(b) Significant amplitude of motion.
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(c) External damping coefficients.
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(d) Supplementary mass coefficients.

Figure 5.6: Simulation results in constrained conditions (slamming and stroke

restriction), with optimal control parameters for a single body, diagonal and individual

optimization, sea state: Hs = 2.25 m, Tp = 7.22 s.

Slamming, stroke and mild force constraint

In this Section the slamming and stroke restrictions are included together with

a force constraint of 200 kN on the significant amplitude of the total control

force. Figures 5.7(a)-5.7(d) give the power absorption, significant amplitude

of the motion and the control parameters of each buoy. The significant

amplitude of the damping force, tuning force and total force are presented in

Figures 5.7(e)-5.7(g) for the three optimization methods. The force constraint

is clearly the most critical constraint. The buoy motions are considerably

smaller than the stroke limit. The force limit on the other hand, is reached

by the front buoys with the OPSB and DO methods and by all the buoys with



142 CLOSELY SPACED POINT ABSORBERS

IO. The front buoys even exceed the limit of 200 kN in case of OPSB. If

certain control parameters meet the constraints for an isolated buoy, they do

not necessarily satisfy the same restrictions applied to an array. This explains

why more power is absorbed with OPSB (336 kW) than with the DO method

(332 kW) in this case (see Table 5.2), although the DO method was found to be

more efficient. Again, a large benefit can be made with the IO technique: the

power absorption becomes 379 kW, corresponding with an increase of 46 kW

compared to DO, which is even more than the power absorbed by an isolated

buoy under the same constraints. Due to the extra force constraint, the power

distribution among the floaters has been improved compared to the previous

case; the buoys in the front absorb only about 50 % more than those in the

back with IO, whereas with DO they absorb about double as much than the

rear buoys.

The gain factors q̃ have risen to 0.69 (DO) and 0.79 (IO) for this restriction

case, although the total power absorption of the array has decreased due to

the extra force constraint. This rise of q̃ can be attributed to the considerable

power drop by an isolated buoy under these restrictions. An isolated buoy loses

about 25 % of the power absorption, whereas the array loses only 12 to 14 %,

compared to the slamming and stroke restriction case. Since the array suffers a

bit less from the constraints than the isolated buoy, it has an increased relative

performance, although the absolute performance is decreased.

Slamming, stroke and stringent force constraint

In this case, the same slamming and stroke constraints are applied, but the

force limit has been decreased till a maximum value of 100 kN. Figures 5.8(a)-

5.8(g) show the simulation results of this test case. The power absorption

seems to be considerably decreased with this restriction, but it is even more

equally distributed among the floaters. The largest difference between the

power absorption of the front and rear buoys is a only factor of 1.7 and 1.4

with DO and IO, respectively. In order to satisfy this stringent force restriction,

phase control of the buoys is very limited. The tuning forces are considerably

small in this case, even smaller than the damping forces.

Again, the restriction is not perfectly fulfilled with the OPSBmethod. With

IO, all floaters have reached the maximum value of the total force, so it is very

likely that the IO method has given the correct, most optimal solution. This

strong force restriction has a harmful influence on the total power absorption,
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(a) Time-averaged power absorption.
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(b) Significant amplitude of motion.
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(c) External damping coefficients.
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(d) Supplementary mass coefficients.
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(e) Significant amplitude of damping force.
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(f) Significant amplitude of tuning force.

Figure 5.7: Figure continues on next page.
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(g) Significant amplitude of total control

force.

Figure 5.7: Simulation results in constrained conditions (slamming and stroke

restriction, and mild force restriction: F
(j)
tot,A,sign ≤ 200 kN), with optimal control

parameters for a single body, diagonal and individual optimization, sea state: Hs =

2.25 m, Tp = 7.22 s.

as displayed in Table 5.2. Compared to the previous case with the mild force

constraint, the absorbed power drops with more than 40 % for the single buoy

and with 31 % to 33 % for the array.

The results in Table 5.2 for the different restriction combinations illustrate

the benefits of phase control on power absorption. However, an economic

optimum needs to be found between the power absorption profit of phase

control and the costs to realise this tuning and to allow e.g. a larger stroke.

Since the power absorption for an isolated buoy is very small, the gain factor

reaches quite large values, up to 0.88. In other words the array has a good

relative performance, since the rear buoys are still able to absorb an important

share in the power, compared to an isolated buoy.

Angle of wave incidence and effects of mistuning

So far, irregular waves propagating along the x-axis have been considered. It

might be of interest to investigate the array behaviour for a different angle of

wave incidence βi, e.g. βi = 45°. In that case, the configuration in Figure 5.2

can be considered as an aligned grid. The power absorption values and gain

factors are presented in Table 5.2 for unconstrained motion as well as for

the combination of slamming, stroke and mild force restrictions. It appears
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(a) Time-averaged power absorption.
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(b) Significant amplitude of motion.
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(c) External damping coefficients.
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(d) Supplementary mass coefficients.
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(e) Significant amplitude of damping force.
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Figure 5.8: Figure continues on next page.
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Figure 5.8: Simulation results in constrained conditions (slamming and stroke

restriction, and stringent force restriction: F
(j)
tot,A,sign ≤ 100 kN), with optimal control

parameters for a single body, diagonal and individual optimization, sea state: Hs =

2.25 m, Tp = 7.22 s.

that the array performs slightly better when the incident waves propagate

in the direction of the diagonal of the array (aligned grid), compared to

normal incidence (staggered grid), however, the difference is not significant.

The performance of an array is strongly dependent on the wave frequency

and therefore the power absorption is calculated for the other sea states at

Westhinder (as defined in Table 5.1). Figure 5.9 shows the gain factor q̃ versus

the sea state for DO and IO and for two different angles of wave incidence

(βi = 0° and, βi = 45°), obtained with the slamming, stroke and mild force

constraints. A steep rise in q̃-factor can be noticed from sea state 4 onwards.

This might give the impression that the gain factor rises for longer waves.

However, the increase is most probably caused by the constraints, which

become important for the more energetic wave classes. Since a single body

is relatively more affected by the constraints, the gain factor rises in larger

waves.

In Figure 5.9 the difference between an angle of incidence of 0° and 45° is

very minor for all sea states and no final conclusion can be made about the

best angle of incidence. The difference in optimization strategy, on the other

hand is very clear: for all sea states and both angles of incidence, individual

optimization outperforms diagonal optimization with on average 16%. For
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Figure 5.9: q̃-factors for diagonal and individual optimization as a function of the

nine sea states on the Belgian Continental Shelf, configuration: 12 buoys, constraints:

slamming, stroke and mild force restriction.

the layout with 21 buoys, the performance difference between DO and IO -on

average over all sea states- is 18 %.

In practice, there will be uncertainties on the characteristics of the sea state

and the real sea state might not perfectly correspond to the values used in

the numerical calculations. For instance the real spectrum might differ from

the JONSWAP spectrum that has been employed, the current angle of wave

incidence might not be known exactly, etc. Hence, it is important to have

an idea of the sensitivity of the optimization techniques to mistuning effects.

An example is given in Table 5.3 for unconstrained motion and one case

of constrained conditions. Simulation results are presented for an angle of

incidence of 45°, but the optimal control parameters (CP) are taken from the

simulations with normal wave incidence. It is expected that for the individually

optimized parameters, the effect of mistuning will be more pronounced than

for the diagonally optimized parameters. This appears to be correct, however,

the effect of mistuning is extremely small. For DO the difference in power

absorption is less than 0.50 % compared to the results with the correct control

parameters for βi = 45°. For IO this difference is 1.76 % for the studied case.

Obviously, the larger the mistuning, the larger will be the impact on the power
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absorption, in particular for IO.

It needs to be mentioned that with the mistuned parameters, the force

constraint is still fulfilled for DO, but not anymore for IO. The problem is

caused by buoy No 12, exceeding the force limit by 20 %. The buoy is tuned

as a rear buoy (βi = 0°), getting a high value of the supplementary mass, and

becomes rather a front buoy when βi = 45°, where it is subjected to higher

incident waves. The combination of an increased supplementary mass and

large buoy motion parameters leads to larger control forces. When these

control forces cannot be delivered, the power absorption figures will be less

than expected and hence, the aforementioned losses due to mistuning effects

will be larger. More serious problems might be expected when slamming or

stroke restrictions are violated. In that case, not only the performance of the

system will diminish, but also the lifetime of the device might be affected, due

to heavily slamming of the floater on the water surface or e.g. on the fenders

attached to the structure enclosing the point absorber.

Application to the Belgian Continental Shelf

Figure 5.10 gives the power absorption versus the sea states at Westhinder

for the configuration with 12 and 21 floaters for individual optimization of

the control parameters, considering the slamming, stroke and mild force

constraints. It is observed from the graph that the power absorption rises

swiftly as the sea states become more energetic. The order of magnitude

of the power extraction figures corresponds to other wave energy converters,

for instance the Pelamis. For a significant wave height ranging between

2 and 2.5 m and a peak period of 7.15 s, the power absorption of the

Pelamis varies between 136 and 212 kW, whereas the considered point

absorber configurations absorb between 379 kW (12 floaters) and 500 kW (21

floaters)(Hs = 2.25 m, Tp = 7.22 s). It must be emphasized that the values

of Pelamis correspond to the produced power, since they take into account

efficiency factors. This is not the case for the calculated power absorption

values of the point absorbers, as mentioned before.

When combining the power absorption numbers of Figure 5.10 with the

occurrence frequencies of the sea states at Westhinder (mentioned in Table

5.1), the annually absorbed energy can be determined. The results are

presented in Table 5.4 and show that the energy absorption per year is around

1 GWh.
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Table 5.4: Annually absorbed energy at Westhinder for the configurations with 12

and 21 buoys, both with DO and IO. Constraints: slamming, stroke and mild force

constraint.

12 buoys 21 buoys

DO IO DO IO

Yearly energy absorption [GWh] 0.82 0.95 1.00 1.18

Truncated yearly energy absorption [GWh] 0.77 0.90 0.95 1.12

Figure 5.11 shows the contribution of each sea state to the power ab-

sorption for the two considered configurations with individual optimization.

The share in the average power absorption of the larger sea states is huge

compared to the smaller sea states. Note that the smallest sea state, which has

an occurrence frequency of more than 20 %, has almost no contribution to the

power absorption. It might be of interest to truncate the power absorption at a

certain sea state, since the power levels corresponding with the most energetic

sea states might be very large, resulting in a costly design. An example is

presented in which the power absorption values of sea state 5 are considered

as the upper limit, or alternatively, the power absorption of sea states 6 to 8

equals that of sea state 5. Note that the average power absorption values are

truncated and that the instantaneous, rated power values are still larger. The

yearly energy absorption values for the truncated case are also presented in

Table 5.4. The effect of the truncation is rather small.

Based on these preliminary calculations, the benefit of exploiting a device

with 21 floaters (of diameter 4 m) versus 12 floaters (of diameter 5 m) appears

to be rather limited. The average power absorption is increased with only

23 to 25 % if 21 floaters with a 4 m diameter are installed compared to 12

floaters with a 5 m diameter. A device with 12 floaters is less complex and is

therefore expected to be less expensive. Hence, further research is required to

evaluate the performance of different configurations. It is important to combine

results of the hydrodynamic performance with cost estimates before a definite

pronouncement can be made on the entire performance of an array.

5.5 Conclusion

The behaviour of closely spaced point absorbers in unconstrained and con-

strained conditions has been analysed in irregular unidirectional waves. Two
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Figure 5.10: Power absorption per sea state for the configuration with 12 and 21

buoys. Constraints: slamming, stroke and mild force constraint.
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Figure 5.11: Occurrence frequency of sea states and the percentual contribution of

each sea state to the power absorption for both array configurations. Constraints:

slamming, stroke and mild force constraint.

configurations are considered, one with 12 buoys with a diameter of 5 m and

another one with 21 buoys with a diameter of 4 m. The buoys are assumed

to be equipped with a linear power take-off, consisting of a linear damping
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and a linear tuning force. In unconstrained conditions the absorbed power is

found to be very unequally distributed among the floaters. For the considered

sea state and the 12 buoys configuration, the front buoys absorbed 2.7 times

more power than the rear buoys in unconstrained conditions. For the most

stringent constraints the difference was reduced to a factor of 1.4 to 1.7. The

total power absorption of the array is negatively affected by the implementation

of constraints. However, it is observed that the relative power loss of the array

is less than for a single body, since mainly the front buoys are affected by

the constraints and to a lesser extent the rear buoys. The power absorption of

the arrays has been determined in three different ways. Firstly, the optimal

parameters of a single body are applied to the array. This turns out not to be

an efficient way. Moreover, the constraints were not always fulfilled for all

the bodies in the array, although they were satisfied for the single body case.

Secondly, diagonal optimization has been applied. With this method all buoys

have the same control parameters, but they are optimized for the array. In the

third method, the buoys get individually optimized control parameters. This

strategy clearly outperforms the two other methods. On average over all sea

states, the power absorption was increased by 16 % and 18 %, respectively,

for the configurations with 12 and 21 buoys, by individually optimizing the

control parameters, compared to diagonally optimizing them. The difference

in performance between the two configurations is rather limited. It is found that

the average power absorption at Westhinder for the 21 buoys with diameter

4 m is only one quarter larger than for the 12 buoys with diameter 5 m.

The yearly energy absorption at the Westhinder area for the considered array

configurations is estimated around 1 GWh. It is recommended for future

work to investigate the behaviour of several array configurations in short-

crested waves with varying directional spreading parameters, since real seas

are multidirectional. Furthermore, it would be relevant to compare the

performance of the different control strategies applied in short-crested waves

with the presented findings based on long-crested waves.
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CHAPTER 6

Water impact on
axisymmetric bodies:
laboratory drop tests

� � �
The results of an elaborate experimental investigation on bottom
slamming of axisymmetric objects are presented. Drop tests have
been performed on a hemisphere and two conical shapes with different
deadrise angles. The test setup is designed so as to prevent small
rotations of the test objects which cause scatter in the measurement
data. The pressure distribution and evolution as well as the body
motion parameters are measured during impact. By means of a
high speed camera the water uprise is visualized and the wetting
factor is determined for the cones. The results are compared with
a three-dimensional asymptotic theory for axisymmetric rigid bodies
with constant entry velocity. The ratio between the registered peak
pressures and the asymptotic theory are in accordance with comparable
experiments in the literature. The asymptotic theory, however, is found
to be quite conservative, since the measured peak pressure levels appear
to be approximately 50 % to 75 % of the theoretical levels.
This Chapter is largely based on: ‘Experimental investigation of water
impact on axisymmetric bodies’ by G. De Backer et al. [1].
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6.1 Introduction

An experimental test programme has been executed to investigate bottom

slamming phenomena on point absorbers. As explained in Chapter 1, point

absorbers are generally tuned to the characteristics of the incoming wave

spectrum to increase the power absorption. However, this tuning might cause

the buoys to rise out of the water which results in slamming back into the water

surface on re-entry. It is important to know to which pressure magnitudes the

buoy is exposed when slamming occurs. In this Chapter, bottom slamming

on point absorbers is investigated by means of experimental drop tests at

laboratory scale.

Figure 6.1 presents a schematic view of a conical point absorber subjected

to water impact. The deadrise angle β is the angle between a meridian of the

body surface and the horizontal free water surface. When the point absorber

penetrates the water, the water surface is no longer plane, but rises along

the body surface. If the fluid is assumed to be incompressible, the law of

conservation of mass requires that the volume above z = 0 equals the displaced

volume for z ≤ 0. A jet flow is noticed which generally ends in a spray. The

peak pressures occur in the ‘outer domain’, below to the spray roots. The

spray roots are also denoted by the term ‘inner domain’. The pressure in the

jet flow is very close to atmospheric pressure. For this reason the water uprise

is very often modelled in a simplified way, focusing on the outer domain and

neglecting the jet stream and spray roots (inner domain). Slamming pressures

are typically very localized in space and time. They are higher and more

peaked for larger drop heights and smaller (local) deadrise angles.

Figure 6.1: Definition sketch of impacting body.

Slamming phenomena have been studied over several decades especially
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in naval hydrodynamics. Pioneering research has been carried out by von

Karman [2] and Wagner [3]. Wagner studied the water impact on rigid two-

dimensional bodies by approximating the bodies with a flat plate and taking

into account the water uprise on the body in a simplified way. Because

of the blunt body approach, the bodies are assumed to have small deadrise

angles in the range of 4 up to 20 degrees [4]. Zhao and Faltinsen presented

numerical solution results, based on the findings of Dobrovol’skaya [5], for

two-dimensional bodies with deadrise angles between 4 and 81 degrees [6]

[7]. Inspired by Zhao’s work, Mei et al. [8] developed an analytical solution

for the water impact problem of general two-dimensional bodies. The main

difference with the Wagner method is that the exact body boundary conditions

are fulfilled, instead of approximating the body by a flat plate. The advantage

of Wagner’s approximation is the ability to use analytical expressions for the

velocity potential. However, with the generalized Wagner method, a broader

range of (local) deadrise angles can be investigated in a more accurate way.

A substantial amount of experimental work has been performed to validate

the analytical and numerical models. Lin and Shieh [9] experimentally

investigated the pressure characteristics of a cylinder during water impact.

They also visualized the flow pattern during penetration by making use of a

digital imaging system and a high speed data acquisition system. Zhao and

Faltinsen [7] performed drop tests to study two-dimensional flow situations

of horizontal wedges dropped onto the free water surface. Experiments by

Yettou [10] et al. consist of free fall drop tests on symmetrical wedges. They

investigated the influence of the drop height, the deadrise angle and the mass

of the wedge and compared the results with existing models from Mei et al. [8]

and Zhao and Faltinsen [7].

Most studies have focused on two-dimensional impact problems since

slamming on ships has been a major concern. However, there is a need

for three-dimensional solutions because real impact phenomena are three-

dimensional. In this work, vertical slamming of three-dimensional axisym-

metric bodies is considered. Early studies in this area have been published

by Shiffman and Spencer [11] [12]. They investigated vertical slamming

phenomena on spheres and cones analytically by approximating the bodies

as a lens and an ellipsoid and presented solutions for the impact force on these

axisymmetric objects. Wagner’s theory has been extended to axisymmetric
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bodies by Chuang [13] and Faltinsen and Zhao [14]. In the case of

axisymmetric objects, the body shape is approximated with a growing flat disc

analogous to Wagner’s flat plate approximation for two-dimensional shapes.

Based on this principle, Chuang [13] developed an analytical expression for

the pressure distribution on a cone with small deadrise angle. In 1997 Faltinsen

and Zhao [14] presented an asymptotic theory for water entry of hemispheres

and cones with small (local) deadrise angles based on the assumptions behind

theWagner theory. Scolan and Korobkin [15] presented analytical solutions for

three-dimensional bodies obtained with the inverse Wagner method. Another

important contributor to axisymmetric slamming problems is Miloh [16]

[17] [18] who developed analytical expressions for the slamming forces on

axisymmetric bodies. One of the main differences between his work and the

classical Wagner’s theory is that the body boundary conditions are satisfied

exactly on the actual body surface instead of on a flat disc.

In 2003 Battistin and Iafrati [19] numerically studied impact loads and

pressure distributions on two-dimensional and axisymmetric bodies. Two

years later Faltinsen and Chezhian [20] presented a generalized Wagner

method for three-dimensional slamming based on the approach presented

by Zhao et al. [7] for two-dimensional water impact problems. To validate

the numerical simulations, they performed drop tests on a three-dimensional

shiplike composite structure from which they obtained several force measure-

ments. Peseux, Gornet and Donguy [21] solved the three-dimensional Wagner

problem numerically for both rigid and deformable bodies. The numerical

model is validated with an interesting experimental investigation consisting of

drop tests of conical shapes with small deadrise angles (6° - 10° - 14°). Kim

and Hong [22] numerically studied the impact of arbitrary three-dimensional

bodies with an extended von Karman and an extended Wagner approach,

including the presence of incoming waves. They also presented experimental

results on the impact loads during water entry of three-dimensional structures.

Very few experiments are available for validation of theoretical pressure

predictions for axisymmetric bodies. In 1961 Nisewanger [23] performed drop

tests on aluminium hemispheres and measured pressure distributions with self-

made pressure transducers. For conical shapes, experimental research has been

carried out by Chuang and Milne [24] in 1971 and more recently by Peseux et

al. as mentioned above. In the former study impact pressures are measured on

cone shapes with small deadrise angles varying from 1° to 15°. Point absorbers
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with a conical shape are very likely to have larger deadrise angles (≥ 20°). In
this Chapter the results of new impact experiments on a hemisphere and on

cone shapes with larger deadrise angles are presented.

6.2 Slamming pressures and forces

6.2.1 Pressures

Pressure distribution

The experimental results are compared with existing asymptotic solutions

based on the classical Wagner method extended to axisymmetric bodies, as it

was proposed by Chuang [13] and Faltinsen et al. [14]. Despite the interesting

work that has already been carried out in the field of water impact, Wagner’s

method is even nowadays still very valuable, since it produces analytical

formulas that are easy to handle and give a very good first insight into the

problem. The fluid flow is described by potential theory and a constant

entry velocity U is assumed. The initial time instant, t0 = 0 s, is defined

as the time where the body touches the calm water surface. At a time t,

the penetration depth relative to the calm water surface (z = 0) equals Ut

and the corresponding instantaneous radius at the wet section of the cone is

b0(t), as shown in Figure 6.2. The instantaneous radius b(t) at the intersection

point between the body and the water is found by integrating the vertical

velocity of the water particles at z = 0. For a cone shape this results in

b(t) = 4Ut/ (πtanβ) [14]. It should be mentioned that Figure 6.2 gives a

simplified representation of the water uprise, since in reality a jet flow occurs

which might end in a spray, depending on the convexity of the object.

Figure 6.2: Simplified representation of water uprise as proposed by Wagner.

The pressure on a cone shape with deadrise angle β, at a certain distance r
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from the symmetry axis, is expressed by:

pcone =
1
2
ρU2

⎡
⎣1− 4

(
r

Ut

)2
π2
(

16
π2tan2β

− ( r
Ut

)2) +
64

π3tan2β
√

16
π2tan2β

− ( r
Ut

)2
⎤
⎦

(6.1)

Eq. (6.1) is composed of three terms. The first term expresses the

stagnation pressure. The second term is a consequence of the permanent flow

around the disc and the third term accounts for the expansion of the disc,

representing the effect of the non-stationary behaviour of the flow around the

disc. As mentioned before, the blunt body assumption in Wagner’s method

implies that bodies should have small local deadrise angles. In the literature,

it is stated that the classical Wagner theory gives quite accurate results for

wedges with deadrise angles in the range of 4 to 20 degrees [7]. When deadrise

angles are smaller than 4 degrees, an air cushion is formed, which reduces

the pressure on the structure and as a result, Wagner theory overestimates the

pressure by a large margin.

For a hemisphere the relationship between the penetration depth and

instant wet radius b is not as straightforward as it is for a cone shape. Faltinsen

and Zhao [14] suggested a quadratic relation between Ut and b which is only

valid for small submergences (Ut/R < 1/5): b =
√

3RUt. The pressure on an

impacting hemisphere with radius R, at a distance r from the symmetry axis,

is expressed as follows:

phemisphere =
1
2
ρU2

⎡
⎣1− 4

(
r

Ut

)2
π2
(

3R
Ut −

(
r

Ut

)2) +
6

π
√

3Ut
R − ( r

R

)2
⎤
⎦ (6.2)

Figure 6.3 shows the distribution of the slamming pressure coefficient as

a function of the dimensionless radius for an impacting cone with different

deadrise angles β. The slamming pressure coefficient can be expressed as:

Cp = p/(0.5ρU2). A more peaked pressure distribution and a significant

pressure increase can be observed when the deadrise angle decreases. When β

decreases from 30° to 15°, the dimensionless pressure peak rises from 6.3 up

to 24.0, which is an increase by almost a factor of 4. Note that the pressure

drops after the peak level occurred and even goes to minus infinity for r equal
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to b, which is obviously unphysical. In order to know the correct pressure near

r = b, an analysis near the spray roots is required.
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Figure 6.3: Pressure distribution on a cone as a function of the dimensionless radius

r/Ut.

Figure 6.4 shows the pressure on a hemisphere with radius R and impact

velocity U as a function of the dimensionless parameters r/Ut and R/Ut. The

plot is restricted by the requirement that the coordinate r should be smaller than

the instantaneous wetted radius b, which means: r/Ut <
√

3R/Ut. When a

small fraction of the hemisphere is submerged (large R/Ut value), the material

is exposed to very high pressure peaks, specifically in the area close to the

wetted radius b (large r/Ut value).

Peak pressure

From Eqs. (6.1 - 6.2) the peak pressure levels for cones and hemispheres can

be assessed. Figure 6.5 shows the maximum slamming pressure coefficient

on a cone for deadrise angles varying between 10° and 45°. Figure 6.6 shows

the maximum slamming pressure coefficient on a hemisphere as a function of

the relative position r/R. At the bottom area of the hemisphere (r/R < 0.1)

the local deadrise angles are very small and the peak pressure values are much

overestimated for the same reason.
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Figure 6.4: Slamming pressure coefficient Cp on a hemisphere as a function of the

dimensionless parameters r/Ut and R/Ut.
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Figure 6.5: Maximum slamming pressure coefficient on a cone as a function of the

deadrise angle β with asymptotic theory.

6.2.2 Vertical Slamming Forces

Besides slamming pressures, also the significant global loads acting on the

point absorber structures might be of a concern. Hence, it is important to know

to which vertical slamming forces, F3, the structure is subjected when bottom
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Figure 6.6: Maximum slamming pressure coefficient on a hemisphere as a function

of the dimensionless parameter r/R with asymptotic theory.

slamming occurs. Slamming loads on impacting bodies have been extensively

studied up to now. A brief overview of literature results will be given.

The hydrodynamic impact force can be expressed as:

F3 =
d (ma∞U)

dt
= ma∞

dU

dt
+

dma∞
dt

U (6.3)

where ma∞ is the infinite frequency limit of the added mass. If a constant

entry velocity is assumed, the first term in Eq. (6.3) vanishes. The slamming

force obtained from the time derivative of the added mass is indicated with

‘AM’.

Shiffman and Spencer [12] developed a theoretical formula, as expressed

in Eq. (6.4), for the impact force on a cone by approximating the cone shape

by an ellipsoid:

F3cone =
3ma∞

U t (1 + (ma∞/m))3
U2 (6.4)

where m is the mass of the cone and U the initial entry velocity. The added

mass for infinite frequency is expressed as:

ma∞ = kss(β) ρ
(
Ut tan(

π

2
− β)

)3
(6.5)
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where kss is a non-dimensional value between 0 and 3 dependent on the

deadrise angle. For a cone with deadrise angle β = 20°, 30° and 45°, kss

is 2.24, 1.6 and 1.4, respectively. Note that the expression for the added

mass for infinite frequency is related to the mass of a hemisphere with a

diameter equal to the waterline diameter 2Ut tan(π
2 − β), i.e. mhemisphere =

2/3πρ
(
Ut tan(π

2 − β)
)3

. Shiffman and Spencer stated that Eq. (6.4) is a good

approximation up to the penetration depth where F3 attains its maximum value.

The theory is based on the similitude of the flow at different time instants and

thus assumes an approximately constant entry velocity. This implies that the

mass of the buoy should be much larger than the mass of the displaced water.

Consequently Eq. (6.4) can be approximated with:

F3cone = 3kssρ tan3
(π

2
− β

)
U4t2 (6.6)

Battistin et al. [19] and Kleefsman et al. [25] found a good correspondence

between their numerical results for a cone with constant entry velocity and

Eq. (6.6) of Shiffman and Spencer.

Miloh [18] analysed the impact on a sphere satisfying the exact body

boundary conditions. With a wetting coefficient, Cw = 1 + ζ
Ut , of 1.327

he suggests a force F3 for small entry depths and a constant entry velocity:

F3hemisphere = 0.5ρπR2U2

(
5.5

(
Ut

R

)(1/2)

−4.19
(

Ut

R

)
− 4.26

(
Ut

R

)(3/2)
)

(6.7)

The slamming impact force can also be obtained by pressure integration

(PI) of the hydrodynamic pressures, for example by integrating the expressions

in Eqs. (6.1) and (6.2) obtained with asymptotic theory.

The second term in Eq. (6.3) can also be computed by integration of the

pressures given in Eqs. (6.1) and (6.2). This will be referred to as the pressure

integration (PI) method. Faltinsen [14] presented analytical formulas for F3 by

integrating the third term of Eqs. (6.1) and (6.2), which is the predominant part

of the pressure accounting for the non-permanent flow around the expanding

disc. Since a constant entry velocity is assumed, the first term in Eq. (6.3)

drops, resulting in Eqs. (6.8) and (6.9), for a cone and hemisphere, respectively
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[14]:

F3cone = 256ρ
t2U4

(πtanβ)3
(6.8)

F3hemisphere = 6
√

3ρ
√

U5tR3 (6.9)

The same assumptions as for the pressure formulas apply here, i.e. small

entry depths for the hemisphere and small deadrise angles for the cone shape.

When F3 is known, the acceleration at each time step is derived and the

velocity and penetration depth are obtained by numerical integration of the

acceleration.

Figure 6.7 shows several predictions of the slamming force coefficient

Cs = F3/0.5ρπR2U2 on a sphere. The black dashed line represents Eq. (6.9)

by Faltinsen and the dotted line shows the slamming force coefficient obtained

by pressure integration of the entire expression in Eq. (6.2). The formula

derived by Miloh is given in a black solid line. The analytical expressions

are compared with experimental results by Moghisi and Squire [26] (grey

dash-dotted line) and numerical data by Faltinsen [14] (grey dashed line) and

Battistin and Iafrati [19] (grey solid line). In the numerical approaches a

constant entry velocity is assumed, the exact body boundary conditions are

fulfilled and the uprise of the water is accounted for. The asymptotic theory

clearly overestimates the force by a large margin after the very initial stage

of submergence. The numerical results [14] [19] and the analytical formula

from Miloh correspond quite well with the experimental values of Moghisi

and Squire.

Figure 6.8 compares the impact force on a hemisphere (R = 2.5 m) and two

cones with deadrise angle 30° and 45° for a drop height of 2 m. Note the large

magnitude of the forces up to almost 500 kN for the hemisphere. Eq. (6.4) of

Shiffman and Spencer corresponds well with the approximation in Eq. (6.6)

during the initial impact phase. However, a gradual discrepancy occurs which

becomes quite large at the maximum impact force. The maximum value

of the hydrodynamic load on the hemisphere is reached very quickly after

submergence (at Ut = 0.41 m). The maximum level for the 30° cone is attained

at a submergence of 0.87 m and for the 45° cone at 1.75 m. Obviously the
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deadrise angle of the cone has a huge influence on the magnitude and rise time

of the impact force.
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Figure 6.7: Force slamming coefficient Cs on a hemisphere versus the dimensionless

time Ut/R.

6.3 Experimental design

6.3.1 Test setup and test objects

Table 6.1 shows the three different bodies that have been tested: a hemisphere

and two cones with deadrise angles of 20° and 45°. The models are made from

polyurethane and have a large thickness from 30 mm to 50 mm. As mentioned

in Table 6.1 the diameter of the objects is 0.30 m, which is sufficient to reduce

surface tension effects. The bodies are dropped in a water basin with horizontal

dimensions of 1.20 m by 1.00 m and a height of 1.25 m. Twelve different

drop heights between 0.05 m and 2.00 m have been evaluated, corresponding

to impact velocities of 1.0 m/s and 6.3 m/s. A realistic stroke for a point

absorber buoy is about 5 to 10 m. Dependent on the control parameters, a

free fall of 2 m can be considered as an extreme case. Smaller drop heights

will occur more frequently and are therefore relevant as well. Because of
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Figure 6.8: Force on a hemisphere and two cones (β = 30° and β = 45°) with R =

2.5 m and a drop height of 2 m, i.e. U = 6.3 m/s; mhemisphere = 42.5 ton, mcone45° =

26.2 ton, mcone30° = 19.3 ton.

reasons of similitude, the cone shape tests can be considered as full-scale tests,

apart from the fact that the masses are not correctly scaled. In case of the

hemisphere, the results from the smallest drop heights (0.05 m - 0.20 m) need

to be upscaled to prototype values, according to the dimensions of a full-scale

body. Expected scaling effects might arise from surface tension and viscous

effects. For completeness, the tests with the hemisphere are also performed for

larger drop heights. The majority of the drop tests have been performed by De

Pré [27] in the framework of a master dissertation, supervised by the author of

this PhD thesis.

The results of an improved test setup are presented. Initially the tests

were carried out without any guiding structure. Although the test objects were

balanced precisely, the scatter in the measured data appeared to be significant.

In order to prevent small rotations of the floaters while falling down, the setup

was equipped with a guiding system consisting of tightened steel wires [28].

The results discussed in this Chapter are obtained from a test setup with an

improved guiding system. The tightened steel rods are replaced by a rail
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Table 6.1: Test object characteristics.

Test objects (dimensions in mm) Characteristics

Hemisphere
Local deadrise angles: 7.7° and 18.4°

Radius: 0.15 m

Material thickness: 0.05 m

Mass: 11.5 kg

Cone
Deadrise angle: 20°

Max. radius: 0.15 m

Material thickness: 0.03 m

Mass: 9.8 kg

Cone
Deadrise angle: 45°

Max. radius: 0.15 m

Material thickness: 0.03 m

Mass: 10.2 kg
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mounted on stiff aluminium profiles. The test bodies are attached to a profile

structure equipped with wheels, rolling down the rail as shown in Figure 6.9.

With this test setup the verticality of the impacting object is assured and the

tests are very well reproducible.

The masses mentioned in Table 6.1 correspond to the total falling mass,

i.e. the sum of the mass of the polyurethane bodies and the aluminium carriage.

The drop height, h, is limited to 2 m, compared to 4 m for the original test

setup. A 10 mm plexiglass sheet is installed in the side of the basin which

allows to film the impact phenomena. A picture of the test setup is given in

Figure 6.10.

Figure 6.9: Schematic view of the experimental test setup [mm].
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Figure 6.10: Picture of the experimental test setup.

6.3.2 Instrumentation

Pressure sensors and shock accelerometer

The pressure time history, the position and deceleration of the body were

recorded during impact. Three high frequency piezoelectric pressure sensors

were used. One ICP pressure sensor (A07) has a built-in microelectronic

amplifier while two other high frequency pressure sensors (K30, K31) have

external amplifiers. The measurement range for these devices is 3.45 bar and

2 bar, respectively. The pressure cells have a small diaphragm of 5.5 mm

and a very high resonance frequency, see Table 6.2. Consequently the sensors

are very well suited for measuring impact phenomena. The sensors are flush-

mounted at a horizontal distance of 0.04 m and 0.09 m, respectively from the

symmetry axis, as illustrated in Table 6.1. The deceleration of the object during

impact was measured by a shock accelerometer with a measurement range up
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Table 6.2: Sensor characteristics.

Sensor Measurement range Resonance frequency
A07 3.45 bar ≥ 250 kHz

K30, K31 2 bar ≥ 150 kHz

Shock accelerometer 500 g ≥ 54 kHz

to 500 g and a resonance frequency of 54 kHz.

Figure 6.11 shows the configuration of the pressure cells. The first three

configurations (a-c) represent the sensor positions for the hemisphere. The

sensors in Figure 6.11(a) are mounted on two opposite meridians in order

to evaluate the verticality of the penetration. With the configuration in

Figure 6.11(b) a comparison between the two local deadrise angles can be

made and in Figure 6.11(c) the sampling frequency is increased up to 100 kHz

for one pressure sensor and the shock accelerometer. In Figure 6.11(d) and

(e) the configuration of the pressure sensors is given for the 20° cone. In each

configuration two different pressure sensors are mounted on meridians close to

each other, allowing for the assessment of the different sensors. Figure 6.11(f)

shows the pressure sensor configuration in case of the 45° cone, which is

similar to Figure 6.11(a) combined with (b). Each case has been tested at

least three times for every drop height, varying between 0.05 m and 2 m.

A sampling frequency (SF) of at least 30 kHz was used for recording.

Such high sampling frequencies are required, since the pressure peaks occur

in a very small time interval (order of magnitude milliseconds). For the same

reason the resonance frequency of the sensors should be high enough. A small

pressure cell diaphragm area is necessary since the pressure peaks are also

very much localized in space as well, as can be seen in Figure 6.12, showing

the theoretically predicted pressure distribution according to asymptotic theory

at t = 0.002 s for a cone with deadrise angle 20° and drop height 2 m.

In earlier investigations, sensors with larger diameters have sometimes

been used, with values up to 19 mm in [10]. In that case the pressure

peaks might have a smaller spatial extent than the sensor area. Even pressure

cells with diameter 5.5 mm might measure a space-averaged pressure, which

is slightly different from the peak pressure. The pressure distribution is

particularly more peaked when the (local) deadrise angle is small and the

impact velocity high. Assuming that a pressure cell registers the space-
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Figure 6.11: Pressure sensor positions [mm] for the hemisphere: (a) Sensors K30A

and K31A - SF = 30 kHz, (b) Sensors K30B, K31B and A07B - SF= 30kHz, (c)

Sensor K31C - SF = 100 kHz, for the 20° cone : (d) Sensors K30A, K31A and A07A

- SF=30 kHz, (e) Sensors K30B and A07B - SF = 30kHz, for the 45° cone: (f) Sensors

K30, K31 and A07 - SF = 30 kHz.

averaged pressure when subject to a non-uniform pressure distribution, the

deviation between the peak pressure and the sensor record can be determined.

In [20], Faltinsen estimated that the theoretical peak pressure is at maximum

11 % higher than the space-averaged pressure, measured by a sensor with a

diameter of 4 mm. Deviations of the same magnitude can be derived, based on

the theoretically predicted pressure distribution by the 3D asymptotic theory.

For pressure cells with diameter 5.5 mm it is estimated with the latter method
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Figure 6.12: Theoretical pressure distribution as a function of r for a cone with

deadrise angle 20° and drop height 2 m.

Table 6.3: Influence of pressure sensor diameter: estimated deviations from peak

pressure for drop heights of 1 m and 4 m.

Sensor diameter h = 1 m h = 4 m
5.5 mm 10.8% 13.9%

19 mm 30.5% 34.2%

that the measured pressure on a cone with deadrise angle 20° deviates between

10 % and 14 % from the peak pressure for drop heights of 1 m and 4 m. In a

similar way as above, it is expected that a pressure sensor with a diameter of

19 mm, would underestimate the peak pressure with more than 30 % for the

same case of a cone with deadrise angle 20°, as shown in Table 6.3.

High speed camera

A high speed camera was used to record the penetration of the impacting

bodies as a function of time. The camera provided information on the water

uprise along the body and on the position and velocity of the impacting body.

For this purpose a marker tracking technique has been applied. The high speed

camera is able to deliver images up to 250 000 frames per second (fps) and

has full mega pixel resolution at 3000 fps. In this test case, it has been used

at 5000 up to 18000 fps, dependent on the desired pixel resolution. Because
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of the high frame rate, the camera shutter time is extremely short. In order to

overcome low illumination and to avoid interference with the grid frequency,

special flicker free lights have been used. Two lasers are mounted on top of

the basin and serve as a trigger for the data acquisition system. When the

dropped objects intersect the laser beams, the recording of the pressure sensors,

accelerometer and camera signal starts automatically.

6.4 Experimental test results

6.4.1 Water uprise and impact velocity

Figure 6.13 shows a selected number of images of a hemisphere penetrating

the free water surface, dropped from 1 m. A software program recognizes

the pattern of the marker and determines its coordinates at each time step.

Consequently the position of the body is known as a function of time and

the velocity can be determined. The pictures clearly show the water uprise

along the hemisphere. The jet flow is quickly detached from the body surface

ending up in a spray. This phenomenon has also been observed for cylinders

by Greenhow and Lin in [29] and [30]. Figures 6.14 and 6.15 show camera

images of the impacting cones for a drop height of 1 m. The creation and

propagation of a jet along the cone surface can be clearly seen and measured.

From the photographs of the cones the ratio Cw can be determined and

compared with theoretical values. The Cw factor is defined as the ratio between

the heights of the immediate and undisturbed free water surfaces measured

from the bottom point of the falling object:

Cw = 1 +
ζ(b, t)

Ut
(6.10)

with ζ the z-coordinate of the intersection point between the object and the

free water surface, see Figure 6.2. When flow separation occurs above ζ,

as in the case of the hemisphere, Cw has the physical meaning of a wetting

factor. However, in the case of a cone a thin jet flow might occur above this

intersection point as observed in Figures 6.14 and 6.15. The wetting factor Cw

for a cone with attached jet flow can then be defined as:

Cw = 1 +
ζ(b, t) + ljet

Ut
=

b

b0
+

ljet
Ut

(6.11)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.13: Hemisphere penetrating the water - (a) t = 0.0000 s, (b) t = 0.0022 s, (c)

t = 0.0044 s, (d) t = 0.0066 s, (e) t = 0.0088 s, (f) t = 0.0110 s, (g) t = 0.0132 s.
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(a) (b)

(c) (d)

Figure 6.14: Cone (β=20°) penetrating the water - (a) t = 0.0000 s, (b) t = 0.0044 s,

(c) t = 0.0088 s, (d) t = 0.0132 s.

where ljet is the height of the jet. Considering the outer flow domain, Faltinsen

et al. [14] found a ratio b/b0 equal to 4/π for cones based on Wagner’s blunt

body approach. By matching the outer 3D solution for axisymmetric flow

with the inner 2D jet flow solution by Wagner, Faltinsen described the jet

flow during water entry of a cone. Based on Faltinsen’s considerations, the

height of the jet is found to be 4Ut
π cosβ, resulting in a wetting factor Cw

equal to 4
π (1 + cosβ) for a cone with attached jet flow. The formula by

Faltinsen et al. [14] is slightly different1 from the latter, probably due to a

typing error in [14]. In numerical models that satisfy the real body boundary

conditions, the description of the jet flow can be very complex. Zhao and

Faltinsen [6] developed a numerical model that significantly simplifies the

description of the jet flow. This approach has been adopted by Battistin

and Iafrati [19] who determined the water surface elevation numerically for

axisymmetric bodies, among them a cone with deadrise angle 30°. However,

the jets are truncated at the top, which makes it impossible to derive the

correct wetting factor. Figures 6.16 and 6.17 illustrate the wetting factor

versus the penetration depth for three different drop heights for the 45° cone

and the 20° cone, respectively. The value of Cw is relatively constant during

penetration, although in both cases slightly higher values are measured for

small penetration depths. Furthermore the influence of the drop height appears

1Cw,Faltinsen = 4
π
(1 + 1/cosβ)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.15: Cone (β=45°) penetrating the water - (a) t = 0.000 s, (b) t = 0.004 s, (c) t

= 0.008 s, (d) t = 0.012 s, (e) t = 0.016 s, (f) t = 0.020 s, (g) t = 0.024 s, (h) t = 0.028 s.
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to be not very significant and a smaller wetting factor is found for the highest

deadrise angle. On average the measured values are 19 % and 23 % smaller

than the values found by Faltinsen et al. for the 45° and 20° cone, respectively.

The wetting factor of the hemisphere cannot be derived from the camera

images, since it is difficult to determine the intersection point between the

free water surface and the body, due to the disturbing effect of the 3D spray.

In order to better visualize the flow separation at the hemisphere, it would be

necessary to create a light sheet through the symmetry axis of the hemisphere

with a strong laser. In that case the water spray particles in front of the

hemisphere are not illuminated and do not disturb the measurement.
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Figure 6.16: Wetting factor as a function of penetration depth on the 45° cone.

Figure 6.18 illustrates the velocity during the initial impact stage deter-

mined by the high speed camera as a function of the entry depth. For each

shape three initial velocities, U0, are considered: U0 < 3 m/s, U0 ≈ 4 m/s

and U0 > 4.6 m/s. Although the mass of the hemisphere is the largest of the

three tested objects, the velocity decrease during the initial stage of the impact

is most pronounced for this shape. This is especially the case for higher drop

heights, corresponding to larger values of U0 and consequently higher impact

forces.

For the 45° cone the slamming force is so small that the impact velocity

remains quite constant. Note that the velocity increases for both cone shapes

in particular for small values of U0. Immediately after contacting the water
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Figure 6.17: Wetting factor as a function of penetration depth on the 20° cone.
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Figure 6.18: Velocity measured by the high speed camera for three different initial

impact velocities for each shape.
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surface, the impact forces on the cones are still rather small compared to the

gravity force. For this reason the impact velocity first builds up for a very

short period of time before starting to decrease. The graph illustrates that the

assumption of a constant entry velocity can be better justified for smaller initial

velocities U0. The recorded velocity time history is short for the 20° cone,

because the marker pattern becomes quickly unclear due to the water uprise.

Longer velocity time histories are obtained with the accelerometer, as will be

illustrated in Section 6.4.2.

6.4.2 Pressure distribution, impact velocity and deceleration

Hemisphere

Figures 6.19 and 6.20 show the pressure coefficient Cp = p/(0.5ρU2
0 ) on

the hemisphere as a function of time for a drop height of 1 m at r =
0.04 m and r = 0.09 m, respectively. The initial time is defined as the

moment where the bottom of the hemisphere touches the water surface. The

pressure measurements are compared with the asymptotic solutions, assuming

a constant entry velocity. The figure indicates that the asymptotic theory

overestimates the pressures significantly, particularly for small local deadrise

angles. This was also observed in the experiments of Lin and Shieh [9] for a

cylinder.

The pressure profiles indicate that smaller local deadrise angles lead to

higher pressures which have a shorter duration in time. The rising time of the

first pressure peak (Figure 6.19) is only 0.2 ms. Due to the decrease in velocity,

the time interval between the measured pressure peaks is larger than between

the theoretically predicted peaks. Furthermore it can be noted that the pressure

distribution of the four sensors at r = 0.04 m obtained from the three different

test configurations in Figure 6.11 (a-c) coincide very well. This implies firstly

that the hemisphere penetrated perfectly along a vertical line and secondly that

a sampling frequency of 30 kHz is sufficiently large since no higher peak has

been registered at 100 kHz.

Figures 6.21, 6.22 and 6.23 show the measured and theoretical accelera-

tion, velocity and entry depth, respectively. The theoretical values are based

on the pressure integration method (PI) and added mass method (AM) as

explained in Section 6.2.2. The presented velocity and position data from

the high speed camera are measured at 18000 fps for the three shapes. The
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Figure 6.19: Measured and calculated pressure distribution on the hemisphere at r =
0.04 m for U0 = 4.0 m/s.

acceleration signal in Figure 6.21 is disturbed by a high frequency noise,

probably originating from oscillations of the horizontal aluminium beam

since the noise was not registered in the original setup. Nevertheless the

accelerometer signal is still valuable, as can be seen in Figure 6.22. The

velocity, based on numerical integration of the accelerometer signal coincides

very well with the velocity derived from the high speed camera images. The

theoretical velocities drop more quickly, which is due to the fact that the forces

and consequently the accelerations are overestimated by both methods. The

measured initial velocity is 4.0 m/s, whereas the calculated speed U0 =
√

2gh

would be 4.4 m/s. This difference can be attributed mainly to friction in the

guiding system. For this reason all theoretical values are calculated based on

the measured initial speed. Note the very short time span of 12 ms in the plots.

In this time span the hemisphere has reached a submergence of about R/3 (see

Figure 6.23) and the relevant impact phenomena have occurred.
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Figure 6.20: Measured and calculated pressure distribution on the hemisphere at r =
0.09 m for U0 = 4.0 m/s.

Cone 20°

Figure 6.24 shows the measured and calculated pressure distribution on the

20° cone for a measured impact velocity U0 = 3.85 m/s. It can be noticed

that the pressures measured with the different sensor types correspond very

well in both sensor positions r = 0.04 m and r = 0.09 m. According to the

asymptotic theory, the peak pressure level does not change along the object. In

the experiments the second pressure peak is slightly larger than the first one.

On average over all the tests, the difference in peak pressure between the two

positions is 3.8 %. This phenomenon was also observed by Peseux et al. [21]

with even more pronounced differences for cones with smaller deadrise angles

(14°- 10°- 6°). The reason for this trend is not entirely clear. It could possibly

be attributed to mounting problems due to the small radius of curvature at r =
0.04 m compared to r =0.09 m. The sensors, having a flat membrane area,

disturb the geometry of the cone more at a smaller radius of curvature and this

might slightly influence the pressure measurement.



6.4 Experimental test results 183

0 0.002 0.004 0.006 0.008 0.01 0.012
−600

−400

−200

0

200

400

600

Time [s]

A
cc

el
er

at
io

n 
[m

/s
²]

Exp (Accelerometer)
Theoretical (AM)
Theoretical (PI)

Figure 6.21: Measured and calculated acceleration on the hemisphere.
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Figure 6.22: Measured and calculated velocity on the hemisphere.
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Figure 6.23: Measured and calculated position on the hemisphere.

In Figure 6.25 a quite high deceleration peak of about -100 m/s2 can be

noticed, which results in a non-negligible velocity decrease (Figure 6.26). As

in the case of the hemisphere, the theory is rather conservative, especially the

added mass method. The height of the tested cone shape is 0.055 m, which

means it is almost completely submerged after 12 ms (Figure 6.27).

Cone 45°

Figures 6.28-6.31 show the pressure distribution, acceleration, velocity and

entry depth for the 45° cone with an impact velocity of 4.05 m/s. Although

the classical Wagner principle assumes small deadrise angles, a quite good

correspondence is found between theory and experiments for the first sensor

position. However, the peak at the second sensor position seems to be

significantly smaller than the first peak, whereas the theory predicts the same

values because of the similarity of the problem. The discrepancy between

the two sensor positions has been observed for all impact velocities and is

on average 35 %. This pressure drop cannot be explained by a smaller

instantaneous velocity, since the velocity during the second peak is about the

same value as during the first peak. However, the accelerometer measures a

small acceleration (during the first 10 ms) followed by a deceleration. The
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Figure 6.24: Measured and calculated pressure distribution on cone (β = 20°) for V0

= 3.85 m/s.
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Figure 6.25: Measured and calculated acceleration on cone (β = 20°).
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Figure 6.26: Measured and calculated velocity on cone (β = 20°).
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Figure 6.27: Measured and calculated position on cone (β = 20°).
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influence of this acceleration and deceleration on the pressure is not taken into

account by the asymptotic theory. Assuming a uniform pressure distribution

originating from the part of the impact force proportional to the acceleration

(Ma33
d2z
dt2

), it is estimated that this contribution to the pressure is between

5% and 15% of the measured pressure, which is rather small and does not

explain the pressure drop. A small time shift of 0.5 ms is observed between

the pressure signals of sensor K30 and K31. As this corresponds to a vertical

distance of 2.0 mm, which is a fraction of the sensor diameter of 5.5 mm, this

shift might be caused by imperfections in the sensor mounting.

The deceleration, velocity and penetration are well predicted by the

analytical approaches for small entry depths, since the pressures correspond

well with the experiments in this case. The deceleration peak is -25 m/s2,

which is only one quarter of the peak measured for the cone 20°.

For this range of impact velocities the theoretical assumption of a constant

impact velocity is acceptable for the 45° cone and the hemisphere. The 20°

cone experiences the largest velocity drop, which is still smaller than 20 %

after almost complete submergence.

6.4.3 Comparison between shapes

Figures 6.32-6.33 show the slamming pressure coefficient as a function of the

dimensionless entry depth U0t/R at r/R = 0.267, respectively r/R = 0.300.

Although the analytical solution is quite conservative in predicting the peak

levels, the global pressure distribution fits the experiments quite well. In the

bottom area, the hemisphere is subject to much higher slamming coefficients

than the cones. For very small r-values, the local deadrise angle of the

hemisphere tends to zero and very high impact pressures may occur. Structural

designers should pay special attention to this zone. For larger values of r/R

the slamming coefficient on the hemisphere drops rapidly, which is not the

case for the cones. Note in Figure 6.33 that the peak value of the hemisphere

is smaller than for the 20° cone, whereas the local deadrise angle of the former

is only 18.4°.

6.4.4 Peak pressure

Structural designers are often interested in maximum pressures. Figures 6.34-

6.37 give the maximum pressures as a function of the equivalent drop height,
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Figure 6.28: Measured and calculated pressure distribution on cone (β = 45°) for V0

= 4.05 m/s.
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Figure 6.29: Measured and calculated acceleration on cone (β = 45°).
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Figure 6.30: Measured and calculated velocity on cone (β = 45°).
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Figure 6.31: Measured and calculated position on cone (β = 45°).
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Figure 6.32: Slamming pressure coefficient at r/R = 0.267.
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Figure 6.33: Slamming pressure coefficient at r/R = 0.300.
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h∗, which corresponds to the drop height calculated from the measured impact

velocity. The use of this equivalent drop height makes it possible to compare

the measurement results with other research results. Since the maximum

pressure is proportional to the drop height, a linear least squares fitting (LSF)

has been adopted. The value of the squared Pearson correlation coefficient,

R2∗, is always very close to one, indicating a high linear correlation between

the different data points of each test series. The average deviation between the

measured and analytical peak pressure levels can be easily assessed from the

graphs. For the hemisphere, the measured peak values are respectively 58 %

and 55 % of the Wagner peak values, for the first and second sensor position.

For the 20° cone the ratios are 66 % and 68 % respectively and for the 45° cone

73 % and 48 %. The ratio between Chuang’s experiments [24] and asymptotic

theory is 27% and 86% for a cone with deadrise angle 3° and 15°, respectively.

In [21] a numerical solution of the Wagner 3D problem is suggested and

evaluated by experiments on cone shapes with deadrise angles 6°, 10° and

14°. The ratios between the experiments and numerical solution are on average

53 %, 67 % and 76 %, respectively and consequently comparable to the ratios

found in this study. Nisewanger [23] found pressure peaks on hemispheres

that are closer to the asymptotic theory levels using pressure transducers with

a diaphragm of 6.4 mm. Generally the blunt body approach is found to be

conservative. This is considered as the main reason for the discrepancies

between experiments and theory. Minor differences are attributed to the cell

membrane diameter, which should be as small as possible. The assumption

of a constant entry velocity might also have a small influence, depending on

the shape and mass of the body. Furthermore the theory assumes rigid bodies,

a condition which is seldom fulfilled in practice. Deformable bodies might

experience significantly smaller pressure as demonstrated in [21].

In order to evaluate the reproducibility of the tests, the hemisphere and

the 20° cone were each dropped ten times from a drop height of 1 m. The

sensor positions correspond to the configurations in Figure 6.11(b) and (d)

for the hemisphere and cone, respectively. Table 6.4 shows the coefficient of

variation Cv -the ratio of the standard deviation to the mean- of the measured

peak pressures. For sensor A07 and K31 the relative spreading of the peak

levels to the mean is extremely small. This indicates that these sensors measure

very accurately and the tests are well reproducible. The larger spreading found

for sensor K30 should be attributed to inaccuracies of the sensor itself.
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Table 6.4: Coefficient of variation for the hemisphere and cone 20°, drop height =

1 m.

Coefficient of variation A07 K30 K31
Hemisphere 0.66% 8.48% 0.44%

Cone 20 0.93% 12.22% 1.25%
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Figure 6.34: Peak pressure versus drop height on the hemisphere at r = 0.04 m.
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Figure 6.35: Peak pressure versus drop height on the hemisphere at r = 0.09 m.
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Figure 6.36: Peak pressure versus drop height on cone (β = 20°).
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Figure 6.37: Peak pressure versus drop height on cone (β = 45°).

6.5 Conclusion

Slamming phenomena on axisymmetric bodies have been experimentally

studied by means of drop tests. A hemisphere and two cone shapes with

deadrise angle 20° and 45° are dropped onto initially calm water. The water

surface elevation is visualized with a high speed camera. Along the hemisphere

the water uprise quickly ends in a spray, whereas a jet is attached to the body

of the cone shapes. The wetting factor is determined for the cones and is

about one fifth smaller than the value predicted by matching the outer 3D

flow with Wagner’s 2D jet flow model as described by Faltinsen in [14]. The

pressure time history, impact velocity and deceleration are measured during

impact. The velocity decrease during impact is found to be rather small,

particularly for the 45° cone. In fact, for small entry velocities the 45° cone

first experiences a very small velocity increase after making contact with the

water surface. The measurements are compared with asymptotic theory for

rigid axisymmetric bodies with constant entry velocity. Axisymmetric theory

gives a good first idea of the slamming pressure distributions, however, it is
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found to be quite conservative. The ratio between measured and theoretical

peak levels is roughly between 1/2 and 3/4, which is in accordance with the

findings of Peseux et al. [21] on cone shapes with smaller deadrise angles.

To achieve better theoretical predictions, more advanced models should be

applied in which e.g. the real body boundary conditions are satisfied, the

variation of impact velocity is accounted for and possibly also the deformation

of the body. At the Department of Flow, Heat and Combustion Mechanics of

Ghent University, water impact problems of point absorbers have recently been

studied with the CFD package Fluent [31], resulting in two master dissertations

[32, 33].

The experience gained with the small scale laboratory tests has been used

to perform free fall outdoor drop tests with composite point absorbers at large

scale. The results of these tests are described in Chapter 7.
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CHAPTER 7

Large scale outdoor bottom
slamming tests

� � �
Experimental results of outdoor drop tests to investigate bottom
slamming are presented. The tests are performed on two large buoys
made of composite material. One buoy has an additional foam layer
between the filament winded layers. The bodies consist of two conical
parts (with deadrise angle 45°), connected by a cylindrical centre part.
They are instrumented with pressure sensors, a shock accelerometer and
strain gauges. The peak pressures on the conical bottom part are found
to be much smaller than those measured on the 45° cone during the
laboratory tests. One of the reasons for the small pressures is the large
deceleration the bodies experience, shortly after having touched the
water surface. This deceleration is most probably due to the presence
of the flange, at the bottom of the cone. The deformability of the large-
scale bodies may also be partly responsible for the smaller pressures,
although the measured strain peaks are in the order of magnitude of
only 70 microstrain. The measurement results indicate that the tested
shape is favourable from the point of view of bottom slamming.

7.1 Introduction

Large scale outdoor drop tests have been performed at the Watersportbaan

in Ghent, Belgium in cooperation with the Department of Materials Science
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and Engineering at Ghent University. Two large floaters made of composite

material were dropped from 1.00 m to 5.35 m in a canal. The bodies have

a diameter of about 1.75 m and consist of two conical parts with an apex

angle of 90° and a cylindrical middle part. The floaters are designed by the

Department of Materials Science and Engineering and manufactured by the

company Spiromatic (Nazareth) with the filament winding technique. For

practical reasons, the conical parts are truncated by the presence of flanges and

hence, the composite bodies are different from the conical body with a deadrise

angle of 45° used in the laboratory tests. One of the large floaters has a foam

layer between the composite layers (BWF = buoy with foam), the other one

has no intermediate foam layer and is consequently slightly more deformable

(BWOF = buoy without foam). Not only bottom tests, but also lateral tests have

been performed at the Watersportbaan. In that case the floater is dropped with

its axis of rotation in the horizontal direction in order to simulate a breaking

wave on the cylindrical part. More details about the design and manufacturing

are given by Blommaert in [1] and Blommaert et al. in [2]. The results obtained

from the lateral tests are also discussed in [1, 2].

7.2 Test setup

Figure 7.1-Figure 7.4 give an impression of the free fall outdoor drop tests. A

crane lifted the floaters at the desired drop height between 1.00 and 5.35 m.

The drop height was gradually increased in steps of 1 m. The tests at the

largest drop height (i.e. 5.35 m for the BWF and 5.00 m for the BWOF) have

been repeated 10 times. For the other drop heights, one to four tests have been

performed per drop height. In total, 44 bottom drop tests have been effectuated.

A mechanical system was used to release the floaters, see Figure 7.2. By

pulling a lever, the hook turns around the hinge point and the hoist cables

are released together with the test body. The floaters fell down freely.

The drop height has been determined either by a measurement rope

with affixed markers indicating the height (BWF), or by the measurement

instrumentation of the crane (BWOF). A ‘pull rope’ was attached to the test

bodies, to pull them back to the bank where the hoist cables were reattached

to the release mechanism. The different ropes and cables are indicated in

Figure 7.3.

The floater shape and its dimensions are given in Figure 7.5. Due to the
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Figure 7.1: Test setup at the Watersportbaan: a crane lifts up the floater.

Figure 7.2: Mechanical release system.



204 LARGE SCALE OUTDOOR BOTTOM SLAMMING TESTS

Figure 7.3: Drop test with composite body at Watersportbaan, Ghent - drop height

5.35 m.

Figure 7.4: Spray during impact.



7.3 Instrumentation 205

Figure 7.5: Dimensions of the large scale test bodies [mm] with indication of the

pressure sensor and strain gauge positions.

filament winding technique, the thickness of the structures is not constant;

the thickness increases at the edges of the cone. Figure 7.6 and Figure 7.7

give the thicknesses at a position near the pressure sensors for the buoy with

and without foam, respectively. The position is indicated by a red circle in

Figure 7.5. The first layer attached to the mould, is an isotropic fibre layer.

It consists of mats with chopped fibres, randomly spread in all directions,

improving the attachment with the other layers. Next, the buoy with foam

has twice 4 filament winded layers, with in between a thick foam layer. The

buoy without foam has 7 filament winded layers and no foam layer. On top of

the last winded layer, a protective coating has been applied.

7.3 Instrumentation

7.3.1 Pressure sensor and accelerometer

The time history of the pressure and the position and deceleration of the body

have been measured during impact, as well as the deformation of the structure.

Three piezoelectric pressure sensors have been used: sensors A07, A08 and

A23. Their position is indicated in Figure 7.5.

Sensor A07 has been used also for the laboratory tests in Chapter 6, sensors
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Figure 7.6: Layer construction and thickness - buoy with foam layer, dimensions

in mm.

Figure 7.7: Layer construction and thickness - buoy without foam layer, dimensions

in mm.
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A08 and A23 are comparable ICP sensors, having built-in microelectronic

amplifiers. All three sensors have a measurement range of 3.45 bar and a high

resonance frequency (> 250 kHz). The cell membrane diameter is 5.5 mm.

Unfortunately, sensor A23 has been broken in the beginning, as it has not given

any realistic output. The same shock accelerometer as for the laboratory tests,

with a measurement range of 500 g, has been used to register the deceleration

during impact (resonance frequency > 54 kHz). The deformation is measured

with strain gauges (SG) which are mounted at 4 different locations at the same

cross section, i.e. 5 cm from the transition of the conical part to the cylinder

(see Figure 7.5). In every location, one strain gauge is placed parallel to the

water surface and a second is installed perpendicular to the first strain gauge.

For the bottom tests, the strain gauges are intended to give information on the

rigidness of the body.

7.3.2 High speed camera

The high speed camera (HSC) filmed the slamming phenomena at 1000 frames

per second (fps). For the laboratory tests, a frame rate of 5000 up to 18000 fps

had been chosen. Such high frame rates are more difficult to achieve in the

outdoor large scale drop tests. For the latter tests the recording time had to

be rather long (6.144 s) to make sure that the drops were registered within the

recording time frame. In addition to this, the selected frame size had to be large

enough, since the entire floater and a part of the water spray had to be recorded.

As the buffer of the camera is limited, the combination of a large recording

time and a large frame directly constrained the frame rate. Eventually, a frame

rate of 1000 fps has been selected.

7.3.3 Data acquisition and synchronization

A single data acquisition (DAQ) card is used for the pressure sensors and shock

accelerometer. The data is sampled at 75 000 Hz, which is a very high sampling

frequency, allowing the measurement of sharp high frequent signals. The DAQ

card is connected to a laptop for data registration. A separate computer controls

the high speed camera and collects its data. This means that the data from

the pressure sensors and accelerometer on the one hand and the data from

the high speed camera on the other hand need to be synchronized. To make

this possible, the high speed camera sends a block signal to the DAQ card.
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The flanks of the signal correspond to the exact switch-on and switch-off time

instants of the high speed camera. With this block signal, the pressure time

history, acceleration and position of the buoy measured by the camera can be

combined with the same time axis.

All the data acquisition material was installed on the river bank. Strong

measurement cables, consisting of 5 protective layers have been used. Since

the cables have a rather large length of 20 m, it is advantageous to use pressure

sensors with built-in microelectronic amplifier to reduce additional noise.

7.4 Test results

7.4.1 Visualization of impact phenomena

Figure 7.8 shows a filmstrip of the impact phenomena for the buoy with foam

with a drop height of 5.35 m. The time step between the frames is 0.008 s.

As observed in Figure 7.4, an impressive water uprise can also be noticed

on the snapshots of Figure 7.8. With the high speed camera images it can

be seen very well whether the floaters fell down perfectly vertically. This is

important, since small rotations have a significant influence on the pressure

measurement. Consequently, the images made it possible to exclude data from

poor measurement tests where the floater was inclined. An overview of all

tests is given in Appendix G.1, with comments on the verticality and quality

of the pressure and accelerometer signal, based on visual judgement. The high

speed camera images were also used to determine the position and velocity of

the buoy as a function of time, by applying a marker tracking technique.

7.4.2 Pressure distribution, impact velocity and deceleration

Figure 7.9(a) gives the pressure time history of the buoy with foam (BWF),

measured by the sensors A07 and A08 for a drop height of 5.35 m. The initial

time instant t = 0 is defined as the time where the flange of the body touches

the calm water surface. This moment has been manually determined from

the high speed camera images and might have a deviation of 1 to 2 ms. As

soon as the body touches the water, large oscillations appear in the pressure

signal. The first pressure peak (A08) shows a steep rise followed by a more

gradual decrease. The second pressure sensor (A07) experiences at first a

remarkably deep trough. This has been observed in other tests as well, for
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(a) (b)

(c) (d)

(e) (f)

Figure 7.8: Figure continues on next page.
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(g) (h)

(i) (j)

(k) (l)

Figure 7.8: Figure continues on next page.
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(m)

Figure 7.8: Snapshots of impact of a composite floater with foam with a drop height

of 5.35 m. (a) = 0.000 s, (b) = 0.008 s, (c) = 0.016 s, (d) = 0.024 s, (e) = 0.032 s, (f)

= 0.040 s, (g) = 0.048 s, (h) = 0.056 s, (i) = 0.064 s, (j) = 0.072 s, (k) = 0.080 s, (l) =

0.088 s, (m) = 0.096 s.

both sensors and both bodies, however, in particular for the buoy with foam. It

is not clear which phenomenon causes the large underpressures. It is advised to

further investigate whether these underpressures may influence the ‘damage-

behaviour’ of the floater.

Figures 7.9(b) - 7.9(d) show the acceleration, velocity and penetration

versus time, measured by the shock accelerometer for the BWF. The depth

and velocity as a function of time is also given by the high speed camera. Very

large oscillations appear in the accelerometer signal, making it impossible to

determine the peak deceleration during impact. However, the signal is still

valuable to calculate the velocity and penetration depth of the point absorber

and a quite good correspondence is found with the results from the high speed

camera. The velocity drops quite significantly, especially in the first 40 to

60 ms. Thereafter it decreases more gradually. The quick velocity reduction

after the floater has made contact with the water is caused by the presence of

the flange. This velocity decrease might be one of the reasons why the second

sensor (A07) gives a smaller peak pressure than the first sensor (A08). In

the laboratory tests, where a pure cone shape with apex angle 90° was tested,

the measured velocity first showed a very small rise after the apex touched

the water surface, followed by a gradual decrease in velocity. Consequently,
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the pressure peaks on the large scale composite bodies are expected to be

much smaller than those measured on the pure cone shape in the laboratory.

Furthermore, it can be noted that the body has achieved a submergence of

almost 0.7 m in only 80 ms.

Figure 7.10(a) shows the pressure time history of the buoy without foam

(BWOF), dropped from a height of 5.00 m. In Figures 7.10(b)- 7.10(d) the

acceleration, velocity and position are shown as a function of time for the

BWOF. The results are in line with those from the BWF. Note that the initial

velocity is slightly smaller than the value in Figure 7.10(c) for the BWF, since

the drop height is smaller as well. More results for both buoys dropped from

different heights are shown in Appendix G.2.

7.4.3 Peak Pressures

In Figure 7.11 and Figure 7.12 the recorded peak pressures are shown for the

floaters with and without foam layer respectively. The values are shown as a

function of the first equivalent drop height, i.e. the drop height derived from the

initial impact velocity measured by the high speed camera. The relationship

between the first equivalent drop height h∗ and the initial measured impact

velocity U0m is given by: h∗ = U2
0m/2g. The presented data only contains the

measurements of the well succeeded drop tests. In Appendix G.1, comments

on the quality are added to each test, based on the measurements of the high

speed camera, the pressure sensors and accelerometer. The omitted tests are

indicated as well.

Since the pressure time histories contain some high frequency oscillations,

a smoothing function has been applied on the data. The function averages

the figures progressively over a number of data points so that the presented

maximum pressures do not contain the exceptionally high values in the

pressure time histories. The number of data points in the smoothing function

could be derived from the period of the oscillations. In this case, however,

this would require a smoothing function with 45 up to 130 data points. In

order to avoid truncating the real pressure peak, the number of data points

was set to 40 in general and to 10 in some particular cases with steep peaks.

In Appendix G.1, the numbers of the maximum values without smoothing

are presented as well. Even if the effect of the noise is not reduced,

the pressure values are very small. The relationship between p and h as

predicted by asymptotic theory, i.e. p = 0.297 h, is given by a dash-dotted
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Figure 7.9: Figure continues on next page.
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Figure 7.9: Measured data on BWF, drop height 5.35 m.
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Figure 7.10: Measured data on BWOF, drop height 5.00 m.
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gray line. The asymptotic theory for rigid cones clearly overestimates the

pressure measurements in this case. The scattering in the data is rather large,

particularly for sensor A08 of the buoy with foam. This is also expressed by

the quite small value of the squared Pearson correlation coefficient, R∗2 for

sensor A08.

Furthermore, it can be seen that the peak pressures are slightly smaller

for the BWOF case than for the BWF, which could possibly be explained by

the fact that the latter is less deformable. In general, the pressure values are

very small. Based on all the pressure measurements on the buoys with and

without foam, the following average relationship between the pressure and

first equivalent drop height is found: p = 0.060 h∗, with h∗ the first equivalent

drop height, based on the impact velocity at time instant t = 0. According

to this relationship, the measured peak pressures are almost a factor of five

smaller than the values that are predicted by the asymptotic theory for rigid

cone shaped bodies with an apex angle of 90°. A factor of 2.4 and 3.6 is

found between the peak values measured in the laboratory on the polyurethane

90° cone and the measured peak pressures of the outdoor drop tests. (The

average relationships between the peak pressures and drop heights derived

from the laboratory tests are: p = 0.142 h and p = 0.217 h for the two different

sensor positions (Figure 6.37 of Chapter 6)). The results are summarized in

Table 7.1. It must be stressed that the asymptotic theory assumes a constant

entry velocity and also the measured velocity for the 45° cone in the lab tests

remained almost constant, which is absolutely not the case for the outdoor

experiments. Serious velocity drops were recorded at the positions of the

sensors in the Watersportbaan tests. The presence of the horizontal flange

influences the fluid flow considerably and decreases the penetration velocity

significantly, resulting in smaller impact pressures.

For both test bodies, sensor A08, which is mounted closer to the bottom,

gives on average somewhat higher peak levels than sensor A07. This

might be explained by the value of the instantaneous body velocity, which

is considerably smaller when the peak of sensor A07 occurs, compared to

the peak of A08. Therefore, it would be interesting to compare the peak

pressure values versus the instantaneous velocity, Utp, at the time instant

where the peak pressure, tp, occurs. The difference with the laboratory tests

and asymptotic theory will also become smaller, if the instantaneous velocity

is taken into account. In order to effectuate this, a second equivalent drop
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Figure 7.11: Maximum pressure [bar] as a function of the first equivalent drop height

[m] for the buoy with foam layer (BWF).
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[m] for the buoy without foam layer (BWOF).
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Table 7.1: Ratio of average peak pressures from the outdoor tests (indicated by ot) to
the asymptotic theory (at) and the laboratory test results (lt). The superscripts ∗ and
∗∗ refer to the first and second equivalent drop height, respectively.

pat/p∗ot plt,r=4cm/p∗ot plt,r=9cm/p∗ot

4.9 3.6 2.4

pat/p∗∗ot plt,r=4cm/p∗∗ot plt,r=9cm/p∗∗ot

2.7 2.0 1.3

height is introduced, h∗∗, defined by the relationship: h∗∗ = U2
tp/2g. The

peak pressure values as a function of this second equivalent drop height are

presented in Figure 7.13 and Figure 7.14 for the buoy with foam and without

foam, respectively. As expected, the difference between the data points from

sensor A07 and sensor A08 is significantly diminished and their least squares

fitting lines lie much closer to each other. This means that the pressure

difference between the two sensors can be mainly explained by the difference

in immediate velocity. Note that the slope of the relationships between the

pressure and the equivalent drop height is increased, compared to Figure 7.11

and Figure 7.12. The gap between the measured values and the estimated

values derived from the asymptotic approach is smaller, though still significant.

Based on all the pressure measurements on both buoys, the average

relationship between the pressure and second equivalent drop height becomes:

p = 0.109 h∗∗. When considering this relationship, the theory -based on a

constant entry velocity- gives values that are on average a factor of 2.7 higher

than the experiments, and the laboratory tests on a pure cone (Chapter 6) give

values that are a factor of 1.3 and 2.0 higher (Table 7.1). Consequently, when

taking into account the instantaneous impact velocity at the time instant where

the peak pressures occur, the measured outdoor results are much closer to

the lab tests and theoretical values. However, still a significant difference is

noticeable. This difference might be attributed to the effect of the deceleration

of the object in the water. Since a significant velocity drop is observed,

the deceleration is non negligible. The influence of this acceleration and

deceleration on the pressure is not taken into account by the asymptotic

theory and turned out to be small - between 5 % and 15 %- for the lab

tests on the 45° cone. The pressure originating from the part of the impact
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Figure 7.13: Maximum pressure [bar] as a function of the second equivalent drop

height [m] for the buoy with foam layer (BWF).
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Figure 7.14: Maximum pressure [bar] as a function of the second equivalent drop

height [m] for the buoy without foam layer (BWOF).
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force proportional to the acceleration (ma,∞ d2z/dt) is assumed uniformly

distributed. Because of the huge oscillations in the measured accelerometer

signal, the decelerations at the time instants where the peak pressures occur,

are determined from the derivative of a fifth order polynomial approximation

of the velocity signal. The contribution of this pressure is estimated between

11 % and 28 % of the measured values for pressure sensor A08 and between

38 % and 66 % of the measured values for pressure sensor A07. Consequently,

the effect of this pressure is quite important in this case and explains partly the

smaller values that were found at the Watersportbaan tests.

In addition, the smaller values could be attributed to the fact that the

composite floaters cannot be considered as rigid bodies, although the measured

strains are not very large. The average peak strains that were recorded during

impact are in the order of magnitude of 70 microstrain. This figure does not

differ a lot from the results of previous experiments on bodies considered as

rigid. However, this can be explained due to the fact that the floaters were

produced by means of filament winding. In other words the conical part,

where the strain gauges were placed, has a rather large thickness compared

to the cylindrical part. Since the measured pressures are quite small on these

floaters, this shape - i.e. a cone with deadrise angle of 45°- is considered as a

good choice in order to minimize the effects of bottom slamming.

7.5 Conclusion

Drop tests with two large composite point absorbers have been performed

in the Watersportbaan canal in Ghent. The drop height varied from 1.00 to

5.35 m. The slamming pressure on the bodies has been measured, as well

as the deceleration and strain of the material. The impact phenomenon has

been filmed with a high speed camera, showing an enormous water spray

during impact. A significant velocity decrease was measured during impact,

most probably due to the presence of the flange. Generally the measured

peak pressure values are rather small. For a large drop height of 5.35 m,

the measured peak levels vary between 0.23 and 0.64 bar. A least squares

fitting has been applied through the maximum pressures as a function of

two equivalent drop heights. When taking into account the instantaneous

velocity and comparing the fitting to the least squares fittings from the peak

levels measured on the small polyurethane 90° cone, it was found that the
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peak pressures on the composite bodies are on average a factor of 1.3 to

2.0 smaller than those from the lab tests. Moreover they are a factor of

2.7 smaller than the peak levels predicted by the asymptotic theory based on

Wagner’s assumptions. Reasons for this deviation might be the presence of the

flange, which influences the fluid flow considerably, the influence of the impact

pressure part that is proportional to the acceleration and the non-rigidness of

the large scale bodies. It is concluded that a conical body with an apex angle

of 90° is a very good shape to reduce problems with bottom slamming, as it

experiences small impact pressures compared to a hemisphere and a cone with

smaller deadrise angle.
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CHAPTER 8

Influence of constraints to
reduce bottom slamming

� � �
Whereas the focus of the previous two Chapters laid on the impact
pressures and loads, the emphasis of this Chapter will be on the
occurrence probabilities of emergence events. Numerical simulations
are performed for three different sea states and three buoy shapes: a
hemisphere and two conical shapes with deadrise angles of 30° and 45°,
with a waterline diameter of 5 m. The simulations indicate that the risk
of rising out of the water is largely dependent on the buoy draft and sea
state. Emergence occurrence probabilities can be significantly reduced
by adapting the control parameters of the point absorber; however,
this is associated with power losses. For various levels of slamming
constraints, the impact velocities and corresponding slamming forces
on the bodies are estimated. The buoy shape severely influences the
slamming loads. The ratio between the peak impact loads on the
hemisphere and the 45° cone is approximately a factor of 2, whereas
the power absorption is only 4 to 8 % higher for the 45° cone in the
selected sea states. This Chapter illustrates the necessity to include
slamming considerations apart from power absorption criteria in the
buoy shape design process as well as in the control strategy.
This Chapter is based on ‘Bottom slamming on heaving point absorber
wave energy converters’ by G. De Backer et al. [1]

.
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8.1 Introduction

Point absorber buoys generally have a larger natural frequency than the

incident wave frequencies and are therefore often tuned to the characteristics

of the incident waves to augment power absorption (Chapter 1). This tuning

increases the body motions and consequently also the probability of rising out

of the water. When re-entering in the water, the buoys might be subjected to

bottom slamming, which can be associated with large impact pressures and

forces (Chapter 6). So far, research on point absorbers has mainly focused on

power absorption maximization, for example, by optimizing the buoy shape

and improving the control strategy. In order to determine an efficient practical

tuning strategy and an optimal shape, however, slamming considerations need

to be taken into account as well. Not only the extreme load cases are important,

but also the operational conditions where regular bottom slamming occurs,

resulting in fatigue of the material. Hence, it is important to assess the

occurrence probability of slamming dependent on the wave climate, power

take-off (PTO) and control system.

For completeness, it is worth mentioning that not only bottom slamming

is of importance in point absorber design but also lateral slamming (wave

slamming) on the buoys. The work of Wienke and Oumeraci [2], who

experimentally investigated impact forces on slender cylinders due to plunging

breaking waves, can be used as a first approximation of wave slamming

forces on point absorbers. Furthermore, drop tests on the flanks of composite

point absorbers to simulate breaking wave impacts have been carried out by

Blommaert [3].

First, the influence of varying slamming restrictions on the power absorp-

tion will be illustrated in this Chapter. Next, the occurrence probabilities of

emergence events and the distribution of the impact velocities and forces will

be given for several examples.

8.2 Different levels of slamming restrictions

The occurrence probability of slamming and the associated impact loads can

be decreased by influencing the control parameters of the buoy, as illustrated

in Chapter 2. Either the external damping applied on the buoy to extract power

can be increased, or the buoy can be detuned or a combination of both can be
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applied. In Chapter 2 only one slamming restriction level has been applied. In

this Chapter the stringency of the slamming constraint is varied and the effect

on the probability of emergences is investigated with a time domain model.

Three shapes are considered in this Chapter: two cones with deadrise angle

45° and 30°, respectively, and a hemisphere. All bodies have a cylindrical

upper part that is submerged by 0.50 m in equilibrium position. The waterline

diameter, D, is 5.00 m, as indicated in Figure 8.1. The equilibrium draft is

3.00 m for the 45° cone and the hemisphere and is 1.94 m for the 30° cone.

The shapes and their corresponding masses are presented in Figure 8.1. In

practice the edges at the transition between the conical and cylindrical part are

preferably rounded to reduce turbulence effects.

Figure 8.1: Test shapes - submerged part in equilibrium: Cone with deadrise angle

45°, cone with deadrise angle 30° and hemisphere, dimensions in [m].

Three sea states have been defined: (1) Hs = 1.25 m - Tp = 5.98 s, (2)

Hs = 2.75 m - Tp = 7.78 s, (3) Hs = 4.25 m - Tp = 9.10 s. The first

sea state represents a rather small wave, that can be regarded as the minimum

threshold to produce electricity. In the second sea state the significant wave

height rather has the order of magnitude of a design wave, and has most likely

a high probability of occurrence in the areas developers are currently focussing

on. It is assumed that the point absorbers are still in operation in the third,

more energetic sea state. In storm conditions, however, point absorber devices

generally stop producing electricity and switch to a safety mode in which the

floaters are protected against bottom slamming or breaking wave slamming.

This can be realized by completely submerging the buoys or by lifting them up

to a certain level above the water surface [4]. The wave spectrum is determined

with the parameterized JONSWAP spectrum [5,6], also given in Chapter 2.

In order to avoid excessive slamming, a slamming constraint has been

formulated in Chapter 2, requiring that the significant amplitude of the position
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of the buoy relative to the free water surface, ζ, is limited to a fraction α of the

buoy draft d:

(z − ζ)A,sign < αd (8.1)

The choice of the slamming restriction factor α in Eq. (8.1) has a direct

impact on the occurrence probability of emergence. In Chapter 2 α is chosen

equal to 1, meaning that emergence events are still allowed for the 13.5 %

highest waves, assuming the wave and body displacement amplitudes are

Rayleigh distributed. In small waves, the slamming criterion does not influence

the optimal values of the control parameters. However, for higher waves less

optimal values of the control parameters bext and msup have to be chosen in

order to fulfill the slamming criterion. This is illustrated for the 45° cone

in Figures 8.2 - 8.4 showing the time-averaged absorbed power as a function

of the control parameters bext and msup. In Figure 8.2 the power absorption

is given for the second sea state (Hs = 2.75 m - Tp = 7.78 s), together

with three slamming contour lines, with α-values of 0.75, 1.00 and 1.50,

respectively. The area enclosed by the contour lines has to be avoided to

fulfill the slamming restriction, resulting in less power absorption for stricter

slamming constraints. For the least stringent constraint (α = 1.50), the power

absorption in the remaining area is 115 kW, for the intermediate constraint (α

= 1.00), it drops to 96 kW and for the most stringent constraint (α = 0.75), the

maximum absorbed power equals 79 kW. The maximum values are indicated

with a black circle.

Two velocity contour lines of 2 m/s and 4 m/s are shown as well in

Figure 8.2. They represent lines of equal significant values of the vertical buoy

velocity relative to the vertical velocity of the water surface. The significant

amplitude of the relative velocity could also be used to formulate a slamming

constraint instead of the relative displacement amplitude. The latter restriction

has a direct link with the slamming occurrence probabilities, whereas the

relative velocity constraint is rather related to the pressures and forces.

It can be observed from the graph that the slamming restrictions are mainly

fulfilled by increasing the damping and only to a lower extent by decreasing the

supplementary mass. Table 8.1 presents the time-averaged power absorption

values for the three shapes per sea state and for different levels of the

slamming restriction factor α. The presented power absorption numbers are

the maximum values that can be obtained when satisfying the slamming
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restriction, according to Eq. (8.1). The values that could be theoretically

absorbed if no restrictions are included (α =∞) are shown as well. However,

these values and those associated with weak slamming constraints do not

always represent practically achievable solutions. As stated in the previous

Chapters, the power absorption values do not correspond to the produced

power, since they do not take into account any losses.

Table 8.1: Power absorption [kW] by the three shapes for different levels of slamming

restrictions.

45° cone hemisphere 30° cone

α \ Sea state 1 2 3 1 2 3 1 2 3

0.75 17 79 125 16 75 119 18 55 83

1.00 17 96 162 16 91 155 18 72 110

1.50 17 115 221 16 108 211 18 96 161

∞ 17 118 317 16 111 302 18 121 326

Figure 8.2: Power absorption [kW] versus bext and msup, by the 45° cone for sea

state 2 (Hs = 2.75 m - Tp = 7.78 s) with slamming restriction contour lines.

Figure 8.3 shows the power absorption for the first sea state (Hs = 1.25 m
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- Tp = 5.98 s). None of the slamming constraints has an influence on the

optimal tuning and damping parameters. The maximum power absorption

value (17 kW) can be achieved while slamming phenomena will seldom occur.

Figure 8.3: Power absorption [kW] versus bext and msup, by the 45° cone for sea

state 1 (Hs = 1.25 m - Tp = 5.98 s) with slamming restriction contour lines.

Figure 8.4 presents the power absorption and slamming contour lines for

the most energetic sea state (Hs = 4.25 m - Tp = 9.10 s). Theoretically,

the dark red coloured area, the resonance zone, leads to the highest power

absorption. However, this zone requires very large tuning forces on the one

hand and it is associated with extremely high buoy displacement and velocity

amplitudes on the other hand. Therefore, for practical cases, this zone is not

the target area in large waves. In order to satisfy the restrictions, not only the

damping has to be increased but also the tuning forces need to be considerably

decreased. The absorbed power is largely dependent on the level of slamming

that is allowed. The optimal power values drop from 221 kW to 162 kW and

125 kW, respectively, for the weakest, to the intermediate and most stringent

restriction.

For comparison, the power absorption in the intermediate sea state (Hs =
2.75 m - Tp = 7.78 s) is shown in Figures 8.5 and 8.6 for the hemisphere and

the 30° cone, respectively. The results for the hemisphere are very similar
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Figure 8.4: Power absorption [kW] versus bext and msup, by the 45° cone for sea

state 3 (Hs = 4.25 m - Tp = 9.10 s) with slamming restriction contour lines.

to those for the 45° cone, although there is a slight advantage for the 45°

cone. The performance of the latter is between 4 and 8 % better than that of

the hemisphere for the same slamming conditions, as illustrated by the power

absorption figures in Table 8.1. Much larger differences (between 15 % and

30 %) are observed for the 30° cone. For α equal to 1.50, the power absorption

is 96 kW, for α-values of 1.00 and 0.75, the power absorption drops to 72 kW

and 55 kW, respectively (see Table 8.1). For the same α-values as for the other

shapes, the constraints are much more stringent for the 30° cone shape, since

the draft d is smaller. Because of its small draft, the buoy will easily loose

contact with the water surface and slam.

This is why the slamming constraint needs to be stricter in this case to

allow the same level of slamming as for the other shapes, which is equivalent

to using the same value of α. Alternatively, if the same absolute restriction is

imposed on the relative significant position of the buoy, i.e. the same value of

α · d, the 30° cone will emerge much more frequently than the other shapes.

However, the power absorption will be in the same order of magnitude or even

slightly higher, since it benefits from large exciting forces due to its small

draft. An example is given for α = 2.30 for the 30° cone. This number
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Figure 8.5: Power absorption [kW] versus bext and msup, by the hemisphere for sea

state 2 (Hs = 2.75 m - Tp = 7.78 s) with slamming restriction contour lines.

Figure 8.6: Power absorption [kW] versus bext and msup, by the 30° cone for sea

state 2 (Hs = 2.75 m - Tp = 7.78 s) with slamming restriction contour lines.
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of α implies a restriction of approximately 4.5 m on the maximum relative

significant amplitude of the buoy position and corresponds with an α-value

of 1.50 for the 45° cone and hemisphere. The power absorption in this case

is 117 kW for the 30° cone, compared to 115 kW and 106 kW for the 45°

cone and hemisphere, respectively. These numbers have to be treated with

caution, since this example represents a case where extreme high slamming

rates and buoy motions occur, as will be shown later, violating the assumptions

behind linear theory. Contrary to Figures 8.2 and 8.5 for the 45° cone and

hemisphere, respectively, the two velocity contour lines in Figure 8.6 enclose

a relatively limited area compared to the displacement contour lines for the

30° cone. Hence, when slamming constraints are formulated, based on the

same velocity contour lines for the three shapes, this might result in a relatively

weaker restriction for the 30° cone compared to constraints based on the same

contour lines of relative displacement.

The control strategy used in this work optimizes the tuning and damping

coefficients (msup and bext) for a certain sea state and keeps them fixed during

that sea state. This offers the practical benefit of a relatively simple control

strategy. With a more complex (wave to wave) strategy, the control can be

adapted to the instantaneous water elevation at the position of the buoy and/or

the motion parameters of the buoy. Slamming phenomena can then be reduced

e.g. by decreasing the immediate floater displacement and velocity at time

instants where they might become very large. In that way, slamming can be

diminished without too much penalizing the power absorption in instantaneous

small and intermediate waves within a certain sea state. Compared to this

method, the slamming restrictions of the fixed coefficients control strategy

are rather conservative and consequently so are the estimated drops in power

absorption. However, a wave to wave control strategy is a lot more difficult

to realize in practice: a particularly reliable control system is required as well

as a very reliable prediction of the immediate water elevation at the position

of the buoy and of the motion parameters of the buoy. The decision on how

stringent a slamming constraint needs to be, depends on the impact loads to

which the buoys can be subjected and the number of slamming occurrences

that are tolerable for the buoys (fatigue).
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8.3 Probability of emergence

The occurrence probabilities of the emergence events are investigated with

the time domain model described in Chapter 3. The model has been slightly

extended with the possibility to store the information on each slamming event

in regular and irregular waves. For the three sea states and the point absorber

shapes as defined in Section 8.2, simulations are run with this linear time

domain model.

Long crested waves are generated with a duration of 10 000 s. This

duration is considered to be long enough to study slamming phenomena. It

contains 2011 waves for the first sea state, 1510 waves for the second sea

state and 1333 waves for the third sea state. The impact velocity, when

the body re-enters the water surface, has been determined as well as the

number of emergences per hour. In marine hydrodynamics it is convenient

to consider a minimum relative impact velocity to determine slamming

occurrence probabilities. This threshold velocity is based on the impact

pressures and forces. A general threshold velocity has not been considered

in this case, since the impact loads are very dependent on the point absorber

shapes. Therefore, the probability of emergence has been determined, i.e. the

chance on rising out of the water, rather than the slamming probability.

The peak load is derived for each shape from the impact velocity based

on the expressions in Section 6.2.2 of Chapter 6. Eq. (6.4) by Shiffman and

Spencer [7] has been used for the conical shape and Eq. (6.7) by Miloh for the

hemisphere [8].

Attention should be drawn to the fact that the assumptions behind linear

theory (small waves and small body motions) are violated in cases where

the buoy leaves the water. However, in irregular waves, the correspondence

between linear theory and experiments is still satisfactory when the buoy

is operating outside the resonance zone (Chapter 4 and [9]). Since this is

generally the case, the linear model can be used in an acceptable way to predict

the occurrence probability of emergence and to estimate the impact velocities

of the buoy. To obtain more accurate results on the impact velocities, the use

of a non-linear time domain model is advised for future work, especially from

the point of the body mechanics rather than for the wave mechanics.

Figure 8.7(a) shows the number of emergence events per hour for the three

slamming restrictions as a function of the impact velocity. These results are

obtained from simulations with the 45° cone-cylinder shape (cc - β = 45°)
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in the second sea state (Hs = 2.75 m - Tp = 7.78 s). The contribution

of the velocity of the surface elevation to the impact velocity is neglected

in these calculations. Hence, the impact velocity is approximated with the

buoy velocity at re-entry. An enormous difference between the restrictions
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Figure 8.7: Shape: 45° cone, sea state: Hs = 2.75 m, Tp = 7.78 s.

is observed both in the number of emergences and in the magnitude of the

impact velocity. The emergence occurrence probability is defined as the

number of emergence events divided by the number of waves in the wavetrain.

Figure 8.7(b) gives the hourly number of emergences as a function of the peak
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impact force corresponding with the estimated impact velocities, according to

Eq. (6.4). The influence of the slamming restrictions is even more pronounced

for the impact forces, since a quadratic relationship exists between the impact

velocity and peak impact force. However, most of the emergences occur still

with relatively small peak impact forces for the 45° cone.

The results for the third sea state are similar as those for the second sea

state, since the same level of slamming is allowed by applying the same

restrictions. However, the power losses involved to fulfill these restrictions

are much larger for the third sea state than for the second sea state, as can be

seen by comparing the power plots of Figure 8.2 and Figure 8.4.

In Figures 8.8(a) and 8.8(b) the distribution of the impact velocity and peak

impact load, according to Eq. (6.7), is given for the hemisphere-cylinder shape

(hc) in the second sea state (Hs = 2.75 m - Tp = 7.78 s). As expected,

Figure 8.8(a), showing the velocity distribution of the hemisphere resembles

very much Figure 8.7(a), presenting the impact velocities of the 45° cone.

Consequently, also the total number of emergences per hour is almost the

same in the two cases for the same α-factors. However, the distribution of the

peak loads is very different. For the 45° cone, most of the emergence events

occur at small forces, whereas for the hemisphere the number of emergences

at small impact forces is minor, compensated by a significant amount of

emergences with higher impact forces. This is not surprising, since the ratio

of the peak loads on the hemisphere and the 45° cone is 2.0 in this example.

This kind of graphs can be used as an input for material design processes.

Extreme operational load cases in energetic waves need to be simulated as well

as fatigue tests in -most presumably- smaller waves with a high occurrence

probability. If the occurrence probabilities of several sea states are known,

e.g. derived from a scatter diagram, the yearly number of emergences and their

corresponding impact forces can be calculated for the specific target location.

The graphs are also useful to evaluate the control strategy with respect to

slamming and adapt or optimize it where necessary taking into account the

requirements from the structural designers. If the control is adapted to reduce

slamming, power will be lost, but the manufacturing cost of the buoys will

benefit from it and vice versa.

Figures 8.9(a) and 8.9(b) give the hourly number of emergence events as a

function of the impact velocity and peak impact force, respectively, for the 30°

cone in the second sea state, i.e. Hs = 2.75 m, Tp = 7.78 s. For the same α-
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Figure 8.8: Shape: hemisphere, sea state: Hs = 2.75 m, Tp = 7.78 s.

values as before, the impact velocities are found to be a bit smaller than those

of the 45° cone. This is compensated by the larger peak forces on the 30° cone,

which are approximately a factor of 1.5 larger than those on the 45° cone for

the same values of the impact velocity, according to Eq. (6.4) of Shiffman and

Spencer.

It should be reminded that applying the same α-values in the formulation

of the constraints, implies much stricter slamming constraints for the 30°

cone, because its draft is considerably smaller. When the relative significant
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amplitude of the 30° cone is limited to the same values as the 45° cone

and hemisphere, then emergence will obviously occur a lot more for the

30° cone due to its small submergence. This is illustrated in Figures 8.9(a)

and 8.9(b) with the extra bars coloured in pale gray. They represent a

restriction on the relative significant buoy amplitude of 2.30 d = 4.47 m.

This limitation corresponds approximately with the constraint of the white

bars in Figures 8.7(a) - 8.8(b). Similarly, the white bars of Figures 8.9(a)

and 8.9(b) can be compared with the dark gray bars of Figures 8.7(a) -

8.8(b), as the restriction on the relative significant amplitude is 2.92 m and

3.00 m, respectively. The difference is huge between the response of the

30° cone and the two other shapes, both concerning number of emergences

and impact velocity. For the least restrictive constraint on the 30° cone,

i.e. ((z − ζ)A,sign ≤ 2.30 d), the number of emergence events per hour

has risen to an enormous value of 342, which is equivalent to an emergence

occurrence probability of 63.0 %. Suchlike situations should be avoided by

tuning the buoy away from resonance, i.e. by decreasing the supplementary

mass and increasing the external damping. For comparison, with the most

stringent constraint (α = 0.75) the buoy rises out of the water only 17 times

per hour, corresponding to an occurrence probability of 3.1 %. With the

intermediate constraint (α = 1.00) the buoy looses contact with the water

surface approximately 86 times per hour, corresponding to an occurrence

probability of almost 15.8 %. In both cases the impact velocities are relatively

small compared to the weaker constraints, as illustrated in Figure 8.9(a). For

α = 1.50, the buoy releases the water about 230 times per hour, which gives

a high occurrence probability of 42.2 %. Assuming the buoy responses are

Rayleigh distributed, the occurrence probabilities would be 2.9 %, 13.5 % and

41.1 %, respectively, which is close to the calculated figures.

These numbers show that the implementation of slamming constraints can

significantly reduce the occurrence probability of slamming. For a constraint

with α = 0.75 compared to α = 1.50, the number of emergences is reduced by

a factor of 14, whereas the power absorption by the 30° cone is only decreased

with 43 % and 48 % for the intermediate and energetic sea states, respectively.

For the same constraints applied to the hemisphere and 45° cone, the power

absorption is even only reduced with 30 % and 43 % for the same respective

sea states.

It has been shown that a buoy which is controlled according to very weak
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Figure 8.9: Shape: 30° cone, sea state: Hs = 2.75 m, Tp = 7.78 s.

constraints (e.g. α = 2.30) is subjected to excessive slamming. Apart from

slamming, there are other reasons why these control situations should be

avoided. One of these reasons is the large buoy motions that are associated

with this case. In fact, for practicality, many devices have limitations on the

maximum stroke of the buoy. For α = 2.30, the significant amplitude of the

buoy motion is 4.9 m, which is very large, especially compared to the incident

wave height (Hs = 2.75 m). Another problem is the very large tuning forces

that are required to obtain this tuning. The significant amplitude of the required
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tuning force is 775 kN compared to 117 kN for the damping force to enable

power extraction. Depending on how this tuning force needs to be effectuated,

e.g. by the generator, it might lead to a very uneconomic solution, as discussed

before.

Note again that the reliability of the model can be questioned for the case,

where the buoy operates very close to resonance. Nevertheless, the conclusion

remains that a suchlike situation is unrealistic and will never be aimed for. Also

the restriction where α equals 1.50, giving rise to an undesired high emergence

occurrence probability of above 40 %, must be avoided in practice. Within

this context it is concluded that the theoretical power absorption values for

α = 1.50 -∞, as mentioned in Table 8.1, are not practically achievable, except

for the smaller sea states where slamming seldom occurs. The most realistic

constraints are the stricter constraints with α-values smaller than or equal to

1. Moreover, smaller control forces and buoy strokes need to be involved. For

an α-value of 1 and sea state 2 (Hs = 2.75 m, Tp = 7.78 s), the significant

amplitude of the buoy motion is 3.3 m and the significant amplitudes of the

tuning and damping forces are 515 kN and 142 kN, respectively. If the α-value

equals 0.75, the significant motion amplitude is 2.47 m and the significant

amplitudes of the tuning and damping forces are equal to 354 kN and 154 kN,

respectively. Note that the force constraints introduced in Chapter 2, required

a maximum significant amplitude of the total control force of 200 kN and

100 kN, respectively. In order to reduce the power absorption penalty of

the slamming constraints, it is advisable to increase the draft of the buoy,

particularly if slamming is -almost- not tolerable.

8.4 Conclusion

Slamming effects are investigated for three sea states and three buoy shapes:

two cones with deadrise angles of 45° and 30° and a hemisphere with a

waterline diameter of 5 m. For a tuned buoy, the probability of emergence

increases dramatically with increasing wave height. In very small waves

the buoys may absorb the theoretically maximum power, while slamming

phenomena rarely occur. In more energetic waves the floater motions become

larger and the buoys rise out of the water very frequently, if they are tuned

towards the dominant incident wave frequencies. The risk of slamming can

be reduced by adjusting the control parameters of the buoy, i.e. the tuning
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and damping force. Several levels of slamming restrictions are introduced,

diminishing the occurrence probability of emergence to approximately 42 %,

16 % and 3 %. Going from the most stringent to the mildest constraint,

the risk of emergence is reduced by a factor of almost 14, while the power

absorption for the hemisphere and 45° cone is only reduced by 30 % to 43 %

for the intermediate and energetic sea states, respectively. The probability of

emergence is largely affected by the buoy draft. The same constraints reduce

the power more severely for the 30° cone, having a draft of less than 2 m.

Slamming constraints do not only limit the number of emergences, they also

have the benefit of reducing the required buoy strokes and control forces.

High peak loads can be associated with slamming. Depending on the

slamming constraints, the order of magnitude of the impact forces ranges

from small values up to more than 300 kN for the considered buoys with

a diameter of 5 m. These forces might ultimately lead to fatigue problems

for the structures, if no measures are taken. The magnitude of these forces

is significantly influenced by the buoy shape. According to the formulas by

Shiffman and Spencer [10] and Miloh [8], the difference in peak loads between

the 45° cone and the hemisphere is a factor of 2, whereas the difference in

power absorption is only 4 to 8 %. A ratio of approximately 1.5 is found

between the peak loads of the 30° and 45° cone. This illustrates the importance

of considering slamming phenomena in the shape design process, apart from

power absorption considerations.

To avoid problems with slamming, attention should be paid to the buoy

geometry: too small drafts should be avoided as well as too small (local)

deadrise angles, since small deadrise angles imply large impact pressures

and forces. Further, optimal control strategies should not focus solely on

power absorption, but also on emergence risks and consequences. The

implementation of slamming constraints in the control strategy might be

essential to reduce slamming. Slamming constraints can also be related to

the buoy velocities or impact loads, instead of being based on emergence

probabilities. In any case, slamming constraints are associated with power

losses, and hence, the tolerable level of slamming is an economic equilibrium

between power absorption profits and material costs.
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CHAPTER 9

Conclusion and future
research

In this thesis, several design aspects of heaving point absorbers have been

investigated. The performance of single and multiple point absorbers is

optimized, taking into account realistic constraints. In this Chapter, the most

important findings are emphasized and possibilities for future research are

suggested.

9.1 Discussion and conclusion

The behaviour of a heaving point absorber is simulated with a linear frequency

and time domain model, fed by the BEM package WAMIT. The point

absorber is externally controlled with a linear damping force and tuning

force. The numerical models have been validated by means of experimental

tests in the wave flume of Flanders Hydraulics Research. A conical and

hemispherical buoy shape have been tested, both with a cylindrical upper

part. The correspondence between the numerical and experimental results

was good for the evaluated sea states, representing rather small waves on the

Belgian Continental Shelf. The numerical results generally overestimated the

experimental results with 10 % to 20 % for the conical and hemispherical

shape, respectively. It is expected that this difference can be attributed to

non linear effects, such as viscous losses and the non-linear behaviour of the

hydrostatic restoring force, which are not included in the numerical model.

Power absorption optimization runs have been performed in irregular
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waves for different geometrical parameters and several constraints, i.e. slam-

ming, stroke and force constraints. The difference in power absorption

between the two evaluated shapes is very small: the conical shape absorbs

only between 4 % to 8 % more energy than the hemispherical shape. Hence,

the choice between a hemispherical, a conical or an intermediate shape, with

the same dimensions and inducing small viscous losses, will probably be more

influenced by other aspects than its hydrodynamic performance, e.g. by the

material cost, fabrication cost and the ability to withstand bottom and breaking-

wave slamming.

Whereas the shape has a minor influence, the dimensions of the buoy

significantly affect the power absorption. A larger diameter as well as a smaller

draft result in an increased power absorption value. However, the draft of the

buoy needs to be sufficiently large to avoid problems with bottom slamming.

Slamming can also be avoided by implementing slamming constraints. These

constraints might require to increase the buoy damping and to tune the buoy

further away from resonance. Those measures reduce the probability of

emergence, but have a negative impact on the power absorption. Hence, it

is preferred to effectuate tuning and to provide a sufficiently large draft. The

optimal buoy size is case specific, since it is determined by the wave climate

and by cost considerations. For instance, the profits of increasing the diameter

must be balanced against the corresponding rising costs for production as well

as installation and maintenance.

If the buoy has a sufficiently large draft, stroke restrictions are found to

be more stringent than slamming restrictions. They have a particular negative

influence on the power absorption in more energetic sea states. Increasing the

maximum stroke is, however, often practically not feasible, due to technical

constraints imposed by e.g. the limited height of the frame enclosing the point

absorbers or the limited height of hydraulic rams, etc. Restrictions on the

control force might be relevant to consider, in case the tuning needs to be

delivered by the PTO. In more energetic sea states with large periods, the

tuning forces might become a multiple of the required damping forces. If these

large tuning forces need to be provided by the PTO system, the design of the

PTO might become uneconomic. Force restrictions can reduce the tuning force

substantially, resulting in a severe drop in power absorption. Moreover, small

inaccuracies in the timing of this tuning force may have drastic implications on

the power absorption. It is therefore advised to consider other options to realize
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the tuning yet from the initial design onward, e.g. by means of latching.

Bottom slamming phenomena have been studied in more detail by means

of drop tests with small and large bodies. Impact pressures and decelerations

have been measured. The pressure evolution is compared with an analytical

theory based on Wagner’s method, applied to axisymmetric bodies. The ratio

between measured and theoretical peak levels is roughly between 1/2 and 3/4

for the small bodies made from polyurethane and is slightly larger than 1/3

for the large composite bodies. Smaller (local) deadrise angles are associated

with larger peak pressures. The maximum impact pressures are significantly

larger near the bottom of the hemisphere, compared to the pressures of cones

with deadrise angles of 20° and 45 °. Hence, the cone with apex angle 90°,

corresponding to a deadrise angle of 45°, seems to be a good choice from the

perspective of bottom slamming.

In practical applications, point absorbers are installed in arrays. The

effect of interacting point absorbers on the design characteristics and power

absorption is investigated in unidirectional, irregular waves. Due to the

shadowing effect, the power absorption of an array of N closely spaced

buoys is smaller than the power absorption of N isolated buoys. It has been

found that the implementation of restrictions has a less drastic influence on

the power absorption of an array than for a single body. The restrictions

cause the front buoys to absorb less power, so more power is left for the

rear buoys. The constraints have a so-called ‘smoothing’ effect on the power

absorption, which means that the difference in absorbed power between the

front and rear buoys is smaller when the restrictions are more stringent. The

control parameters of the point absorbers in an array have been determined

in three different ways. Applying the optimal control characteristics of a

single body to an array, results clearly in a suboptimal performance of the

array. This is not surprising, since the purpose is not to optimize the power

absorption of a single body, but to optimize the performance of the entire

array. Diagonal optimization of the control parameters is generally better,

however, the best results are obtained when the control parameters of the

buoys are individually optimized. On average over the considered sea states,

this individual optimization leads to an increase in power absorption between

16 % and 18 % compared to diagonal optimization, for the configurations

with 12 and 21 buoys, respectively. With individual tuning, the annual energy

absorption at Westhinder for both configurations (with buoy diameters of 5 m
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and 4 m, respectively) is estimated roughly around 1 GWh.

9.2 Recommendations for future research

9.2.1 Further improvements on the control and optimization
process

In this thesis, the implemented control technique consists of a damping

force proportional to the velocity and a tuning force proportional to the

acceleration of the buoy. An optimal frequency-invariant damping coefficient

and supplementary mass is selected for each sea state. Hence, the optimization

in irregular waves leads to a somehow suboptimal result. It could be

advantageous to perform the power absorption optimization for frequency-

dependent functions of external damping and supplementary mass. It is

expected that this would increase the power absorption, particularly in small

waves where the restrictions do not affect the power absorption.

In a next step, when a particular device is to be modelled, the real power

take-off behaviour of the device should be implemented, which is very likely to

be non-linear. Also, the practical possibilities of control should be examined.

As already briefly mentioned in Chapter 2 it could be very beneficial if the

control mechanism can handle instantaneous motion restrictions. For instance,

it would be meriting if the control mechanism is able to efficiently brake the

floater, just before it is reaching its maximum stroke. It is very important

that the control system can determine the right starting time and magnitude

of the braking force, based on the motion parameters of the buoy, to avoid

damage to the system. If such a control can be realized, it is expected

that the negative influence of the motion restrictions could be considerably

reduced. A cooperation with the electrical and control engineering sector

seems to be indispensable to implement a real power take-off system and a

more sophisticated control in the hydrodynamic model. Also the mooring

design and its influence on the point absorber behaviour -if the point absorber

system is floating- is an issue that needs to be further addressed. Involvement

of the mechanical engineering sector is required as well for the structural

design of the components. Hence, a multidisciplinary approach is crucial for

future developments.

Furthermore, it is important to include economic considerations in the

design process. Optimal design parameters, such as buoy shape, buoy
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dimensions and array layout are dependent on the costs involved and hence,

it is essential to take this aspect into account.

9.2.2 Further research on multiple point absorbers

The focus of multiple body studies has often been on a farm of widely

spaced point absorbers. Currently, some developers have proposed devices

with multiple, closely spaced point absorbers. It would be useful to study in

depth the influence of the design parameters that may affect the performance

of the array: i.e number of bodies, grid layout (e.g. staggered or aligned

grid), interdistance between the buoys, buoy draft, shape and diameter, sea

state, angle of incidence, etc. Not only unidirectional irregular waves have

to be investigated, but also multidirectional waves (short-crested waves) with

different spreading parameters. In a next step, it would be relevant to develop

a time domain model for multiple bodies, to be able to implement real power

take-off characteristics.
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APPENDIXA

Steady-state solution of a
mass-spring-damper system

The equation of motion of a mass-spring-damper system, subjected to an

external harmonic force in the direction of the degree of freedom is given by:

m
d2z

dt2
+ bd

dz

dt
+ kz = FAsinωt (A.1)

The homogeneous or transient solution was expressed as:

z = zAf e−ζdωntsin(
√

1− ζ2
d ωnt + βf ) (A.2)

The particular or steady-state solution of Eq. (1.31) is of the form:

z = zAs sin(ωt + βs) (A.3)

The amplitude zAs of the position and phase βs can be found as follows:

Replacing this expression for z and its derivatives with respect to time in

Eq. (1.31) gives Eq. (A.4), which is valid for all values of t:

−mω2zAssin(ωt+βs)+bdωzAscos(ωt+βs)+kzAssin(ωt+βs) = FAsin(ωt)
(A.4)

This equation can be rewritten as:
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−mω2zAs (sinωt cosβs + cosωt sinβs)

+bωzAs (cosωt cosβs − sinωt sinβs)

+kzAs (sinωt cosβs + cosωt sinβs) = FA sinωt (A.5)

Substituting t by π/ (2ω) and 0 successively gives:

{ −mω2zAscosβ − bdωzAssinβs + kzAscosβs = FA

−mω2zAssinβs + bdωzAscosβs + kzAssinβs = 0
(A.6)

From these equations the motion amplitude zAs and the phase angle βs can be

obtained:

zAs =
FA[

(k −mω2)2 + (bdω)2
]1/2

(A.7)

and

tanβs =
−bdω

k −mω2
(A.8)

In complex notation, the equation of motion can be formulated as:

− ω2mẑ + jωbdẑ + kẑ = F̂ex (A.9)

where ẑ is the complex amplitude of z, i.e. ẑ = zAs · ejωβs .

Eq. (A.9) can be rearranged as:

ẑ =
F̂ex

−ω2m + jωbd + k
(A.10)

which is equivalent with:

ẑ =
F̂ex(k − ω2m− jbdω)
(k − ω2m)2 + (bdω)2

(A.11)

This is a complex number of the form A+jB. Determination of the amplitude

and phase angle of this complex number gives the relationships in Eq. (A.7)
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and (A.8), respectively.





APPENDIXB

Formulas for a floating
reference case

B.1 Equation of motion

This case is simplified to one heaving point absorber located at the centre of the

floating platform. Hence, only the heave motion of the platform is considered.

A schematic representation is given in Figure B.1.

Supplementary 
inertia 

External damping 
(PTO) 

ζ 

z 

zplatf 

Figure B.1: Semi-submerged floating platform with a heaving point absorber.

When the point absorber oscillates with respect to a floating platform, Eq. (1.56)
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describing the motion of the point absorber has to be adapted. Because the

generator and the supplementary mass move together with the platform, the

forces associated with the control parameters, bext and msup, are dependent on

the buoy velocity relative to the platform velocity, respectively the acceleration

relative to the platform acceleration. With zpl denoting the position of the

platform, the equation of motion can be written as:

(m+ma(ω))
d2z

dt2
+msup

(
d2z

dt2
−d2zpl

dt2

)

+b(ω)
dz

dt
+bext

(
dz

dt
−dzpl

dt

)
+kz = Fex(ω) (B.1)

Rearranging of Eq. (B.1) gives:

(m + msup + ma(ω))
d2z

dt2
+ (b(ω) + bext)

dz

dt
+ kz = F

′
ex(ω) (B.2)

with F
′
ex = Fex + msup · d2zpl

dt2
+ bext · dzpl

dt

In order to find the steady state solution of the buoy motion, the amplitude,

F
′
ex,A, and phase shift, β

′
Fex

, of F
′
ex should be determined.

With zpl = zA,pl ej(ωt+βpl), F
′
ex = F

′
ex,A ej(ωt+β

′
Fex

), the complex amplitude

of F
′
ex can be expressed as:

F̂
′
ex = F

′
ex,A ejβ

′
Fex

= Fex,A ejβFex + j ω bext zA,pl ejβpl − ω2 msup zA,pl ejβpl

= Fex,A cosβFex − ω bext zA,pl sinβpl −msup ω2 zA,pl cosβpl

+j
[
Fex,A sinβFex + ω bext zA,pl cosβpl −msup ω2zA,pl sinβpl

]
= Re(F̂

′
ex) + j Im(F̂

′
ex) (B.3)

where the hat indicates the complex amplitude. The amplitude of the adjusted

exciting force F
′
ex becomes:
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F
′
ex,A =

√
(Re(F̂ ′

ex))2 + (Im(F̂ ′
ex))2

= [F 2
ex,A + ω2 z2

pl,A b2
ext

+ω4 z2
pl,A m2

sup + 2 ω zpl,A bext Fex,A sin(βFex − βpl)

−2 ω2 zpl,A msup Fex,A cos(βFex − βpl)]
1
2 (B.4)

and the phase angle β
′
Fex

can be computed by:

β
′
Fex

= arctan
[

Fex,A sinβFex + ω bext zA,pl cosβpl −msup ω2zA,pl sinβpl

Fex,A cosβFex − ω bext zA,pl sinβpl −msup ω2 zA,pl cosβpl

]
(B.5)

In this way, the steady state solution for the buoy motion, relative to the

platform becomes:

zA (ω) =
F

′
ex,A (ω)√

[(k − (m + msup + ma(ω))) · ω2]2 + [(b(ω) + bext)ω]2
(B.6)

βmot = β
′
Fex
− arctan

[
(b(ω) + bext)ω

k − (m + msup + ma(ω))ω2

]
(B.7)

In the same way as for a fixed platform, the significant wave amplitude can be

determined.

B.2 Restrictions

B.2.1 Slamming restriction

The slamming constraint is not subjected to changes when a floating platform

is considered, since it concerns a limitation on the relative motion between the

floater and the free water surface. Therefore the required restriction expressed

by Eq. (2.16) is still valid. The amplitude of the buoy motion relative to wave

can be computed similarly as in Eq. (2.19):

zA,rel,wave =
√

(zA cosβmot −A)2 + z2
A sin2βmot (B.8)
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B.2.2 Stroke restriction

In case of a floating platform, the stroke restriction reduces the probability

that the oscillating point absorber hits the platform. In contrast with formula

(2.22), the restriction is now dependent on the platform motion. Formula (B.9)

expresses that the significant value of the amplitude of the buoy motion relative

to the platform motion is limited to a certain maximum value:

(z − zpl)A,sign < (z − zpl)A,sign,max (B.9)

The motion of the buoy relative to the platform is:

z − zpl = zA cos(ωt + βmot)− zpl cos(ωt + βpl)

(z − zpl)A =
√

(zA cosβmot − zA,pl cosβpl)2 + (zA sinβmot − zA,pl sinβpl)2

=
√

z2
A + z2

A,pl − 2 zA zA,pl cos(βpl − βmot) (B.10)

B.2.3 Force restriction

Both the control force and the force due to power absorption are dependent on

the platform motions. The significant values of the amplitude of these forces

can be calculated with:

Fbext,A,sign = 2

√√√√√
∞∫
0

b2
extω

2

(
(z − zpl)A

ζA

)2

Sζ(ω)dω (B.11)

Fmsup,A,sign = 2

√√√√√
∞∫
0

m2
supω

4

(
(z − zpl)A

ζA

)2

Sζ(ω)dω (B.12)
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Simulation results

Simulation results are presented for several restriction cases:

• Constraint case 1: Slamming constraint, no stroke nor force constraint.

• Constraint case 2: Slamming constraint, stroke constraint: zA,sign,max

= 2.00 m, no force constraint.

• Constraint case 3: Slamming constraint, stroke constraint: zA,sign,max

= 2.00 m, force constraint: Ftot,A,sign,max = 200 kN.

The graphs show the power absorption, the absorption efficiency, the sig-

nificant amplitude of the buoy position, the significant amplitude of the

buoy position relative to the waves divided by the buoy draft, the significant

amplitude of the damping force, the significant amplitude of the tuning force

and the significant amplitude of the total control force. The cone-cylinder and

hemisphere-cylinder shapes are abbreviated to ‘cc’ and ‘hc’, respectively. The

draft is indicated with the symbol d, followed by the magnitude of the draft

expressed in meter.
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C.1 Constraint case 1
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Figure C.1: Power absorption as a function of the Hs-classes defined in Table 2.1.

Constraints: slamming restriction; no stroke nor force restriction.
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Figure C.2: Absorption efficiency as a function of the Hs-classes defined in Table 2.1.

Constraints: slamming restriction; no stroke nor force restriction.
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Figure C.3: Significant amplitude of the buoy position as a function of the Hs-classes

defined in Table 2.1. Constraints: slamming restriction; no stroke nor force restriction.
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Figure C.4: Significant amplitude of the relative buoy position divided by the draft as

a function of the Hs-classes defined in Table 2.1. Constraints: slamming restriction;

no stroke nor force restriction.
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Figure C.5: Significant amplitude of the damping force as a function of the Hs-

classes defined in Table 2.1. Constraints: slamming restriction; no stroke nor force

restriction.
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Figure C.6: Significant amplitude of tuning force as a function of the Hs-classes

defined in Table 2.1. Constraints: slamming restriction; no stroke nor force restriction.



268 SIMULATION RESULTS

0 1 2 3 4
0

100

200

300

400

Hs [m]

F to
t,A

,s
ig

n [k
N

] cc d2.00
cc d2.50
cc d3.50
hc d2.00
hc d2.50
hc d3.50

(a) D = 3.0 m.

0 1 2 3 4
0

100

200

300

400

Hs [m]
F to

t,A
,s

ig
n [k

N
] cc d2.25

cc d2.75
cc d3.75
hc d2.25
hc d2.75
hc d3.75

(b) D = 3.5 m.

0 1 2 3 4
0

100

200

300

400

500

600

700

Hs [m]

F to
t,A

,s
ig

n [k
N

] cc d2.50
cc d3.00
cc d4.00
hc d2.50
hc d3.00
hc d4.00

(c) D = 4.0 m.

0 1 2 3 4
0

100

200

300

400

500

600

700

Hs [m]

F to
t,A

,s
ig

n [k
N

] cc d2.75
cc d3.25
cc d4.25
hc d2.75
hc d3.25
hc d4.25

(d) D = 4.5 m.

0 1 2 3 4
0

200

400

600

800

1000

Hs [m]

F to
t,A

,s
ig

n [k
N

] cc d3.00
cc d3.50
cc d4.50
hc d3.00
hc d3.50
hc d4.50

(e) D = 5.0 m.

Figure C.7: Significant amplitude of the total control force as a function of the Hs-

classes defined in Table 2.1. Constraints: slamming restriction; no stroke nor force

restriction.
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C.2 Constraint case 2
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Figure C.8: Power absorption as a function of the Hs-classes defined in Table 2.1.

Constraints: slamming restriction; stroke restriction: zA,sign,max = 2.00 m; no force

restriction.
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Figure C.9: Absorption efficiency as a function of the Hs-classes defined in Table 2.1.

Constraints: slamming restriction; stroke restriction: zA,sign,max = 2.00 m; no force

restriction.
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Figure C.10: Significant amplitude of the buoy position as a function of the Hs-

classes defined in Table 2.1. Constraints: slamming restriction; stroke restriction:

zA,sign,max = 2.00 m; no force restriction.
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Figure C.11: Significant amplitude of the relative buoy position divided by the draft

as a function of the Hs-classes defined in Table 2.1. Constraints: slamming restriction;

stroke restriction: zA,sign,max = 2.00 m; no force restriction.
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Figure C.12: Significant amplitude of the damping force as a function of the Hs-

classes defined in Table 2.1. Constraints: slamming restriction; stroke restriction:

zA,sign,max = 2.00 m; no force restriction.
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Figure C.13: Significant amplitude of tuning force as a function of the Hs-

classes defined in Table 2.1. Constraints: slamming restriction; stroke restriction:

zA,sign,max = 2.00 m; no force restriction.
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Figure C.14: Significant amplitude of the total control force as a function of the

Hs-classes defined in Table 2.1. Constraints: slamming restriction; stroke restriction:

zA,sign,max = 2.00 m; no force restriction.
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C.3 Constraint case 3
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(a) D = 3.0 m.

0 1 2 3 4
0

10

20

30

40

50

60

70

Hs [m]

P
ab

s [k
W

]

cc d2.25
cc d2.75
cc d3.75
hc d2.25
hc d2.75
hc d3.75

(b) D = 3.5 m.

0 1 2 3 4
0

10

20

30

40

50

60

70

Hs [m]

P
ab

s [k
W

]

cc d2.50
cc d3.00
cc d4.00
hc d2.50
hc d3.00
hc d4.00

(c) D = 4.0 m.

0 1 2 3 4
0

10

20

30

40

50

60

70

Hs [m]

P
ab

s [k
W

]

cc d2.75
cc d3.25
cc d4.25
hc d2.75
hc d3.25
hc d4.25

(d) D = 4.5 m.

0 1 2 3 4
0

10

20

30

40

50

60

70

Hs [m]

P
ab

s [k
W

]

cc d3.00
cc d3.50
cc d4.50
hc d3.00
hc d3.50
hc d4.50

(e) D = 5.0 m.

Figure C.15: Power absorption as a function of the Hs-classes defined in Table 2.1.

Constraints: slamming restriction; stroke restriction: zA,sign,max = 2.00 m; force

restriction: Ftot,A,sign,max = 200 kN.
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Figure C.16: Absorption efficiency as a function of the Hs-classes defined in

Table 2.1. Constraints: slamming restriction; stroke restriction: zA,sign,max = 2.00m;

force restriction: Ftot,A,sign,max = 200 kN.
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(e) D = 5.0 m.

Figure C.17: Significant amplitude of the buoy position as a function of the Hs-

classes defined in Table 2.1. Constraints: slamming restriction; stroke restriction:

zA,sign,max = 2.00 m; force restriction: Ftot,A,sign,max = 200 kN.
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Figure C.18: Significant amplitude of the relative buoy position divided by the draft

as a function of the Hs-classes defined in Table 2.1. Constraints: slamming restriction;

stroke restriction: zA,sign,max = 2.00 m; force restriction: Ftot,A,sign,max = 200 kN.



280 SIMULATION RESULTS

0 1 2 3 4
0

50

100

150

200

Hs [m]

F be
xt

,A
,s

ig
n [k

N
] cc d2.00

cc d2.50
cc d3.50
hc d2.00
hc d2.50
hc d3.50

(a) D = 3.0 m.

0 1 2 3 4
0

50

100

150

200

Hs [m]
F be

xt
,A

,s
ig

n [k
N

] cc d2.25
cc d2.75
cc d3.75
hc d2.25
hc d2.75
hc d3.75

(b) D = 3.5 m.

0 1 2 3 4
0

50

100

150

200

Hs [m]

F be
xt

,A
,s

ig
n [k

N
] cc d2.50

cc d3.00
cc d4.00
hc d2.50
hc d3.00
hc d4.00

(c) D = 4.0 m.

0 1 2 3 4
0

50

100

150

200

Hs [m]

F be
xt

,A
,s

ig
n [k

N
] cc d2.75

cc d3.25
cc d4.25
hc d2.75
hc d3.25
hc d4.25

(d) D = 4.5 m.

0 1 2 3 4
0

50

100

150

200

Hs [m]

F be
xt

,A
,s

ig
n [k

N
] cc d3.00

cc d3.50
cc d4.50
hc d3.00
hc d3.50
hc d4.50

(e) D = 5.0 m.

Figure C.19: Significant amplitude of the damping force as a function of the Hs-

classes defined in Table 2.1. Constraints: slamming restriction; stroke restriction:

zA,sign,max = 2.00 m; force restriction: Ftot,A,sign,max = 200 kN.
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Figure C.20: Significant amplitude of tuning force as a function of the Hs-

classes defined in Table 2.1. Constraints: slamming restriction; stroke restriction:

zA,sign,max = 2.00 m; force restriction: Ftot,A,sign,max = 200 kN.
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(e) D = 5.0 m.

Figure C.21: Significant amplitude of the total control force as a function of the

Hs-classes defined in Table 2.1. Constraints: slamming restriction; stroke restriction:

zA,sign,max = 2.00 m; force restriction: Ftot,A,sign,max = 200 kN.
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Prony’s method

Prony’s method was developed by baron Gaspard Riche de Prony in 1795 and

is still used to decompose an impulse response function in a set of complex

exponential functions. The algorithm is included here for completeness.

Be f(t) a real function, defined in the interval [t0, +∞] ∈ R with

lim
t→+∞ f(t) = 0. These conditions are fulfilled for the known impulse response

function (IRF). This function f(t) will be approximated by a function f̃(t)
defined in an interval [t0, tf ], consisting of a sum of complex exponential

functions:

f̃(t) =
m∑

i=1

αke
βkt (D.1)

If this function is known in n equally spaced points ti = t0 + idt, dt

being the time step, equation (D.1) can be rewritten as, with ck = αke
βkt0 and

Qk = eβkdt:

⎡
⎢⎢⎢⎣

Q1 ... Qm

Q2
1 ... Q2

m

... ...

Qn
1 ... Qn

m

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

c1

c2
...

cm

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f(t1)
f(t2)

...

f(tn)

⎤
⎥⎥⎥⎥⎦ (D.2)

We define the polynomial Rm of degree m as:

Rm =
m∏

k=1

(q −Qk) =
m∑

k=0

skq
m−k, s0 = 1 (D.3)
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If we multiply the first m + 1 lines of system (D.2) with the coefficients

sm, sm−1, ..., s0 and find the sum of the equations, we get:

c1Rm(Q1) + ... + cmRm(Qm) = smf(t0) + ... + s0f(tm) (D.4)

Because Qk are the roots of Rm, and because s0 is equal to 1, the equation

can be simplified to:

smf(t0) + ... + s1f(tm−1) = −f(tm) (D.5)

By repeating this process iteratively, however from another starting point,

till a rank n so that (n + 1) ≥ m and tm+n ≤ tf , we get:⎡
⎢⎢⎢⎢⎣

f(t0) ... f(tm−1)
f(t1) ... f(tm)

...
...

f(tn) ... f(tm+n−1)

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

sm

sm−1
...

s1

⎤
⎥⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎣

f(tm)
f(tm+1)

...

f(tm+n)

⎤
⎥⎥⎥⎥⎦ (D.6)

In practice, the number of points in which the function f(t) is validated

is quite high, e.g. n = 3000. However, the number of exponentials should be

much smaller, because, the less exponential functions that are used, the less

differential equations need to be solved. Therefore, m will be chosen a lot

smaller than n, e.g. m = 200 and hence, the (n + 1) x m system (D.6) is

an overdetermined system. The coefficients sk can be found by applying the

Singular Value Decomposition (SVD) algorithm on this system. When these

coefficients are found, the polynomial Rm defined in equation (D.3) can be

constructed and its roots Qk can be determined. This allows us to calculate βk

immediately as: βk = ln(Qk)/dt.

The coefficients ck can be found by solving the overdetermined system

(D.2), resulting in the coefficients αk: αk = cke
−βkt0 . It should be verified

that the real part of the β values is always negative, since it is essential that

also the approximated IRF, f̃(t), approaches zero for time→ +∞.
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Reflection analysis

A reflection analysis has been carried out for the regular and irregular waves

generated in the flume. The analysis is performed with the data analysis

software tool WaveLab, developed at Aalborg University, Denmark. Wave

trains of 360 s are considered for the analysis and the point absorber is removed

from the wave flume.

At least three wave gauges need to be installed in the flume. The gauges

are placed in front of the model, as shown in Fig. E.1.

Figure E.1: Position of wave gauges in the flume (top view).

The distance x between the model and the third wave gauge, WG3, is equal

to 2.4 m (x > 0.4 Ln). The distance between the wave gauges, x1,2 and x2,3 is

based on the recommendations of Mansard and Funke [1]:

x1,2 =
Ln

10
(E.1)

Ln

6
< x1,3 <

Ln

3
(E.2)
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x1,3 �= Ln

5
and x1,3 �= 3Ln

10
(E.3)

Ln is the wave length taking into account the water depth at the position

of the wave gauges. For irregular waves, the subscript n corresponds with

the peak frequency fp, the low-cut frequency fLC = 1/3fp and the high-

cut frequency fHC = 3fp. Consequently, the lower and upper limits in

Eq. E.2 correspond to fLC and fHC , respectively for each wave spectrum. The

distance between the wave gauges is determined, taking into account the above

mentioned requirements, in particular for the peak frequency for irregular

waves. Table E.1 shows the selected interdistances. Reflection coefficients

in the range of 9 % to 17% are found and displayed in Table E.2. Kim

De Beule [2] performed reflection analyses in the same and other waves and

obtained very similar reflection coefficients in the same range (all Cr < 17 %).

Table E.1: Distance between wave gauges

x1,2 [m] x2,3 [m] x1,3 [m]

0.34 0.30 0.64

Table E.2: Generated waves and reflection coefficients

Regular waves H [cm] T [s] L [m] Cr [%]

10.4 1.36 2.9 8.9

10.2 1.60 3.8 16.6

Irregular waves Hs [cm] Tp [s] Lp [m] Cr [%]

6.2 1.59 3.8 14.6

According to Klopman and van der Meer [3] a minimum distance of 0.4 Ln

between the wave gauges and the intersection of the reflecting structure with

SWL is required for applying the multigauge technique. (LLC is the wave

length at the toe, based on the corresponding water depth and based on fLC).

This requirement is satisfied for all waves.
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APPENDIX F

Test matrices
F.1 Decay tests

Table F.1: Test matrix of decay tests on the hemisphere-cylinder.

d [cm] msup [kg]

18.9 13.2

18.9 19.2

18.9 31.2

22.1 8.1

22.1 14.1

28.1 6.5

28.1 12.5

F.2 Heave exciting wave forces

Table F.2: Test matrix of heave wave exciting force tests on the cone-cylinder and

hemisphere-cylinder.

d [cm] H [cm] T [s]

18.9 8.0 1.11

18.9 8.0 1.36

18.9 8.0 1.60

18.9 8.0 1.75

28.4 8.0 1.11

28.4 8.0 1.36

28.4 8.0 1.60

28.4 8.0 1.75
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F.3 Power absorption tests

The masses placed on top of the mechanical brake are denoted by mbr. The

letters ‘nc’ denote that the brake mechanism was ‘not connected’. Hence, in

these tests only the friction force damps the buoy motion.

F.3.1 Regular waves

Table F.3: Test matrix of the cone-cylinder in regular waves.

Cone - cylinder

No d [cm] H [cm] T [s] mbr [kg] msup [kg] Tn/T [-]

1 18.9 10.2 1.60 0.50 23.9 0.87

2 18.9 10.2 1.60 nc 23.9 0.87

3 18.9 10.2 1.60 1.50 23.9 0.87

4 18.9 10.2 1.60 2.00 23.9 0.87

5 18.9 10.2 1.60 2.50 23.9 0.87

6 18.9 10.2 1.60 1.00 33.9 0.98

7 18.9 10.2 1.60 1.50 33.9 0.98

8 18.9 10.2 1.60 2.00 33.9 0.98

9 18.9 10.2 1.60 2.50 33.9 0.98

10 22.1 10.2 1.60 nc 18.5 0.83

11 22.1 10.2 1.60 0.50 18.5 0.83

12 22.1 10.2 1.60 1.00 18.5 0.83

13 22.1 10.2 1.60 1.50 18.5 0.83

14 22.1 10.2 1.60 2.00 18.5 0.83

15 22.1 10.2 1.60 2.50 18.5 0.83

16 22.1 10.2 1.60 3.00 18.5 0.83

17 22.1 10.2 1.60 0.50 24.5 0.90

18 22.1 10.2 1.60 1.00 24.5 0.90

19 22.1 10.2 1.60 1.50 24.5 0.90

20 22.1 10.2 1.60 2.00 24.5 0.90

21 22.1 10.2 1.60 2.50 24.5 0.90

22 22.1 10.2 1.60 3.00 24.5 0.90

23 22.1 10.2 1.60 0.50 30.5 0.96
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No d [cm] H [cm] T [s] mbr [kg] msup [kg] Tn/T [-]

24 22.1 10.2 1.60 1.00 30.5 0.96

25 22.1 10.2 1.60 1.50 30.5 0.96

26 22.1 10.2 1.60 2.00 30.5 0.96

27 22.1 10.2 1.60 2.50 30.5 0.96

28 22.1 10.2 1.60 3.00 30.5 0.96

29 22.1 14.4 1.75 0.50 18.5 0.76

30 22.1 14.4 1.75 1.00 18.5 0.76

31 22.1 14.4 1.75 1.50 18.5 0.76

32 22.1 14.4 1.75 2.00 18.5 0.76

33 22.1 14.4 1.75 2.50 18.5 0.76

34 22.1 14.4 1.75 0.50 23.5 0.81

35 22.1 14.4 1.75 1.00 23.5 0.81

36 22.1 14.4 1.75 1.50 23.5 0.81

37 22.1 14.4 1.75 2.00 23.5 0.81

38 22.1 14.4 1.75 2.50 23.5 0.81

39 22.1 14.4 1.75 2.00 28.5 0.86

40 22.1 14.4 1.75 2.50 28.5 0.86

41 22.1 14.4 1.75 nc 18.5 0.96

42 22.1 14.4 1.75 0.50 18.5 0.96

43 22.1 14.4 1.75 1.00 18.5 0.96

44 22.1 14.4 1.75 1.50 18.5 0.96

45 22.1 14.4 1.75 2.00 18.5 0.96

46 28.4 14.4 1.75 nc 9.5 0.76

47 28.4 14.4 1.75 0.50 9.5 0.76

48 28.4 14.4 1.75 0.75 9.5 0.76

49 28.4 14.4 1.75 1.00 9.5 0.76

50 28.4 14.4 1.75 1.25 9.5 0.76

51 28.4 14.4 1.75 0.50 19.5 0.89

52 28.4 14.4 1.75 0.75 19.5 0.89

53 28.4 14.4 1.75 1.00 19.5 0.89

54 28.4 14.4 1.75 1.25 19.5 0.89
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Table F.4: Test matrix of the hemisphere-cylinder in regular waves.

Hemisphere-cylinder

No d [cm] H [cm] T [s] mbr [kg] msup [kg] Tn/T [-]

55 18.9 10.2 1.60 nc 13.2 0.77

56 18.9 10.2 1.60 0.50 13.2 0.77

57 18.9 10.2 1.60 1.00 13.2 0.77

58 18.9 10.2 1.60 1.50 13.2 0.77

59 18.9 10.2 1.60 0.50 23.2 0.89

60 18.9 10.2 1.60 1.00 23.2 0.89

61 18.9 10.2 1.60 1.50 23.2 0.89

62 18.9 10.2 1.60 2.00 23.2 0.89

63 22.1 10.2 1.60 nc 8.1 0.73

64 22.1 10.2 1.60 0.50 8.1 0.73

65 22.1 10.2 1.60 1.00 8.1 0.73

66 22.1 10.2 1.60 1.50 8.1 0.73

67 22.1 10.2 1.60 2.00 8.1 0.73

68 22.1 10.2 1.60 2.50 8.1 0.73

69 22.1 10.2 1.60 0.50 14.1 0.81

70 22.1 10.2 1.60 1.00 14.1 0.81

71 22.1 10.2 1.60 1.50 14.1 0.81

72 22.1 10.2 1.60 2.00 14.1 0.81

73 22.1 10.2 1.60 2.50 14.1 0.81

74 22.1 10.2 1.60 0.50 20.1 0.88

75 22.1 10.2 1.60 1.00 20.1 0.88

76 22.1 10.2 1.60 1.50 20.1 0.88

77 22.1 10.2 1.60 2.00 20.1 0.88

78 22.1 10.2 1.60 2.50 20.1 0.88

79 22.1 10.2 1.60 0.50 8.1 0.67

80 22.1 10.2 1.60 1.00 8.1 0.67

81 22.1 10.2 1.60 1.50 8.1 0.67

82 22.1 10.2 1.60 2.00 8.1 0.67

83 22.1 10.2 1.60 2.50 8.1 0.67

84 22.1 10.2 1.60 0.50 13.1 0.73
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No d [cm] H [cm] T [s] mbr [kg] msup [kg] Tn/T [-]

85 22.1 10.2 1.60 1.00 13.1 0.73

86 22.1 10.2 1.60 1.50 13.1 0.73

87 22.1 10.2 1.60 2.00 13.1 0.73

88 22.1 10.2 1.60 2.50 13.1 0.73

89 22.1 10.2 1.60 0.50 18.1 0.79

90 22.1 10.2 1.60 1.00 18.1 0.79

91 22.1 10.2 1.60 1.50 18.1 0.79

92 22.1 10.2 1.60 2.00 18.1 0.79

93 22.1 10.2 1.60 2.50 18.1 0.79

94 22.1 10.2 1.60 nc 8.1 0.85

95 22.1 10.2 1.60 0.25 8.1 0.85

96 22.1 10.2 1.60 0.50 8.1 0.85

97 22.1 10.2 1.60 1.00 8.1 0.85

98 22.1 10.2 1.60 1.50 8.1 0.85

99 28.4 10.2 1.60 nc 6.5 0.78

100 28.4 10.2 1.60 0.50 6.5 0.78

101 28.4 10.2 1.60 1.00 6.5 0.78

102 28.4 10.2 1.60 1.50 6.5 0.78

103 28.4 10.2 1.60 0.50 16.5 0.90

104 28.4 10.2 1.60 1.00 16.5 0.90

105 28.4 10.2 1.60 1.50 16.5 0.90
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F.3.2 Irregular waves

Table F.5: Test matrix of the cone-cylinder in irregular waves.

Cone-cylinder

No d [cm] Hs [cm] Tp [s] mbr [kg] msup [kg] Tn/Tp [-]

106 22.1 6.2 1.59 nc 18.5 0.83

107 22.1 6.2 1.59 0.50 18.5 0.83

108 22.1 6.2 1.59 0.75 18.5 0.83

109 22.1 6.2 1.59 1.00 18.5 0.83

110 22.1 6.2 1.59 1.25 18.5 0.83

111 22.1 6.2 1.59 1.50 18.5 0.83

112 22.1 6.2 1.59 0.50 22.5 0.88

113 22.1 6.2 1.59 0.75 22.5 0.88

114 22.1 6.2 1.59 1.00 22.5 0.88

115 22.1 6.2 1.59 1.25 22.5 0.88

116 22.1 6.2 1.59 0.50 26.5 0.92

117 22.1 6.2 1.59 0.75 26.5 0.92

118 22.1 6.2 1.59 1.00 26.5 0.92

119 22.1 6.2 1.59 1.25 26.5 0.92

120 22.1 6.2 1.59 0.50 30.5 0.97

121 22.1 6.2 1.59 0.75 30.5 0.97

122 22.1 6.2 1.59 1.00 30.5 0.97

123 22.1 6.2 1.59 1.25 30.5 0.97

124 18.9 6.2 1.59 0.50 31.9 0.96

125 18.9 6.2 1.59 0.75 31.9 0.96

126 18.9 6.2 1.59 1.00 31.9 0.96

127 18.9 6.2 1.59 1.25 31.9 0.96

128 18.9 9.6 1.83 0.50 23.9 0.76

129 18.9 9.6 1.83 1.00 23.9 0.76

130 18.9 9.6 1.83 1.50 23.9 0.76

131 18.9 9.6 1.83 2.00 23.9 0.76

132 18.9 9.6 1.83 1.00 31.9 0.84

133 18.9 9.6 1.83 1.50 31.9 0.84

134 18.9 9.6 1.83 2.50 31.9 0.84
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Table F.6: Test matrix of the hemisphere-cylinder in irregular waves.

Hemisphere-cylinder

No d [cm] Hs [cm] Tp [s] mbr [kg] msup [kg] Tn/Tp [-]

135 22.1 6.2 1.59 nc 8.1 0.74

136 22.1 6.2 1.59 0.50 8.1 0.74

137 22.1 6.2 1.59 0.75 8.1 0.74

138 22.1 6.2 1.59 1.00 8.1 0.74

139 22.1 6.2 1.59 1.25 8.1 0.74

140 22.1 6.2 1.59 1.50 8.1 0.74

141 22.1 6.2 1.59 0.50 12.1 0.79

142 22.1 6.2 1.59 0.75 12.1 0.79

143 22.1 6.2 1.59 1.00 12.1 0.79

144 22.1 6.2 1.59 1.25 12.1 0.79

145 22.1 6.2 1.59 0.50 16.1 0.84

146 22.1 6.2 1.59 0.75 16.1 0.84

147 22.1 6.2 1.59 1.00 16.1 0.84

148 22.1 6.2 1.59 1.25 16.1 0.84

149 22.1 6.2 1.59 0.50 20.1 0.89

150 22.1 6.2 1.59 0.75 20.1 0.89

151 22.1 6.2 1.59 1.00 20.1 0.89

152 22.1 6.2 1.59 1.25 20.1 0.89

153 22.1 6.2 1.59 1.50 24.1 0.93

154 22.1 6.2 1.59 1.75 24.1 0.93

155 22.1 6.2 1.59 2.00 24.1 0.93

156 18.9 6.2 1.59 0.50 21.2 0.87

157 18.9 6.2 1.59 0.75 21.2 0.87

158 18.9 6.2 1.59 1.00 21.2 0.87

159 18.9 6.2 1.59 1.25 21.2 0.87

160 18.9 6.2 1.59 0.50 13.2 0.68

161 18.9 6.2 1.59 1.00 13.2 0.68

162 18.9 6.2 1.59 1.50 13.2 0.68

163 18.9 6.2 1.59 2.00 13.2 0.68

164 18.9 6.2 1.59 0.50 21.2 0.76



296 TEST MATRICES

No d [cm] Hs [cm] Tp [s] mbr [kg] msup [kg] Tn/Tp [-]

165 18.9 6.2 1.59 1.00 21.2 0.76

166 18.9 6.2 1.59 1.50 21.2 0.76

167 18.9 6.2 1.59 2.00 21.2 0.76



APPENDIXG

Large scale drop test results

G.1 Overview of performed tests

Tables G.1 and G.2 list the performed drop tests with the buoy with foam and

buoy without foam, respectively. The Tables also present the measured peak

pressures that are obtained with and without smoothing.
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Table G.1: Table continues on next page.
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Table G.1: Test results for buoy with foam.
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Table G.2: Table continues on next page.
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Table G.2: Test results for buoy without foam.
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G.2 Drop test measurements

G.2.1 Buoy with foam
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Figure G.1: Measured data on BWF, drop height 1.00 m.
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Figure G.2: Measured data on BWF, drop height 2.35 m.
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Figure G.3: Measured data on BWF, drop height 3.35 m.
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Figure G.4: Measured data on BWF, drop height 4.35 m.
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Figure G.5: Measured data on BWF, drop height 5.35 m.
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G.2.2 Buoy without foam
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Figure G.6: Measured data on BWOF, drop height 1.00 m.
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Figure G.7: Measured data on BWOF, drop height 2.00 m.
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Figure G.8: Measured data on BWOF, drop height 3.00 m.
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Figure G.9: Measured data on BWOF, drop height 4.00 m.
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