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Motivation WEC

eMarine Carbon Storage (mCS)
o Can hold carbon for 1,000 - 100,000 years

o CO2 density changes C
, aptured
e Sequestration # Carbon Capture C IrOb p
e Power suitability “ i
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o Sequestration requires mechanical energy
o WECs capture mechanical energy Piston
o Builds on wave driven desalination 717777
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Requirements

Requirement Derived Assumption

Sequester 1 Gt/yr at scale 31 arrays of 100 WECs, 0.32
Mt/yr each

Sufficient pressure and flow Fracture 200 m below seafloor

Gravitational trapping Liquid CO,, depth >2700 m

Economic viability $148/t long-term, better than
offshore wind short-term

WEC feasibility 10 MN max force, 5 m/s max
speed, obey radiation limit




Analytical Modeling of Compressible Flow

- Pressure at seafloor: frack the seabed to increase permeability
)1.5

Pf'rack ~ 700(Zinjection — Zseafloor
- Pressure at sea surface: iterate up using gravity and pipe loss
Pco,(z = 0) = Pco, (Zinjection) + Z ( PCO, i V] f— — PCO,, ngZz)

- Power: pressure times volume flow
m
pCOQ(Z — 0)
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Analytical Modeling Results
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Numerical Modeling £
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- Time domain solver in Simscape i 1_
- Transient dynamics %
- CO, compressibility A
- Double acting piston %_E_
. Further theoretical proof of concept - ; i e
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System Design

Parameter Value Unit
Piston area 0.01 m?
Pipe inner diameter 0.26 m
Injection depth below seafloor 200 m
Effective pressure at injection depth 2 MPa
Water depth 2700 m
Pressure required at surface 3 MPa
Average massflow CO, 10, 0.32 kg/s, Mt/yr
Nominal WEC amplitude 1 m
Nominal wave frequency 0.7 rad/s
Average power at nominal conditions 965 kW
Liquid CO2 temperature 0 C




Location

Available wave energy
Seawater density (salinity and temperature)

Seabed geology (basalt sequestration)
Water depth

Decommissioned oil rigs
Nearby carbon capture technology




Economic Model

Annual discounted

. non-energy cost (S/yr)
Levelized cost of Energy intensity (kWh/ton) /

carbon ($/ton)\ /
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Economic Results
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Future Work

- Revisit assumptions

- Investigate analytical vs numerical discrepancy

- Real hydrodynamics modeling + impedance matching
- More detailed economic model

- (Possibly) partner to prototype

Model available open-source: https://github.com/symbiotic-
engineering/CASHEW
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