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Abstract: A detailed review of wave energy resource assessment and the state-of-the-art of deployed
wave energy converters (WECs) in real environmental conditions in the Mediterranean Sea have been
analysed in this study. The installed power of the several deployed WECs in the Mediterranean Sea
varies between 3–2500 kW. Ten project cases of deployed WECs in the basin are presented, with their
analysis of the essential features. Five different types of WEC have already been tested under real
environmental conditions in Italy, Greece, Israel and Gibraltar, with Italy being the Mediterranean
country with the most deployed WECs. The main questions of the relevant studies were the ongoing
trends, the examination of WECs in combination with other renewable sources, the utilising of WECs
for desalination, and the prospects of wave energy in the Mediterranean islands and ports. This
paper is the first comprehensive study that overviews the recent significant developments in the
wave energy sector in the Mediterranean countries. The research concludes that the advances of the
wave energy sector in the Mediterranean Sea are significant. However, in order to commercialise
WECs and wave energy exploitation to become profitable, more development is necessary.

Keywords: wave energy; resource assessment; WECs; Mediterranean Sea; technology maturity; wave

1. Introduction

The current European Union target to accomplish climate neutrality by 2050 and the
new European Union Climate Law for decline of greenhouse gas emissions at least 55%
until 2030 in comparison with 1990 levels, have led scientific research more intensively to
alternative sustainable energy sources [1]. Several types of source are used commercially
today, such as solar, wind, biomass, geothermal, and hydropower; however, in order to
address climate change and ensure a sustainable future, the renewable share in the power
mix is required to increase significantly [2].

There is a growing body of literature that recognises wave energy as a promising,
less exploited source that could contribute to the energy mix and reduce the need for
fossil fuels [3–5]. It is an issue that has received considerable research attention in the last
decades [6], with a variety of different wave energy converters (WECs) having already been
developed [7] and deployed in several areas worldwide [8]. Wave energy is an endless
and sustainable source that can make coastal countries less energy-dependent and provide
essential benefits [9].

In recent years, several studies have shown that theoretical wave energy potential is
considerable [10]. According to Mork et al. [11], the gross resource is counted as 3.7 TW
globally. Cornett [12] also evaluated the seasonal and monthly variability globally and
proved that the wave energy potential is considerable in some areas. Many countries,
characterised by significant wave energy resources, have already recognised the potentiality
of wave energy to the energy demands [13]. In Europe, most research projects are located
on the Atlantic coast, such as the coasts of the United Kingdom, Portugal and Ireland [14]
due to the high wave energy flux that characterise these regions. Kalogeri et al. [15]
assessed the wave power density in Europe and concluded that north-western European
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coasts are defined by the highest values. In particular, Mattarolo et al. [16] estimated that
the wave energy flux is 70 kW/m in the western coast of Ireland and the north-western
coast of Scotland, and 50 kW/m in Cornwall, United Kingdom, and the western coast of
Brittany, France. Although high energy flux characterises these areas, the survivability of
WECs is a real challenge due to storms and extreme conditions which can damage WECs
during their operation [10,13]. As reported by Liberti et al. [17], less energetic seas such as
semi-enclosed regions could be the solution to survivability, and the deployment of WECs
in these seas could be financially viable projects. The Mediterranean is a semi-enclosed
sea, with a medium wave energy power compared with the Atlantic coasts. According
to Besio et al. [6], several researchers have already attempted to evaluate the wave energy
potential of areas with lower energy flux than open seas.

This paper aims to highlight the significant developments of the wave energy sector
in the Mediterranean by reviewing the main recent research findings. Section 2 provides
an overview, in brief, of the recent wave energy resource assessment studies and the
analysis of wave energy potential evaluation combined with other renewable energy
sources. Section 3 presents the deployed WECs in real or relevant Mediterranean conditions
and the academic examination of specific WECs and certain types of WEC as well as
their possibility to be deployed in the basin. Section 4 provides the beneficial aspects of
wave energy exploitation in Mediterranean ports and islands. Section 5 contains critical
information on the status and prospects of wave energy in the Mediterranean projects
and prospects of wave energy exploitation. Finally, Section 6 presents the most significant
conclusions and recommendations for further work that are vital for the commercialisation
of WECs. The reviewed WECs are categorised by the location of their device in (i) offshore,
with water depth beyond 40 m, (ii) nearshore, with water depth between 10 m and 25 m
and (iii) onshore, at the shore or swallow waters [4]. WECs are also categorised by their
working principles according to the classification of the European Marine Energy Centre
(EMEC) in nine types using the terms: point absorber, attenuator, oscillating water column
(OWC), oscillating wave surge converter, submerged pressure differential, bulge wave,
rotating mass, overtopping device and other [18].

2. Wave Energy in the Mediterranean Sea
2.1. Wave Energy Resource Assessment

A rich literature has been published on wave energy assessment in the Mediterranean
Sea [6,17,19] focusing on specific areas or the whole area. Significant analysis of the wave
energy evaluation in the whole basin was presented by Arena et al. [19], who investigated
the most energetic locations and the areas in which it is possible extreme events will occur.
They identified the north-western Mediterranean Sea as the most energetic location with
mean wave power up to 15.1 kW/m in the area of Alghero, Italy, and considerable wave
energy potential in northern Tunisia, Italy, western Crete (Greece), southern Sicily (Italy)
and the southern Ionian Sea (Greece) with mean wave power 11.1 kW/m, 8.5 kW/m,
8.2 kW/m and 7.3 kW/m, respectively. Furthermore, Besio et al. [6] analysed 35-year data
and detected the powerful regions, which are in the western Mediterranean among Sardinia,
Corsica, northern Algeria and the Balearic Islands with a mean wave energy potential
of relatively 10 kW/m. They found that the wave energy power is intermediate in the
eastern and central Mediterranean, about 6–7 kW/m and the wave energy potential varies
significantly during the seasons in the whole basin. These results agree with Pelli et al. [20].
Lavidas et al. [21] detected that the highest wave energy potential areas are in the north-
eastern and southern Italian coastline, on the coasts of Libya and Egypt, in the north-eastern
Spanish coastline, and the complex of islands in central Greece.

Most of the research was carried out by studying specific locations and not the entire
region. Liberti et al. [17] recommended as the most energetic areas of the Italian Seas
western Sardinia and between southern and north-western Sicily. Vicinanza et al. [22]
investigated the area of north-western Sardinia and concluded that the western coasts of
the island, especially Porto Alabe and Torre del Porticciolo, are amongst the most promising
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areas in the Mediterranean. In Sicily, Italy Iuppa et al. [23] found that the locations with the
highest wave energy potential are the western parts of the island and the Strait of Sicily,
with wave energy flux 8 kW/m and 4–6 kW/m, respectively. Their main scope was to
examine the insular wave energy potential in order to locate the probable spots for wave
energy exploitation by WECs. The wave energy potential of Sicily was also studied by
Monteforte et al. [24], who concluded that the most energetic region is the Aegadian Islands
(western Sicily). The coasts of Sicily, Sardinia, Liguria and Tuscany were the study regions
of Vannucchi and Cappietti [25]. The wave power and the variability were estimated
in nearshore and offshore spots of these four areas, and their findings proved that the
nearshore area of Argenteria (depth of 20 m) is the most energetic hotspot [25]. Paladini
de Mendoza et al. [26] defined as a suitable spot for harvesting wave energy, the northern
Italian coasts with low environmental consequences, considerable energy flux, and viable
access is the region onward the breakwater of Civitavecchia.

A wave energy potential assessment of the Algerian coast conducted by Amarouche et al. [27]
showed the eastern offshore part of Algeria, approximately 15 km from the coast, as the
most energetic area. Ayat [28] examined the wave power potential of the Aegean Sea and
the eastern Mediterranean and identified that the central-eastern Mediterranean and the
Aegean Sea have the highest values, approximately 5 kW/m. He further indicated that
this region has substantial seasonal variability, except for the area between the islands
of Karpathos and Crete, which is characterised by lower differences. Zodiatis et al. [29]
identified the locations with the highest wave energy potential in the Levantine Basin: the
western coastline of Cyprus and the coasts of Alexandria, Lebanon and Israel.

The Libyan Sea’s wave energy resources were examined by Lavidas and Venu-
gopal [30], indicating that the wave energy flux fluctuates between 8–10 kW/m in winter
and the wave energy potential is higher in the western part of the Libyan Sea. They claimed
that some area parts are suitable for wave energy extraction due to the low wave energy
variability. These researchers also assessed the Aegean Sea’s wave energy potential and
suggested that the most energetic areas are southern and eastern of Crete with a mean
wave energy flux of about 8 kW/m, in contrast with central Aegean’s lower values of
approximately 5–6.5 kW/m [31]. Jadidoleslam et al. [32] also evaluated the wave power of
the Aegean Sea and detected that the regions between Mykonos-Ikaria and Crete-Casos
have the highest wave heights, and the wave energy flux surpasses the 5.2 kW/m. They
further stated that the regions with fewer islands have higher wave energy potential in the
Aegean Sea.

Zacharioudaki et al. [33] evaluated the wave resource of the entire Greek sea area
and demonstrated that the most energetic regions are in the western and eastern Crete.
Kaldellis et al. [34] identified that Skyros has the highest significant wave heights, followed
by Athos and Lemnos in the northern Aegean Sea. Foteinis et al. [35] assessed a specific
area of Greece, Varkiza, and indicated that with the present technology, the exploitation of
wave energy is not an economically feasible solution. Foteinis et al. [36] determined the
functionality of WECs in the Venetian harbour of Chania, Greece. They calculated that the
mean wave power is close to 4.8 kW/m and proposed that future installations of WECs
in the harbour breakwater could be a feasible solution. Lopez-Ruiz et al. [37] detected
substantial temporal wave power variation and recognised the nearshore region of Punta
del Santo, Italy, as a region with the highest significant wave height.

In the Balearic Sea, Ponce de Leon et al. [38] found the highest value of wave energy
flux, 9.1 kW/m, in northern Menorca. Additionally, in the Croatian coasts, Farkas et al. [39]
stated that the mean wave power fluctuates between 1.959 kW/m and 2.784 kW/m, and the
region with the highest value is south-eastern Lastovo. Table 1 illustrates the geographical
areas of the conducted research for the wave energy assessment in the Mediterranean Sea
and the type of data examined to carry out the research. The wave data were classified into
three types: numerical wave models, satellite remote sensing and in situ measurement,
according to [40]. It is significant to note that in some studies in situ measurements were
used for model validation, such as the studies of Besio et al. and Liberti et al. [6,17] and
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others for the analysis, as in the case of Foteinis et al. [35]. Several of the numerical wave
models implemented in the resource assessment studies are presented in Supplementary
Material Table S1.

Table 1. Wave energy resource assessment studies in the Mediterranean Sea and type of examined data.

Geographical Area
Data

Part of the
Mediterranean Sea AuthorsNumerical Wave

Models
In Situ

Measurements
Satellite

Data

Mediterranean Sea x x Entire [6]
Mediterranean Sea x x Entire [19]
Mediterranean Sea x x Entire [20]
Mediterranean Sea x x Entire [21]

Libyan Sea x Eastern [30]
Aegean Sea x x Eastern [31]

Levantine Sea x x Eastern [29]
Eastern Mediterranean Sea and

Aegean Sea x Eastern [28]

Aegean Sea x x Eastern [32]
Greek Coasts x x x Eastern [33]

North Aegean Sea x x Eastern [34]
Varkiza Coasts x x Eastern [35]

Chania’s Venetian harbour Coast x x Eastern [36]
North-western Sardinian Coasts x x Western [22]

Sicilian Coasts x x x Western [23]
Tuscany, Liguria, Sardinia and

Sicily Coasts x Western [25]

Italian Coasts x x x Western [17]
Sicilian Coasts x x Western [24]

Northern Latium Coasts x x Western [26]
Algerian Coasts x x Western [27]

Balearic Sea x x x Western [38]
Croatian Coasts x Western [39]

2.2. Wave Energy Resource Assessment in Combination with Other Sources of Renewable Energy

Thus far, several studies have investigated the potential of wave energy combined
with the potential of other energy sources, such as wind and solar [41,42]. The epicentre
of recent studies is based on wind–wave hybrid systems, with fewer studies focusing on
other forms of renewable energy source (Table 2).

Table 2. Wave and wind energy resource assessment in the Mediterranean Sea.

Geographical Area Period Part of the Mediterranean Sea Authors

European Coasts 2001–2010 Entire [15]
Mediterranean Sea 1979–2016 Entire [43]

Greek Coasts - Eastern [41]
Greek Coasts 2001–2010 Eastern [44]
Greek Coasts 2005–2015 Eastern [45]
Italian Coasts 2005–2014 Western [46]

To examine the hybrid system of wave and wind energy in the whole Mediterranean,
Ferrari et al. [43] determined that the most advantageous area for combined harvesting
of wind and wave energy is the Algerian coast. In their process of assessing the entire
offshore European area, Kalogeri et al. [15] indicated that the most promising areas for the
hybrid harvest of wave and wind energy are the Strait of Sicily, offshore of the coasts of
Sardinia, offshore north-west of the Balearic Islands, the Gulf of Lions and certain parts in
the Aegean Sea.
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Vasileiou et al. [41] showed that the most suitable areas in Greece are considered the
area east of Crete, the offshore region of south-eastern Mykonos and the north-western
Crete. Emmanouil et al. [44] also evaluated the Greek wave and wind potential, underlying
the highest wave power potential in the western Cretan Sea and the southern Ionian
Sea, almost 7 kW/m. Both Emmanouil et al. [44] and Ganea et al. [45] evaluated these
two renewable sources in the same regions and the most propitious sites for each source
separately. Ganea et al. [45] characterised the south, north and south-east area of Crete as
the most energetic ones for wave energy exploitation, with mean wave power 2.9–3 kW/m.

Furthermore, the wind and wave energy potential of the Italian coasts have been
analysed by Azzellino et al. [46]. They detected the most promising offshore locations,
considering the wind turbines are not viable in any depth, several uses of the sea areas
and the vulnerability of some natural environments. These locations are south of Elba, off
the Aeolian islands (southern Tyrrhenian Sea) and Alghero (north-western Sardinia), and
southern Adriatic and the Ionian Sea areas.

2.3. Ongoing Trends of Wave Climate

Research has also focused on the effect of climate change on wave energy resources
(Table 3). Much of the current literature pays particular attention to the ongoing trends of
wave energy parameters in the Mediterranean [47,48]. Caloiero et al. [48] showed that the
wave power could rise because of the highest proportion of long waves in the Calabria
coasts in southern Italy. Caloiero et al. [49] predicted the changes in wave period, power
and significant height in the entire Italian sea. Their analysis indicated that all investigated
seas have positive ongoing trends except for the Adriatic and the Ligurian Sea.

Table 3. Research on ongoing trends of the wave climate in the Mediterranean Sea.

Geographical Area Period
Data

Part of the
Mediterranean Sea AuthorsSignificant

Wave Height
Wave

Period
Wave
Power

Wave
Direction

Mediterranean Sea 1970–2100 x x x Entire [50]
Coasts of Calabria 1979–2017 x x Western [48]

Italian Coasts 1979–2018 x x x Western [49]
Coasts of Menorca 1971–2000 and

2071–2100 x x x x Western [5]

Coasts of Morocco 1986–2005 and
2081–2100 x x x x Western [47]

North-western
Mediterranean Sea

1971–2000 and
2071–2100 1 x x x Western [51]

1 Except for Max-Planck-Institut fur Meteorologie data, for which the first period is 1981–2010 based on the authors [51].

The impact of climate change on the wave parameters in the north-western Mediter-
ranean was examined by Casas-Prat et al. [51], who pointed out the differences between
the future and present values of wave parameters in summer and winter. Sierra et al. [5]
studied the area of Menorca, Spain, and illustrated a decline of wave energy in autumn and
winter, a lower reduction in spring and changeability in space in summer, with an inclining
trend in northern Menorca. In general, they detected that the distribution of direction and
space of the present wave energy is similar to the future ones. Future wave projections
are also accomplished by Sierra et al. [47] for the Mediterranean coasts of Morocco. They
argued that in the region, the present values of wave power are similar to the future ones.
Leo et al. [50] argued that wave period and significant wave height are expected to decline
generally in the entire Mediterranean Sea.

2.4. Wave Energy and Other Variables

Wave energy has already been analysed combined with research topics such as coastal
protection [52], social-economic benefits [53], acoustic impact [54] and desalination [55,56].
Bergillos et al. [52] examined both WECs and coastal protection from erosion in the
Guadalfeo deltaic coast. Moreover, Molina et al. [57] studied the wave climate of the
Andalusian coast and the storms that occurred during a long time period and also evalu-
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ated the wave energy flux of these storms. The combination of wave energy exploitation
and the reduction of coastal erosion was further analysed by Foteinis et al. [56], who
investigated different schemes that could improve the sustainability of WECs, decrease the
cost of WECs and make the exploitation of wave energy possible in low energetic seas.

Furthermore, the social-economic aspects of WECs in Greece were examined by
Lavidas et al. [53], aiming to promote policy considerations and the development of WECs
concerning the significant opportunities of wave energy exploitation. He claimed that,
although the Greek sea area is often overlooked due to its low energy potential, the lower
resources mean lower possibilities for extreme catastrophic events.

Viola et al. [58] examined the use of wave energy for water desalination in Sicily,
Italy. In addition, they reported the feasibility of a WEC by the Department of Energy,
Engineering Information and Mathematical Models (DEIM) of University of Palermo to
wave energy harvest that would integrate power generation and water desalination in
Pantelleria, Italy. Hwang et al. [55] focused on the desalination plants of Sicily, the wave
energy potential and the installation of point absorbers around the island to supply the
water desalination plants. Wave energy combined with desalination of water was also
examined [59]. Corsini et al. [59] detected the application of nearshore WECs as having a
low environmental impact when producing energy on the island of Ponza, Italy.

3. Wave Energy Converters (WECs) in the Mediterranean Sea
3.1. Prototypes Deployed in Operational or Relevant Environmental Conditions

Over the past seven years, considerable advances in the deployment of WECs have
occurred [60] wave energy seems promising for some Mediterranean countries [6] because
of extensive coastlines [17,61] (Table 4, Figure 1).

Although there is a considerable number of different WECs, several of them are
missing tests under real conditions [9,14,60]. In the Mediterranean, there are 10 major cases
of WECs that have reached technology readiness level (TRL) equal to or higher than 6 and
have been tested in the sea [14,62,63].

The establishment of the first case of an off-grid WEC was by Eco Wave Power in
the Jaffa Port, Israel, in 2014 and belongs to the category of point absorbers [64]. In 2015,
the second case was that of the deployment of H24, a WEC developed by 40South Energy
Italia Srl power in Marina di Pisa, Italy [65]. H24 was connected to the Italian grid three
years later and remains the only remarkable nearshore WEC in the Mediterranean tested
under real conditions (TRL 7) [65]. Furthermore, a notable feature of this converter is that
it can exploit wave and tidal energy [14,65]. The same year, the University of Campania
Luigi Vanvitelli installed an overtopping WEC, named Overtopping Breakwater for Energy
Conversion (OBREC), in the existing breakwater of the Port of Naples, Italy. OBREC
combines energy production and port protection, and the demonstration of the prototype
was in a relevant environment, TRL 6 [14,66,67].

The following year, two WEC installation projects were completed. The Polytechnic of
Turin and Wave for Energy Srl developed a WEC rotating mass device, named the Inertial
Sea Wave Energy Converter (ISWEC), with nominal wave power offshore of the island
of Pantelleria [14,68]. In parallel, Eco Wave Power installed 100 kW WECs in Gibraltar
to supply power. Additionally, Eco Wave Power installed photovoltaic panels on Wave
Clappers in the port of Jaffa and Gibraltar in order to test the possibility of photovoltaic
panels installation in their future WECs [14,69].

The largest Mediterranean wave power facility, until now, has been in the port of
Civitavecchia since 2017, with installed wave power of 2500 kW [14]. The Mediterranean
University of Reggio Calabria in cooperation with Wavenergy.it constructed a REWEC3
in the breakwater of the port, which constitutes the first integrated OWC WEC into the
breakwater of a Mediterranean port [14,70]. Wavenergy.it has further announced two new
projects, which include the integration of REWEC3 in the breakwaters of the Italian ports
of Salerno and Roccella Jonica.
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Table 4. Deployed WECs in the Mediterranean Sea.

Country Company Year of
Deployment Device Name TechnologyReadiness

Level (TRL) Type of WEC Location Power
(kW)

Area of
Deployment

Sea of
Deployment

Part of the
Mediterranean Sea

Italy

40South Energy
Italia SRLpower 2015 H24 7 Other Nearshore 50 Marina di Pisa Ligurian Sea Western

data University of
Campania Luigi

Vanvitelli
2015

Overtopping
Breakwater for

Energy
Conversion

(OBREC)

6 Overtopping Onshore 8 Port of Naples Tyrrhenian Sea Western

Polytechnic of Turin
and Wave for

Energy Srl
2016

Inertial Sea
Wave Energy

Converter
(ISWEC)

7 Rotating mass Offshore 100 Coast of
Pantelleria Strait of Sicily Western

Mediterranean
University of Reggio

Calabria in
cooperation with

Wavenergy.it

2017 REWEC3 7
Oscillating

Water Column
(OWC)

Onshore 2500 Port of
Civitavecchia Tyrrhenian Sea Western

Ocean Power
Technologies 2018 PB3 PowerBuoy 7 Point absorber Offshore 3 Ravenna Adriatic Sea Western

Polytechnic of Turin
and Wave for

Energy Srl
2019 ISWEC 7 Rotating mass Offshore 50 Ravenna Adriatic Sea Western

Greece Sinn Power 2018 SP WEC 3rd
Gen 7 Point absorber Onshore 18 Port of

Heraklion Cretan Sea Eastern

Sinn Power 2019 SP WEC 4th Gen 7 Point absorber Onshore 36 Port of
Heraklion Cretan Sea Eastern

Israel Eco Wave Power 2014 Wave clapper 7 Point absorber Onshore - Port of Jaffa Levantine Sea Eastern

Gibraltar Eco Wave Power 2016 Wave clapper 7 Point absorber Onshore 100 Gibraltar Alboran Sea Western
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Figure 1. Mediterranean map with the deployed sites of wave energy converters (WECs) (developed on https://mapchart
.net/, accessed on 7 June 2021).

Moreover, in Italy, and specifically offshore of Ravenna, the WEC PB3 PowerBuoy
of Ocean Power Technologies was deployed by Eni in 2018 [63]. The purpose of this
deployment is the suitability demonstration of WECs in gas and oil operations. PB3
PowerBuoy has wave power 3 kW and is a WEC that provides both communication and
energy [14,63].

In the port of Heraklion, Crete, Sinn Power completed the installation of their first
devices in 2018 [62]. In particular, two SP WEC 3rd Gen were installed in the breakwater
of the port of Heraklion, with 18 kW per unit [62]. One year later, the same company
placed two new devices in the breakwater of Heraklion. Their new technology is named
SP WEC 4th Gen, with wave power 36 kW per unit. The aim of the four-device placement
in the breakwater was to test their technology [62]. After their successful tests, Sinn Power
carried their next project forward; the Ocean Hybrid Platform (OHP), which includes
the construction, deployment and assessment of a hybrid platform that combined the
exploitation of wave, wind and solar energy. OHP is currently in process in the port of
Heraklion and will be completed in the following years [14,71].

Finally, the most recent deployed WEC, in real environmental conditions, is that of
ISWEC in the offshore area of Ravenna [14,68]. The Polytechnic of Turin and Wave for
Energy Srl deployed their technology for a second time in 2019. However, their second
device has half of the wave power of the first-deployed one. Furthermore, the ISWEC that
was deployed offshore of Ravenna was integrated with photovoltaic panels on the roof,
combining the exploitation of solar and wave energy [14,68].

Generally, in the Mediterranean Sea, five different types of WEC have been deployed
which belong to the categories of point absorber, OWC, overtopping, rotating mass and
other. In Figure 2a, the installed power of the five different types of WEC is presented,
with no trend of installed power to be observed, and the installation of the most powerful
Mediterranean project was noted in 2017, with installed power 2500 kW. Most of the devices
were installed onshore, and only one WEC device nearshore and two offshore (Figure 2b).
In addition, the point absorber is the most deployed type of WEC, with half of the devices
belonging to this type (Figure 2c).

3.2. Academic Research

Several studies have been published investigating a particular type of WEC or a
specific developed device in a distinct location. The studies evaluated the WECs and

https://mapchart.net/
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reported significant features of the devices, with various research to pertain to the Italian
seas. Miquel et al. [72] designed a WEC in accordance with the wave characteristics of
the Mediterranean Sea. Moreover, using wave data from the wave climate of Mazara del
Vallo (Sicily) and Alghero (Sardinia), the device was installed. Lavidas et al. [73] examined
the exploitation of wave energy by OWC in the port of Genova, Italy. They evaluated the
possibility of installing an OWC in the port, estimating the payback period, the levelized
cost of electricity (LCoE), the technical and economic capabilities, as well as the pollution
that would be avoided due to the decreased consumption of fossil fuels. The probability
of the deployment of an OWC in an Italian port was also investigated by Naty et al. [74].
They studied the embedding of an OWC in the breakwater of the Giardini Naxos harbour,
which is an area with low wave energy potential. Notably, they optimised the device and
assessed the noise and financial feasibility. Another Italian port that the positioning of an
OWC has been examined is Civitavecchia’s [75]. Arena et al. [75] investigated the REWEC3,
a device that had already been deployed in the harbour. They exhibited the operation of
the device of two chambers in the port of Civitavecchia in November 2015. Arena et al. [75]
further calculated that absorption of the incident wave power was on average between
76% and 96%.
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Moreover, detailed scientific research has been conducted in order to detect the hy-
draulic performance [76] and the wave loadings [77] of the deployed WEC OBREC that
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have been installed in the port of Naples. In this regard, reliable estimation of time distri-
bution of input flow was calculated through new methods introduced by Iuppa et al. [78].
Furthermore, such methods allow the prediction of the energy produced in parallel with
the characteristics of the device. Cavallaro et al. [79] used those methods, proposed a
numerical model for the OBREC performance optimisation, and applied their proposed
model in the breakwater of Pantelleria island, Italy. Palma et al. [80] examined the struc-
tural and hydraulic performance of OBREC by analysing field data of the device operation
in the port of Naples and by using a numerical model. Contestabile et al. [81] carried
out a research describing a set of experiments performed on a physical model of OBREC.
The goal of that research was to show how changing the geometrical shape of a mounted
nose on the top of the OBREC’s vertical crown wall can help mitigate the consequences
of the sea level rise by 2100. In addition, Contestabile et al. [67] reviewed the research on
OBREC in recent years. Their study encompassed unpublished aspects of the power-take-
off system and geometry of OBREC and focused on the description/information of the
device installation in the port of Naples, Italy. An innovative vertical breakwater with an
overtopping WEC was presented by Lauro et al. [82] who investigated its stability response
and hydraulic operation.

A creative solar/wave hybrid device was suggested by Viola et al. [42]. Their research
focused on the assessment of solar and wave potential of Sardinia in order to choose the
optimal siting of wave/solar farms, and thus, they selected Alghero. Franzitta et al. [83]
proposed and analysed a scenario to install 12 farms of DEIM WECs in the western sea
area of Malta and Gozo. They calculated the yearly energy production and the CO2
emissions avoided due to the operation of these solar/wave farms. The feasibility of DEIM
for the wave energy extraction of the area of the Pantelleria island, Italy, was evaluated
by Franzitta et al. [61]. Konispoliatis et al. [84] analysed the wind and wave climate of
two potential Mediterranean installation areas (east of Crete and south-west of Sicily) to
investigate the wind/wave hybrid offshore floating platform (with three OWC devices and
one wind turbine) platform’s dynamic response under combined wave and wind loadings.

Moretti et al. [85] assessed an innovative WEC in the port of Civitavecchia, Italy. The
WEC is a combination of two innovative concepts that have been tested in a mild envi-
ronment; the data of this test were analysed, and the results illustrated their performance,
which is similar to other technologies. In the port of Valencia, Spain, Cascajo et al. [86]
considered the most suitable type of WEC for deployment that is also used as a breakwater.
They estimated the wave power potential of the study region and concluded that the
overtopping device is the optimal option.

Shehata et al. [87], using real data for the Egyptian area, evaluated simultaneously
the Well turbines for wave energy extraction and breakwater. In addition, Bozzi et al. [88]
assessed the performance of different WECs in the offshore areas of the Mediterranean Sea.
In particularly, the assessed WECs were AWS, Wavebob, AquaBuOY, SeaPower, OE buoy,
Pontoon, Langlee, and Pelamis. All the referred research and the main characteristics of
the studied WECs are illustrated in Tables 5 and 6.

Academic research has provided important information on mooring systems. In fact,
Sirigu et al. [89] carried out experiments on a 1:20 scaled ISWEC model in a towing tank and
examined its mooring system while focusing on the influence of extreme events occurring
on the system. The design of the examined mooring system was based on this particular
device of ISWEC which has been deployed in Pantelleria island, Italy.
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Table 5. Academic research on specific WECs.

Geographical Area Name of WECs Types of WEC Location Part of the
Mediterranean Sea Authors

Entire Mediterranean
Sea

MoonWEC, AquaBuOY, Archimedes
Wave Swing (AWS), OE buoy, Langlee,

Pelamis, Pontoon, SeaPower
and Wavebob

Other, Point absorber,
Oscillating wave surge
converter, Oscillating
water column (OWC)

and Attenuator

Offshore Entire [72,88]

Port of Civitavecchia REWEC3 OWC Onshore Western [75]

Maltese Coasts
DEIM (Department of Energy,
Engineering Information and
Mathematical Models (DEIM)

Point absorber 1 Offshore Western [83]

Sardinian Coasts DEIM Point absorber 1 Offshore Western [42]

Port of Naples Overtopping Breakwater for Energy
Conversion (OBREC) Overtopping Onshore Western [67,76–81]

Pantelleria island DEIM Point absorber 1 Offshore Western [61]
Sea area of eastern

Crete and north-west
of Sicily

Renewable Energy Multi-Purpose
Floating Offshore System (REFOS) OWC 2 Offshore Eastern and Western [84]

1 hybrid system—WEC integrated with photovoltaic panels. 2 hybrid system—Floating platform with three OWC devices and one
wind turbine.

Table 6. Academic research on particular types of WEC.

Geographical Area Type of WEC Location Part of the Mediterranean Sea Authors

Egyptian Coasts Oscillating water column (OWC) Onshore Eastern [87]
Port of Giardini Naxos OWC Onshore Western [74]
Port of Civitavecchia OWC Onshore Western [85]

Port of Valencia Overtopping Onshore Western [86]

4. Advantageous Aspects of Wave Energy Exploitation in the Mediterranean Sea

There is a notion that wave energy exploitation in ports and islands could be remark-
ably beneficial [56,90]. In the case of the ports, a large sector of the academic and business
communities agree on wave energy suitability for sustainability improvement in ports [91].
This notion is mainly due to the processes to construct, install and maintain WECs in the
less complicated breakwaters, with lower costs in opposition to the respective offshore
WECs [90,92]. Hence, up to date, innovative concepts have been designed in such a way
that WECs can easily be integrated into the breakwaters of ports, providing both energy
and safety [92]. Moreover, there is a growing body of literature that revealed the advances
of these integrations [90–92] and focused on the assessment of WECs in the breakwaters of
ports [73,82]. In the case of islands, energy safety is a vital issue, and renewable extraction
has growing importance [93]. Therefore, wave energy harvesting is assumed that could
contribute to the energy mix of renewables and assist in addressing energy safety concerns
due to its easy predictability and low variability [56].

4.1. Mediterranean Ports

In the Mediterranean, there are thousands of ports. The installation of WECs in ports,
where wave energy potential is operational, seems to have a great prospect for increasing
the contribution in their energy mix [91]. Several recent studies have been conducted
in order to examine the prospects of WECs and estimate the exploitable wave power in
the Mediterranean ports [74,75,86]. The main types of WEC that have theoretically been
analysed are the OWC, point absorbers and overtopping devices. Some of these devices
have been tested in real environmental conditions.

Notably, the Italian ports are at the epicentre of research. For instance, the installa-
tions of two different OWC devices have been investigated in the port of Civitavecchia.
Moretti et al. [85] assessed a U-oscillating water column equipped with a dielectric elas-
tomer generator power take-off system, and Arena et al. [75] evaluated the REWEC3 device.
An OWC device was also investigated in detail in the Port of Giardini Naxos [74]. Further-
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more, the overtopping OBREC device, which has been installed in the port of Naples, has
been assessed [66,76,77].

Apart from Italian ports, efforts have been conducted in other Mediterranean ports.
For example, in the port of Valencia, Spain, different types of WECs were examined, and
the authors concluded that the overtopping devices are the most suitable [86]. In Greece,
the installation of four point absorbers has been tested and evaluated by Sinn Power in the
port of Heraklion [62]. Similarly, Eco Wave Power installed their technology in the port of
Jaffa in Israel in order to test their point absorbers devices [64].

Hence, the integration of WECs has prospects that have already been acknowledged
in the Mediterranean Sea. Recently, researchers and companies are trying to study and
assess different devices that have possibilities to be operational in the breakwaters of ports,
providing both safety and electric energy.

4.2. Mediterranean Islands

Significant efforts have been carried out in researching wave energy exploitation
in the Mediterranean islands mainly on the Italian islands. In particular, the island of
Sicily has been investigated extensively, concentrating on wave energy assessment of the
island [17,19,23], evaluation of hybrid systems [15], desalination of water by WECs [55,58]
and ongoing trends of wave energy [49].

However, wave energy research has attracted not only the large islands of the Mediter-
ranean basin but also smaller ones, such as the island of Pantelleria, Italy. The island
is considered one of the most suitable locations for wave energy exploitation [94], with
high wave energy potential [61]. Different studies have evaluated the potential of the area
and the possibilities of a WEC installation. Furthermore, Pantelleria island is one of the
deployed WECs in real environmental conditions in the Mediterranean. The device ISWEC
was deployed offshore the island in 2016, and the purpose of this deployment was to test
the device in that sea environment [68].

Crete is an island where WECs have also been installed. Sinn Power installed devices
in the port of Heraklion, Greece, to examine their technology [62]. Upon successful
completion of the tests, the team moved their next project forward; the assessment of a
hybrid platform, where wind turbines, solar panels and WECs are integrated. The tests
have also been carried out in the sea off Heraklion [71].

In addition, many other islands in the basin have been investigated theoretically as
single cases, such as Sardinia [22,42], Malta [83] and Menorca [5]. Significant attempts
have recently been made to investigate the suitability of wave energy exploitation in small
Italian islands: Favignana [95], Ponza [59] and Giglio [96].

5. Discussion

Mediterranean wave energy potential is characterised by low wave power density
compared to the Atlantic coasts [15]. However, wave energy harvesting appears to be
promising in specific Mediterranean areas, even though the exploited wave power is not as
significant as in the open seas [6].

A notable characteristic of the beneficial aspects of WECs in the Mediterranean Sea is
the fact that there are many islands, which complicate the decarbonisation of the Mediter-
ranean countries. Most islands are tourist destinations with high energy land demand, so
the exploitation of renewable sources, such as wind and solar, is a challenge indeed. Hence,
in high or moderate wave energy potential islands, nearshore and offshore wave energy
harvesting could be the solution of green energy production, increasing the contribution of
the renewables in the energy mix and boosting the decarbonisation of the islands. More-
over, high solar and wind intermittency is a severe problem for the islands’ energy safety.
Therefore, the installation of WECs could diminish this problem due to low variability and
easy predictability of wave power.

One of the most remarkable advantages of Mediterranean wave energy exploitation
compared to high energetic locations (open seas) is that extreme events occur more rarely
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due to the moderate wave climate. The survivability of WECs in the sea during their
operation is one of the most preeminent obstacles of the wave energy harvesting sector.
In open seas, the possibilities of extreme events are much higher, thus the damage risk
is much higher than in semi-enclosed seas. Considerable literature has been published
around the theme of wave energy exploitation in the Mediterranean Sea, with many re-
searchers focusing on extreme events and beneficial aspects of the Mediterranean moderate
wave climate. A notable example is the study of Besio et al. [6], who suggested that the
Mediterranean Sea is a region that appears to have promising wave energy resources
despite its lower levels compared to the open seas. Moreover, Liberti et al. [17] also pointed
out that in semi-enclosed seas with low wave energy potential, such as the Mediterranean,
the solution of the survivability issues could be much more feasible in comparison with
higher energy potential areas such as in the open seas. This occurs due to the fact that
higher energy potential locations entail more extraordinary wave conditions in extreme
events, posing serious design challenges of deployed WECs in these locations.

Several wave energy technologies have successfully been tested in environmental
conditions, supporting WECs feasibility in the Mediterranean basin. In addition, it is
worth underlying the fact that five different types of WEC have already been examined
without considerable problems. This means that the wave conditions allow wave energy
extraction by different technologies. In particular, the Wave Clapper, which is one of the
four different devices of point absorbers that have been deployed, has been installed in
two different areas. Three out of four point absorber devices, Wave Clapper, SP WEC
3rd Gen and SP WEC 4th Gen were installed in the breakwaters of ports, and the fourth,
PB3 PowerBuoy, was deployed offshore of Ravenna. The wave power of these point
absorbers varies between 3–36 kW, with the SP WEC 4th Gen being the most powered point
absorber that has been deployed in the whole Mediterranean. Furthermore, the number of
installed Wave Clappers is much higher than the other point absorbers since only one PB3
PowerBouy, two SP WEC 3rd Gen and two SP WEC 4th Gen are deployed.

In terms of the other types of investigated WECs in real conditions, the project of
integrated REWEC3 in the port of Civitavecchia is regarded as the most powerful. REWEC3
belongs to OWCs with installed wave power of 2500 kW, a value much higher than that
of the rest of the technologies. The following more powerful device is ISWEC (100 kW)
deployed in the island of Pantelleria. Two different ISWEC devices have been deployed:
one has twice the power of the second. In addition, ISWEC is one of the two WEC
technologies in the Mediterranean that was installed offshore. The second WEC is PB3
PowerBouy, with 3 kW, which means much lower power.

Moreover, OBREC has low power, 8 kW, and it is the only of the examined devices
installed in a relevant environment, which means that the exploited wave energy is fore-
seeably low. One last point worth mentioning is that the onshore, nearshore and offshore
WECs have been tested in the Mediterranean Sea. Undoubtedly, the cases of onshore
devices outnumber them despite the operation of one nearshore WEC (H24) and two
offshore WECs (ISWEC and PB3 PowerBouy).

6. Conclusions and Recommendations

A detailed review of wave energy resource assessment and an overview of the state-
of-the-art of deployed WECs in real environmental conditions in the Mediterranean Sea
have been presented in this study. Furthermore, several primary studies, which focused
on different wave energy issues in the Mediterranean are discussed. The main focus of
these studies were the ongoing trends, the examination of WECs in combination with other
renewable sources, the utilisation of WECs for desalination, and the prospects of wave
energy in the Mediterranean islands and ports.

To the best of the authors’ knowledge, this paper is the first comprehensive study that
reports recent significant developments in the wave energy sector in the Mediterranean
countries. The large body of literature that was analysed illustrates the considerable efforts
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that have been conducted and the attempts of academic and business research to investigate
the possibilities of WECs in the Mediterranean Sea. The most important conclusions are:

• Several studies have broadly assessed the wave energy potential in the Mediterranean
Sea; some focused on specific locations and some on the entire basin.

• Italy is the Mediterranean country where the most WECs have been deployed. The
countries with at least one tested WEC are Greece, Israel and Gibraltar.

• Some studies relate wave energy exploitation to water desalination, coastal areas
protection and sustainability of the Mediterranean countries.

• The question of which WECs could benefit the Mediterranean ports and islands with
moderate or high wave energy potential has been broadly investigated.

• Projects about the expansion of facilities, construction and deployment of new tech-
nologies have been announced.

As concerns the deployed WECs:

• The installed WECs fall in the categories of overtopping device, OWC, rotating mass,
point absorber and others.

• The point absorber is the most commonly installed type of WEC.
• Onshore WECs account for the majority of WECs which have been tested among

onshore, nearshore and offshore devices.
• The installed power of the several deployed WECs in the Mediterranean Sea varies

between 3–2500 kW.
• SP WEC 4th Gen, SP WEC 3rd Gen, Wave Clappers and ISWEC have all been suc-

cessfully deployed twice, with the latter two installed in a different environment the
second time.

• Photovoltaics panels were integrated on the WECs Wave Clappers in Israel and
Gibraltar, and ISWEC in Ravenna.

The developments on the wave energy assessment and the real environmental testing
of WECs is clear. However, the current maturity of the WECs and their high constructive,
operational and maintenance cost are a barrier to exploit a non-profitable yet commercial
energy source in contrast to other renewable energy sources in the Mediterranean. Hence,
in order for wave energy to be economically viable, broadly exploited and to contribute
significantly to the energy mix of the Mediterranean countries, more developments need
to occur in the wave energy sector, and more research funds should support efforts to
commercialise WECs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
0.3390/en14164764/s1, Table S1: implemented numerical wave models in the assessment of wave
energy potential.
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