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Abstract: Environmental contours of extreme sea states are often utilized for the purposes of
reliability-based offshore design. Many methods have been proposed to estimate environmental
contours of extreme sea states, including, but not limited to, the traditional inverse first-order
reliability method (I-FORM) and subsequent modifications, copula methods, and Monte Carlo
methods. These methods differ in terms of both the methodology selected for defining the joint
distribution of sea state parameters and in the method used to construct the environmental con-
tour from the joint distribution. It is often difficult to compare the results of proposed methods
to determine which method should be used for a particular application or geographical region.
The comparison of the predictions from various contour methods at a single site and across many
sites is important to making environmental contours of extreme sea states useful in practice. The
goal of this paper is to develop a comparison framework for evaluating methods for developing envi-
ronmental contours of extreme sea states. This paper develops generalized metrics for comparing the
performance of contour methods to one another across a collection of study sites, and applies these
metrics and methods to develop conclusions about trends in the wave resource across geographic
locations, as demonstrated for a pilot dataset. These proposed metrics and methods are intended
to judge the environmental contours themselves relative to other contour methods, and are thus
agnostic to a specific device, structure, or field of application. The metrics developed and applied
in this paper include measures of predictive accuracy, physical validity, and aggregated temporal
performance that can be used to both assess contour methods and provide recommendations for
the use of certain methods in various geographical regions. The application and aggregation of the
metrics proposed in this paper outline a comparison framework for environmental contour methods
that can be applied to support design analysis workflows for offshore structures. This comparison
framework could be extended in future work to include additional metrics of interest, potentially
including those to address issues pertinent to a specific application area or analysis discipline, such
as metrics related to structural response across contour methods or additional physics-based metrics
based on wave dynamics.

Keywords: environmental contours; extreme sea state characterization; predictive accuracy; physical
validity; comparison framework

1. Introduction

Environmental contours of extreme conditions utilize existing historical data to pre-
dict expected behavior for a given return period of interest (e.g., 25 years). This return
period is commonly linked to a design life for which an engineering system is expected
to survive with a certain probability. The environmental contours define combinations
of environmental conditions that can be used to predict the most extreme design loads
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for this design life. As the period of record of historical data can often be on the same
order as the design life, the construction of environmental contours generally requires the
extrapolation of a finite data set to estimate the possible values of additional observations.
This projection utilizes the principles of probability and statistics to develop a prediction of
future environmental behavior.

Environmental contours of extreme sea states are used to predict extreme conditions
experienced by systems deployed in marine environments. This practice is employed
for ships [1], offshore oil and gas structures [2,3], offshore wind turbines [4–6], and wave
energy converters (WECs) [7–10]. Often, the use of an environmental contour within a
design load analysis is either recommended or even specified by a design guideline or
standard (see, e.g., [11–14]). While it can also be useful to make predictions over some large
area (e.g., the North Pacific), it is generally more desirable for engineering applications
to make predictions for a specific site (e.g., the prospective location for an offshore wind
farm). The ocean environment is particularly difficult to predict, as trends and methods
that appear to work at a single site often fail when applied to sites with different physical
and environmental characteristics. Additionally, long-term periodic variations, such as
the El Niño/La Niña, can extend the requirements for periods of record. Sea states, short
term descriptions of the wave field at a specific site, are often characterized by significant
wave height (Hs) and wave period, where wave period may be described by zero-crossing
period (Tz), mean period (T̄), energy period (Te), and peak period (Tp)1, depending on
the application and industry preferences. See [15] for precise definitions of these different
spectral periods. These sea state metrics are calculated using spectral measurements of
ocean waves and describe the behavior of the marine environment at a given location over
a time period of interest (e.g., 1 h). Environmental contours of extreme sea states generated
using Hs and Te can be used to provide inputs for both numerical simulations or physical
model testing to analyze the design response of offshore structures (see e.g., [9]).

Many methods have been proposed to generate environmental contours of extreme sea
states. These methods differ in terms of both the methodology selected for defining the joint
distribution of sea state parameters and in the method used to construct the environmental
contour from the joint distribution. The first and most commonly applied of these methods,
the inverse first-order reliability method (I-FORM), was pioneered by Haver and Winter-
stein [16,17]. An alternative to the I-FORM approach is to simulate sea states based on a
joint probability model, until a sufficient number of extremes have been observed to define
higher percentile returns (e.g., 50-year waves) [18]. This style of method is often referred to
as a Monte Carlo approach and was further studied and compared to I-FORM contours
in [19]. A useful comparison of the I-FORM and Monte Carlo analyses was performed
by [20]. Copula methods have also been proposed in conjunction with the I-FORM method
to characterize the relationship between the marginal distributions of sea state variables
for the production of environmental contours [21,22]. The use of kernel density estimation
(KDE) was introduced as a method for generating environmental contours by [23] and
has been further explored in other studies [24,25]. A method for deriving environmental
contours to enclose the highest density region of a probability density, termed the highest
density contour (HDC), is proposed in [26]. Moreover, Manuel et al. [27] considered the
performance of both parametric and nonparametric environmental methods using the
I-FORM contour construction approach in terms of uncertainty and dependency on the
amount of data available. The I-FORM method is compared to a method developed using
inverse second order reliability method (I-SORM) for generating environmental contours
of extreme sea states in [28]. Additionally, contour construction methods are rigorously
described and compared in [29]. A useful survey of methods, including a detailed expla-
nation of the theoretical basis for different contour methods and practical guidance, was
performed by Ross et al. [30].

1 Peak period is generally a less robust measure of wave period in real ocean sea states, where a single dominant peak can be ill-defined. Nonetheless,
peak period does maintain some use among many practitioners, due, perhaps, to historical precedence.
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Although many methods have been proposed to generate environmental contours of
extreme sea states, it is often difficult to compare these methods, as results are presented
for a limited number of sites. In addition, contour examples throughout the literature
are often presented without the underlying sea state data used to generate them. This
makes it difficult to assess the performance of a proposed contour method in comparison
to contour methods that are already available. It is also not straightforward to quantify the
performance of a contour; while it is intuitively understood that the contour should neither
fit the empirical data too closely or too loosely, this does not provide an obvious quantitative
metric for assessment. Furthermore, the many design specifications and guidelines use
return periods on the order of 50–100 years [11–13], meaning that a great deal of data must
be collected prior to assessing whether this predicted contour has provided an accurate
representation of the most extreme sea states. Even if enough data are available to validate
a contour, a single comparison of a predicted contour to sea state data may not be sufficient
to assess a method’s performance. A contour method’s performance might change across
time or be sensitive to small changes in the underlying data.

A recent study by Vanem et al. [31] considered the affects of various sampling and
fitting approaches on the uncertainty in environmental contours. The study employed both
synthetic datasets (drawn from known distributions) as well as hindcast datasets, where the
wave conditions were simulated based on wave data. Similarly, a study presented by Hiles
et al. [32] reviewed methods for analyzing extreme metocean data including environmental
contour methods, and applied these methods to a case study of the Canadian Pacific coast
to produce a spatial analysis of extreme wave conditions. Another ongoing effort is a
cooperative benchmarking exercise in which researchers have come together to present
their environmental contour methods [33].2 This effort employs wave datasets from three
National Data Buoy Center (NDBC) buoys operated by the U.S. National Oceanic and
Atmospheric Administration (NOAA), along with three wind and wave datasets from the
coastDat-2 hindcast [34]. A set of common comparison methods for this benchmarking
exercise, including qualitative approaches as well as quantitative approaches, was proposed
in [33].

The goal of this paper is to develop a comparison framework for evaluating envi-
ronmental contours of extreme sea states. This paper develops generalized metrics for
comparing the performance of contour methods to one another across a collection of study
sites, and applies these metrics and methods to develop conclusions about trends in the
wave resource across geographic locations, as demonstrated for a pilot dataset. The metrics
developed in this work are targeted at providing a relative means of judging environmental
contour methods. The application and aggregation of the metrics proposed in this paper
outline a comparison framework for environmental contour methods that can be applied
to support design analysis workflows for offshore structures. This paper is organized as
follows. Section 2 lists the contour methods selected for study, with mathematical details
provided in order to specify which variations of contour method categories are utilized.
Section 3 describes the metrics developed to compare the predictive accuracy, physical
validity, and aggregated temporal performance of contour methods at a single site and
across many sites. Section 4 presents the data source and the method for selecting the study
sites of interest analyzed in this paper. Section 5 gives the results of the comparison study,
including the overall behavior of contour methods, local comparisons, and generalizable
trends. Section 6 provides concluding remarks and areas of future study.

2. Selected Contour Methods

A subset of extreme sea state contour methods was selected for study to pilot the
comparison metrics developed and presented in this paper. This subset of methods can
be divided into two groups; parametric contour methods and non-parametric contour

2 A repository of the data used in this benchmarking exercise and code for reproducing the results or performing an analyses on new contours is
available online: https://github.com/ec-benchmark-organizers/ec-benchmark.

https://github.com/ec-benchmark-organizers/ec-benchmark
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methods. The parametric contour methods all use the I-FORM approach to ultimately
estimate the contours; however, they differ in how they define the joint distribution of Hs
and Te. Several methods for defining the joint distribution were considered, including the
traditional I-FORM method [35], the modified I-FORM using principal component analysis
(PCA) [36], and the Gumbel and Clayton copula methods [22,27]. Each of these methods
use parametric probability distribution fits to determine the joint distribution of sea state
variables and are described in Section 2.1. Non-parametric contour methods, limited in this
study to a method using kernel density estimation (KDE), do not require parameterized
probability distributions to model this joint distribution. These methods also do not require
the use of the I-FORM to generate contours; instead, they estimate contours directly from
the joint probability distribution. This is described in Section 2.2.

In addition to the separation of the contour methods based on the method for defining
the joint distribution, this separation also respects the difference in terms of the method
used for constructing the environmental contour from the joint distribution. Various
contour construction methods are discussed and compared in [29]. As is mentioned above,
the parametric contour methods under study in the current work use the I-FORM contour
construction approach. The non-parametric contour method under study uses the HDC
method for contour construction. As is discussed in [29], the use of these differing contour
construction methods leads to a difference in the interpretation of the contours themselves.
The implications of these interpretive differences are not examined in the current work, as
contours utilizing various construction methods are regularly compared directly for use in
regular engineering practice. However, including this difference more rigorously in the
comparison of contour methods remains an important area of future work that is noted for
this study.

Environmental contours resulting from calculations using all five methods under
consideration at a single study site are shown as an example in Figure 1.

2.1. Parametric Contour Methods

Four commonly used parametric contour methods were chosen for comparison in this
study: the traditional I-FORM method, the modified I-FORM using PCA [36], the Gumbel
copula method, and the Clayton copula method. These contour methods have all been
implemented in the open-source WEC Design Response Toolbox (WDRT) [37].3 While all
four methods use the I-FORM approach to generate environmental contours, they differ
in the assumptions that are required to generate a joint distribution for Hs and Te. An
overview of the assumptions for each method is provided below.

2.1.1. Traditional I-FORM Method

The traditional I-FORM method for generating extreme sea state contours was first
proposed and then refined by Haver and Winterstein [16,17]. The implementation of the
traditional I-FORM method in the WDRT uses similar steps for the construction of the joint
distribution of Hs and Te, as given in [14,39]. This implementation differs slightly from
these formulations in the functions that are used to fit the parameters of the lognormal
distribution as a function of Hs as a part of the construction of the conditional distribution.
A two-parameter Weibull distribution (Equation (1)) is first fit to Hs using maximum
likelihood estimation:

fHs(h) =
δ

α

(
h
α

)δ−1
exp

(
−
(

h
α

)δ
)

(1)

where α and δ are the scale and shape parameters of the distribution, respectively.

3 WDRT is currently being incorporated as a module within MHKiT [38].
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Figure 1. Twenty-year environmental contours of extreme sea states calculated for all five contour methods of interest using
15 years of data at study site National Data Buoy Center (NDBC) 46022.

The Te values are then binned based on their corresponding Hs values, and a condi-
tional distribution of Te given Hs is fit to a lognormal distribution with parameters µ and σ
estimated through a least squares procedure for the following fitting functions, where a
and b are least square regression coefficients:

fµ(Hs) = a1 + a2Hs + a3H2
s (2)

fσ(Hs) = b1 + b2Hs + b3H2
s (3)

The formulation for the distribution coefficients above was explored and presented
in [27] and, as described above, differs from the formulation given in [14,39].

The conditional distribution of Te given Hs is then given by:

fTe |Hs(t|h) =
1√

2π fσ(h)t
exp

(
−1

2

(
ln t− fµ(h)

fσ(h)

)2
)

(4)

The marginal distribution of Hs and the conditional distribution of Te given Hs are used in
the I-FORM process to calculate an environmental contour.
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2.1.2. Modified I-FORM with PCA

The modified I-FORM with PCA, as detailed in [36], uses PCA to rotate the pairs of Hs
and Te into a new orthogonal basis in which two new variables, C1 and C2, are uncorrelated.
An inverse Gaussian distribution (Equation (5)) is first fit to C1, with parameters estimated
through maximum likelihood estimation:

fC1(x) =
(

λ

2πx3

)1/2
exp

(
−λ(x− µ)2

2µ2x

)
(5)

where µ and λ can be interpreted as representing the location and scale of the inverse
Gaussian distribution.

C2 values are then binned based on their corresponding C1 values, and a conditional
distribution of C2 given C1 is fit to a normal distribution with parameters estimated through
a least squares procedure for the following fitting functions, where β and γ are least squares
regression coefficients:

fµ(C1) = β0 + β1C1 (6)

fσ(C1) = γ0 + γ1C1 + γ2C2
1 (7)

The marginal distribution of C1 and the conditional distribution of C2 given C1 are
used in the I-FORM process to calculate a contour, and the points along the contour are
then back-transformed into the original data space.

2.1.3. Gumbel and Clayton Copulas

Copula methods [22] create a joint distribution for Hs and Te by fitting a marginal
distribution for Hs, and then fitting a conditional distribution of Te given Hs using a
dependence structure that is based on the choice of copula. The Gumbel copula uses the
following form for the conditional distribution:

CTe |Hs(t|h) = C(t, h)
[(− ln h)θ + (− ln t)θ ]−1+ 1

θ (− ln h)θ−1

h
(8)

where θ is a parameter related to Kendall’s Tau correlation measure, and C(t, h) is the joint
distribution of the Clayton copula, as defined in [22]. The Clayton copula uses a conditional
distribution of the form:

CTe |Hs(t|h) = h−1(1+θ)(h−θ + t−θ − 1)1+ 1
θ (9)

where, again, θ is a parameter related to Kendall’s Tau correlation measure, and C(t, h) is
the joint distribution of the Clayton copula, as defined in [27].

Similar to the traditional I-FORM and PCA methods, the marginal and conditional
distributions are then used in the I-FORM process to generate the environmental contour.
While there are many copula methods that can be used to specify the conditional distri-
bution, the Gumbel and Clayton copulas were chosen as illustrative examples. Recently,
Vanem [40] showed that traditional copula methods can perform poorly when applied
to sea state data because the copula methods assume that the data is radially symmetric.
Rodriguez [41] provides a useful summary of copula methods, including those applied
here, with a particular focus on their differing tail dependence. As such, relatively poor
copula performance was seen in this study (see Section 5). While there are methods to
adjust the copulas to deal with asymmetric data, the goal of this study was to develop
metrics for comparing environmental contours; thus, it was beneficial to include methods
with varying levels of performance.
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2.2. Nonparametric Contour Methods

The contour methods described above require a parametric probability distribution to
be fit to the marginal or conditional data. It can be difficult to find a parametric approach
that is flexible enough to adequately model the sea states at a wide variety of sites, because
the underlying structure of the data across multiple sites can vary drastically (in, e.g., period
of record, data fidelity, local weather patterns, local bathymetry). Consequently, it is of
interest to consider nonparametric methods to model extreme sea state contours for a
variety of locations. The contour construction method utilized for the contour method
using a nonparametric joint distribution is the HDC method.

2.2.1. Kernel Density Estimation

A commonly used nonparametric approach for defining the probability distribution
of data is kernel density estimation (KDE) [42,43]. A KDE can be thought of as a smoothed
histogram, where kernel functions are used in the place of histogram bins. Kernel functions
are evaluated across the domain of the data, X, creating a small density curve around each
data point. The resulting density curves are then summed to obtain an overall estimate of
the density of the data. A kernel function K(x) is a function such that:∫ ∞

−∞
K(x)dx = 1. (10)

The univariate kernel density estimator can then be defined as:

f̂ (x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
, (11)

where h is the bandwidth that serves as a smoothing parameter for the kernel estimate and
x1, x2, ..., xn are the n data points. The extension to the bivariate case is straightforward,
as shown in Equation (12), and can be extended into higher dimensions. KDE allows the
joint distribution of Hs and Te to be estimated directly from the data, without parametric
assumptions and without the need for specifying marginal and conditional distributions.

f̂ (x1, x2) =
1
n

n

∑
i=1

K1

(
x1 − x1i

h1

)
K2

(
x2 − x2i

h2

)
(12)

2.2.2. Kernel and Bandwidth Selection

It has been shown that the KDE is not sensitive to the choice of kernel [44]. Because of
this, the commonly used Gaussian kernel was chosen, as defined by:

K(x) =
1√
2π

exp(−x2/2) (13)

Kernel methods often utilize the same kernel across the domain of interest with an
optimal kernel selected by fitting the sample data. This means that while the kernel-
like does a good job of representing high density areas, representation of the tails of the
distribution may not be as appropriate. This may be problematic relative to the field of
environmental contour construction as this relies on extrapolation in extreme regions to
generate a contour. While it is beyond the scope of the current study, future work could
examine the performance of kernels at the boundaries of the data to improve contour
development.

While the KDE is not particularly sensitive to the kernel, it is sensitive to the choice
of bandwidth. The bandwidth serves as a smoothing parameter as it controls the width
of the density curves around each data point. As the value of the bandwidth increases,
so does the smoothness of the KDE. It is also important to note that the behavior in the
tails of the distribution can change with bandwidth. In the case of the oversmoothed KDE,
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non-zero probability is given to a wider range of X values than the undersmoothed KDE.
With larger samples, this difference may not be as pronounced, but it emphasizes that the
choice of bandwidth can affect the resulting environmental contour.

Since the density of the sea state data generally varies across the range of Hs and
Te values, it can be difficult to find a bandwidth that provides a reasonable amount of
smoothing. A method for calculating environmental contours of extreme sea states using
KDE with adaptive bandwidth selection was proposed in [23]. The use of KDE to generate
environmental contours of Hs and wind speed was further explored in [24], which deter-
mined that a KDE with a constant bandwidth rather than an adaptive bandwidth estimate
could achieve good contour results when compared to traditional methods. Further explo-
ration of the methods suggested in [23] with a larger number of study sites led to the same
conclusion regarding a constant bandwidth KDE, as presented in [24]. Thus, a constant
bandwidth was selected for use in the KDE contours presented in this study. A rule of
thumb bandwidth suggested by [42] was used for this study, and is given by:

hi =

(
4

d + 2

) 1
d+4

n
−1

d+4 σi (14)

where d is the number of dimensions, n is the number of data points, and σi is the standard
deviation of the ith variable. While a fixed bandwidth was used, the metrics defined in this
paper can be used to assess contour performance relative to the choice of bandwidth.

3. Comparison Metrics

The five contour methods described in Section 2 were chosen to exercise the compari-
son metrics that are discussed in the following sections. These metrics focus on assessing
three key aspects of environmental contours: predictive accuracy, physical validity, and
aggregated temporal performance. Given that a definition for a perfect contour is elusive,
these metrics are targeted at providing relative, not absolute, means of judging environ-
mental contours. The metrics and methods proposed in this paper are intended to be
agnostic to the device, structure, or application field of interest and are thus not directly
tied to any specific device response. This allows the contour methods to be compared
directly in a structured comparison framework prior to their use as inputs in a structural
design workflow.

3.1. Predictive Accuracy

The purpose of environmental contours of extreme sea states is to predict future sea
state behavior. Thus, the usefulness of a particular contour method should be measured by
providing a quantitative estimate of this predictive accuracy. Predictive accuracy can be
estimated by calculating an environmental contour using a subset of historical data and
then comparing this calculated contour to the true behavior, as measured in the remainder
of the data set.

The predictive accuracy metric is estimated by comparing the closeness with which
the n-year contour captures n years of data and it can be approximated by calculating
the overlapping area shared by the contour and the data. Empirical contours of the data
were approximated by a polygon estimated using the outermost points of the data set
using the shapely package in Python. This approach for constructing empirical contours
is akin to an HDC method, where the contour is constructed to contain the full data
density without overinflation. A binning approach is used to enforce this by allowing
the contour to follow the data, even in regions of concavity in which a convex contour
representation would misrepresent the data density. Although the method for finding
the empirical contour of the data has some sensitivity to tuning parameters, the contour
is a reliable estimate of the area covered by the n-year data set. It is important to note
that this method of contour construction also differs from the various underlying contour
construction methods described for each of the contour methods under study (see, e.g., [29]
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for an excellent discussion on the exceedance probabilities of differing contour construction
methods).

Following the definition of the empirical contour of the n-year data set, the overlapping
area of the n-year environmental contour can be determined. This area is defined by the
intersection between the empirical contour of the data and the predicted environmental
contour. The area of this polygon can be calculated using principles of geometry. The
shapely package was applied to both find the intersection of the two contours and to
calculate the area of this intersection.

A notional example of the comparison of an empirical contour and a predicted envi-
ronmental contour, along with their overlapping area, is shown in Figure 2. This notional
comparison of the empirical data contour and the calculated environmental contour must
now be transformed into a quantitative metric for comparison. The goal of this study is
to both develop metrics for assessing the predictive accuracy of methods for calculating
environmental contours of extreme states and to compare the results of this assessment
across many sites. The comparison of the overlapping area of the n-year environmen-
tal contour with the empirical contour of n years of data across many sites requires a
normalized metric that is not skewed by the magnitude of the sea states observed at a
given site. This normalized metric is calculated using the sum of two ratios: the ratio of
the overlapping contour area with the empirical data-based contour, and the ratio of the
overlapping contour area with the predicted contour. This metric, hereafter referred to as
the overlapping ratio, or OR, is defined as:

OR =
1
2

[
Overlapping Contour Area
Area o f Empirical Contour

+
Overlapping Contour Area
Area o f Predicted Contour

]
(15)

If a contour has good predictive accuracy, both ratios in the OR sum should be close to 1.
Therefore, an OR value close to 1 represents a contour that has high predictive accuracy.
Conversely, if the OR value is close to 0, the contour has low predictive accuracy.
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Overlapping 
steepness area

Predicted
contour

Empirical
contour

Samples

Overlapping 
contour area

Figure 2. Notional example showing the comparison of the predicted contour (solid blue line), the empirical contour of the
data (blue dashed line), and the breaking steepness curve (solid green line) along with the overlapping contour area (red
shaded area) and the overlapping steepness area (green shaded area).
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3.2. Physical Validity

Environmental contours of extreme sea states are often scrutinized for inaccurate
representation of the possible wave environment that could be observed in the future. Many
environmental contours cover areas of the Hs-Te space that are not physically possible due
to the breaking steepness (defined as the ratio of height to wavelength: S = H/L) of ocean
waves. Waves with a large steepness (i.e., large amplitude and short period), will quickly
become unstable and break (see, e.g., [45]). Employing the deep water dispersion relation
to relate wave period and wavelength, the breaking steepness can be expressed in terms of
wave height and period: S = 2π H

gT2 . While the precise steepness at which wave breaking
occurs varies, depending on currents, winds, and other factors, empirical observations
show breaking steepnesses of 1/25 < S < 1/10 when defining S for a sea state (see,
e.g., [14,45]). However, since contour methods are generally statistical in nature, contours
can often be inflated in this non-physical wave breaking space. This non-physicality of
many contour methods weakens their use as inputs to simulations assessing the stability of
marine structures. As noted by Mackay and Jonathan [46], one potential solution to this
issue is a transformation of the variables so that the contour can be defined based on, e.g.,
Hs and S.

The overlapping area of the environmental contour and the estimated breaking steep-
ness curve (here, we use S > 0.07 to signify breaking), serves as a quantitative estimate
of this non-physical contour behavior. Similar to the calculation presented in Section 3.1,
the overlapping area of the environmental contour with the steepness curve is defined by
the intersection of these two curves. The area of this intersection is also calculated using
the polygon features available in the shapely Python package. A notional example of the
overlapping area of the environmental contour and the breaking steepness curve is also
shown in Figure 2.

Once again, the overlapping area of the environmental contour and steepness curves
is normalized by the area of the contour to allow for comparison of this metric across study
sites. This metric, hereafter referred to as OSP, is calculated as:

OSP = 1− Overlapping Steepness Area
Area o f Predicted Contour

(16)

If a contour has good physical validity, the overlap of the breaking steepness curve with
the environmental contour will be small, meaning that the OSP will be closer to 1, as given
in the formulation above. Conversely, the smaller the value for the OSP, the greater the
overlap of the breaking steepness curve with the environmental contour, indicating a lack
of physical validity.

3.3. Temporal Aggregation

One important consideration for the aforementioned comparison metrics is that they
can vary over time for a single site. Therefore, this paper uses a validation set approach [47]
to aggregate the performance of contour methods across time as described by the predictive
accuracy and physical validity metrics given in the preceding sections. In this approach,
the first step is to divide the data into training and validation sets. The training set is
used to fit the model (in this case, the environmental contour method) and the validation
set is used to assess the performance of the model. The data are broken up into several
training and validation sets and the model is assessed multiple times. The results are then
combined to get an overall estimate of a method’s performance. The typical validation set
approach requires randomly dividing the data into training and validation sets. However,
as environmental sea state data are collected across time, the time series nature of the data
is used to define the sets.

Figure 3 provides a visual representation of the time-dependent training and vali-
dation sets and the steps for the process are given as follows. Consider a buoy that has
collected 20 years of historical sea state data. Using the first year of data as a training set,
an environmental contour of extreme sea states is calculated with a return period of 5 years.



J. Mar. Sci. Eng. 2021, 9, 16 11 of 24

This predicted environmental contour is then compared to the entire 5-year historical data
set (the validation set). A comparison metric (i.e., the OR or the OSP), denoted in Figure 3
as p1, is estimated.

Figure 3. Notional example of forward chaining cross validation process. The training set is shown in orange, while the
validation set is shown in red.

Next, the first 5 years of data are used as a training set to estimate an environmental
contour with a return period of 10 years. A second comparison metric, p2, is calculated
by comparing to a validation set of the 10-year historical data. This process is repeated
twice more, once with using 10 years of data to predict a 15-year contour and finally using
15 years of data to predict a 20-year contour. The estimated metrics (pi, i = 1, ..., 4) are then
averaged to give an overall comparison metric for the contour method at that site. This
calculation can be extended to any site at which enough historical observations have been
collected to provide a subset of data that can be used to calculate an n-year contour for
comparison to n years of data. This method for aggregating assessment metrics across time
could further be extended to include additional metrics beyond the measures of predictive
accuracy and physical validity proposed in this paper.

An alternative approach to characterizing temporal sensitivity could utilize the boot-
strap method. This approach has been used in the EC Benchmark study [33] and in other
previous contour studies; see, e.g., [23,27,31,40]. However, the forward chaining approach
has been proposed in this work as a novel method of making comparisons temporally
across various training and test sets with potentially fewer and faster calculations than
might be required under the bootstrap method.

4. Data Collection and Study Sites

The sites selected for study in this paper are buoys deployed and maintained by the
National Data Buoy Center (NDBC). NDBC buoys are located in coastal regions and in large
bodies of water around and throughout the United States. Hourly spectral energy density
observations (from which Hs and Te may be calculated) are available for many NDBC
buoys. A subset of these sites was selected for analysis. This subset includes sites with a
long enough deployment such that enough observations are available for the predictive
accuracy calculations described in Section 3.1. For the purposes of this study, sites with at
least 20 years of data were selected.

The application of this work is intended to focus on coastal sites. Because of this
focus, the subset of 39 NDBC sites selected for analysis includes coastal regions only. While
NDBC buoys with sufficient data are available in, e.g., the Great Lakes, these were not
included in the present study.
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In addition to being geographically diverse, the behavior of waves across the sites
selected for this study varies dramatically. This variation serves as a test for contour
methods that have previously been developed using only single or a few sites of interest.
The buoys selected for this study are shown in Figure 4. In addition to showing the
locations of the buoys utilized in this study, Figure 4 distinguishes the region of each buoy
(Gulf of Mexico, Alaska, the U.S. East Coast and the U.S. West Coast).

Alaska East Coast Gulf West Coast

Figure 4. Map of NDBC buoys selected for analyses in this study with color coding to indicate region.

5. Aggregation of Results into a Comparison Framework

The following sections describe and present conclusions regarding the resulting com-
parison metrics calculated for the selected study sites. Section 5.1 presents the mean and
standard deviation of the calculated predictive accuracy and physical validity metrics for
each of the five contour methods. Section 5.2 gives overall comparisons for the contour
methods across all study sites. Section 5.3 compares results for each method across the
studied geographical regions, including the Gulf of Mexico, Alaska, the U.S. East Coast and
the U.S. West Coast. This aggregation of results and accompanying comparative analysis
outlines a comparison framework that could be applied for additional contour methods or
augmented to include additional metrics of interest.

5.1. Contour Calculations

Environmental contours of extreme sea states were calculated using the five contour
methods of interest discussed in Section 2 for all study sites. The predictive accuracy and
physical validity metrics discussed in Section 3 were calculated for each of these contour
methods at each site. These metrics were aggregated using the training and validation sets
of data described in Table 1, in order to assess the performance of contour methods across
time.

Table 1. Contour Comparison Training and Validation Sets.

Training Set (Years) Validation Set (Years)

1 5
5 10

10 15
15 20

Note that it may be of interest to assess contour methods for a particular training and
test set in order to meet design requirements describing an expected period of performance
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(e.g., 15 years of data used to predict a 25 year contour). In this case, the proposed
assessment metrics could be calculated for the training and test set of interest without
aggregation, using the method described in Section 3.3. For the purposes of the current
work, the results that follow include only the aggregated metrics, as the goal of this study
is to present a complete end-to-end workflow for assessment.

Table 2 provides the mean and standard deviation for each of the assessment met-
rics. The mean gives an overall indication of a method’s performance in relation to the
assessment metric, while the standard deviation provides an estimate of the spread of
results. A mean that is close to 1 indicates that the contour method has respectively high
predictive accuracy (OR) or high physical validity (OSP). A large standard deviation would
imply that the performance of that particular method greatly varies across different sites or
across time.

Table 2. Predictive Accuracy and Physical Validity Metrics for Contour Methods.

Method OR Metric OSP Metric Average (OR, OSP)

Mean SD Mean SD Mean SD
Traditional I-FORM 0.77 0.06 0.97 0.02 0.87 0.03
PCA/I-FORM 0.77 0.05 0.96 0.04 0.87 0.04
Clayton 0.72 0.06 0.89 0.06 0.81 0.05
Gumbel 0.72 0.07 0.90 0.05 0.81 0.05
KDE 0.81 0.04 0.95 0.02 0.88 0.03

An example of the complete set of contours calculated at a single site and their
corresponding graphical representations of the predictive accuracy and physical validity
metrics is shown in Figures 5–7. These examples show the 10-year environmental contour
predicted using 5 years of data at NDBC buoy 46022.

The following sections present and review the comparison metric results in two modes.
First, the overall results (across all sites) are compared for the different contour methods.
Second, a region-by-region comparison is performed.

The comparison metric results are presented using boxplots. Boxplots provide a
visual representation of the center and spread of the metric values. The solid line in the
center of the box is the median metric value and the lower and upper edges of the box
represent the 25th and 75th percentiles, respectively. The “whiskers” show the effective min-
imum and maximum metric values and any points that fall outside of the “whiskers” are
considered outliers.

It is important to note that the metrics and methods proposed in this paper present a
broad assessment of contour methods across many sites. It is still critical that engineering
judgement be applied to assess the validity of a contour method prior to use at a specific
site of interest. The comparison framework presented in this paper is not intended to
replace this engineering judgement, but is instead intended to support and augment the
design analysis process in an objective fashion that could be automated across many sites
to provide a comprehensive dataset to support the decision-making process.
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(a)

(b)

Figure 5. (a) Traditional I-FORM and (b) Modified I-FORM with PCA contours calculated for NDBC
46022 compared to empirical data contour (blue dashed line) and breaking steepness curve (green
dotted line) with a 10-year contour predicted using 5 years of data.
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(a)

(b)

Figure 6. (a) Clayton copula and (b) Gumbel copula contours calculated for NDBC 46022 compared
to empirical data contour (blue dashed line) and breaking steepness curve (green dotted line) with a
10-year contour predicted using 5 years of data.
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Figure 7. KDE contours calculated for NDBC 46022 compared to empirical data contour (blue dashed
line) and breaking steepness curve (green dotted line) with a 10-year contour predicted using 5 years
of data.

5.2. Overall Comparisons

The overlapping ratio (OR) (Equation (15)) for each contour method can be seen in
Figure 8. Recall that an OR value close to 1 implies that a contour has high predictive
accuracy. The results presented in Figure 8 show that the KDE method has the highest
median OR value, as well as the smallest amount of variability in the results across sites.
The Clayton and Gumbel copula methods have the lowest median OR values, while the
PCA and traditional I-FORM perform similarly, with less variability in the PCA contour
results. These results are demonstrated in the examples of each contour method shown
for NDBC 46022. For this site, the KDE method is the closest to the empirical data contour,
as shown in Figure 7. The remaining methods do not match the shape of the empirical
data contour and/or under- or overestimate the empirical data contour significantly in this
example.

Figure 9 shows the overlapping steepness area to the predicted contour metric (OSP)
(Equation (16)) for each contour method. Recall that an OSP value close to 1 would imply
that the contour method is accurately representing the physical boundary of the wave
environment. Overall, all but the copula methods have median values that are close to 1,
though the PCA method again has more variation in results. The copula methods show
a smaller ratio, which is likely caused by the relatively inflexible parametric structure of
the copula, which allows a larger area of the resulting contours to overlap the breaking
steepness line. These results are again demonstrated in the examples of each contour
method shown for NDBC 46022. The I-FORM, PCA, and KDE contours follow the breaking
steepness line more closely when compared to the copula contours (Figures 5–7).
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Figure 8. Overlapping ratio (OR) for each contour method. An OR value close to 1 implies that a contour has high predictive
accuracy. Boxes show interquartile range (IQR), whiskers show 1.5× IQR, outliers shown beyond 1.5× IQR.

The average of the OR and OSP metrics for each contour method is shown in Figure 10.
Both the OR and OSP metrics vary between 0 and 1, with 1 indicating good accuracy for
both metrics. Thus, the average of these metrics can be taken to describe the overall perfor-
mance of each contour method in both predictive accuracy and physical validity. If one of
these metrics is of greater importance for a given application, a weighted average could
be computed. However, for the purposes of this study, both the OR and OSP metrics are
given equal weight. The results shown in Figure 10 demonstrate that the copula methods
have the lowest median value for this average metric, with slightly greater variability in the
Clayton contour method results. The I-FORM and PCA methods perform similarly, with
median values closer to 1 than the copula methods and with similar variability. Finally,
the KDE method has the highest median value for the average metric and has the least
variability across all sites, although there are some outlying sites with lower values.
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Figure 9. Overlapping steepness to predicted ratio (OSP) for each contour method. An OSP value close to 1 would
imply that the contour method is accurately representing the physical boundary of the wave environment. Boxes show
interquartile range (IQR), whiskers show 1.5× IQR, outliers shown beyond 1.5× IQR.

The comparisons provided above could impact design analysis workflows for offshore
structures and the development of contour methods in several ways. First, the overall
comparisons could be used to assist in the selection of contour methods for consideration
in a design analysis. It may not be feasible for an analysis to consider any number of
contour methods as a first step; the down-selection of methods for consideration could be
a valuable first step in this process, particularly if more than the five methods presented
in this paper were available for use. Second, the results presented above could be used
to drive the development of additional contour methods or variations on the methods
presented herein. For instance, the performance of the copula methods in terms of the
OSP metric indicates that the expression of the joint distribution of Hs and Te for these
methods may miss some of the dependency of these parameters that encodes the physical
constraint of the breaking steepness curve. Thus, the development of similar methods
could focus on capturing this physical constraint as a part of the development of an expres-
sion of the joint distribution of the sea state parameters. Finally, the overall comparison
framework presented could be utilized to assess newly proposed contour metrics against
the methods that have previously been proposed. This would allow analysts to understand
at a high level whether newer methods should be considered for deployment in design
analysis workflows.
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Figure 10. Average of OR and OSP for each contour method. A value close to 1 would imply that the contour method
has high predictive accuracy and is accurately representing the physical boundary of the wave environment. Boxes show
interquartile range (IQR), whiskers show 1.5× IQR, outliers shown beyond 1.5× IQR.

5.3. Comparisons by Geographic Region

The predictive accuracy and physical validity metrics were also calculated for each
method by geographic region. Geographic regions were identified as the Gulf of Mexico,
Alaska, the U.S. East Coast, and the U.S. West Coast, as depicted in Figure 4.

The OR metric is shown for all five contour methods at each geographic region in
Figure 11. The results in this figure show that the traditional KDE has the highest OR
values, on average, across all regions. The Gulf of Mexico has the lowest average OR values
across most methods; the KDE method performs relatively well in this region though
there is more variability in the results across the gulf sites. The lowest average OR values
in the Gulf of Mexico are those calculated for the Clayton and Gumbel copula methods.
Alaska shows relatively low variability in the results per method, with the highest average
metric values calculated for the I-FORM and KDE methods. The East Coast and West Coast
regions perform similarly, with the copula methods performing worse on average than the
other methods.

The OSP metric for each region is shown in Figure 12. The West Coast region shows
the tightest grouping of overlapping steepness performances and also the best performance
for most of the contour methods (i.e., values of the OSP metric close to 1). Conversely,
the results presented for the Gulf of Mexico show the poorest OSP performance for most
methods and show the highest level of variability of overlapping steepness performance
amongst the regions of interest. The average performance and variability of the PCA
method in terms of the OSP metric differs significantly between the regions. The PCA
method clearly performs best in terms of the OSP metric in West Coast locations, both on
average and in terms of variability, but shows a great deal of variability for sites along the
East Coast. The Clayton and Gumbel copula methods have lower OSP metric values on
average than all of the other methods across all regions of interest.
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Figure 11. Overlapping ratio for each contour method by location. An OR value close to 1 implies that a contour has high
predictive accuracy. Boxes show interquartile range (IQR), whiskers show 1.5× IQR, outliers shown beyond 1.5× IQR.
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Figure 12. Steepness metric (OSP) by method and by geographic location. An OSP value close to 1 would imply that the
contour method is accurately representing the physical boundary of the wave environment. Boxes show interquartile range
(IQR), whiskers show 1.5× IQR, outliers shown beyond 1.5× IQR.
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The average of the OR and OSP metrics across the methods and regions of interest is
shown in Figure 13. As expected, this average metric generally follows the observations
presented for the OR and OSP metrics separately. The West Coast region has the best
overall performance for all contour methods, while the Gulf of Mexico has the poorest
performance overall.
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Figure 13. Average of OR and OSP by contour method and location. A value close to 1 would imply that the contour
method has high predictive accuracy and is accurately representing the physical boundary of the wave environment. Boxes
show interquartile range (IQR), whiskers show 1.5× IQR, outliers shown beyond 1.5× IQR.

The comparative conclusions across geographical regions drawn using these metrics
could impact design analysis workflows for offshore structures in several ways. First,
the differences in performance across regions indicate that geographical variations in the
wave resource should be considered as a part of any generalized design analysis. For
instance, based on these results, a methodology for developing environmental contours
of extreme sea states that is applied for an analysis of a site on the West Coast should not
be applied directly to an analysis performed for a site in the Gulf of Mexico withought
careful consideration and review. Second, the aggregated results presented could be used
to recommend contour methods for consideration at various sites of interest as a first step
in developing a workflow for design analysis. This could be a first step in down-selecting a
contour method to be used to predict extreme sea states for design purposes; this contour
method could be further refined depending on the requirements of the design analysis.
This supports an objective analysis of contour methods that could be automated to support
a faster design analysis workflow.

6. Conclusions

This paper presented a comparison framework for evaluating methods for developing
environmental contours of extreme sea states. Five environmental contour methods were
selected as candidate methods for evaluation under this comparison framework. Each
of these methods was used to calculate environmental contours of extreme sea states for
39 ocean locations, with sites from all U.S. coastal regions. In order to quantitatively evalu-
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ate the relative performance of these contours, a series of metrics investigating predictive
accuracy, physical validity, and aggregated temporal performance were developed and
utilized in a proposed comparison framework.

By evaluating the contour methods via these metrics, both across the bulk set of
sites and within specific geographic regions, this study has provided general performance
ratings for each method. These performance ratings could be used to compare and select
the best contour method to predict extreme sea states at a specific site or within a given
region for use in many application fields of interest. In addition, these performance metrics
could be used to evaluate the performance of newly proposed contour methods against the
methods that have previously been presented both in the literature and/or in the standard
of practice.

Future work could improve upon this study in a number of ways. With the metrics
developed here, a number of factors beyond geographic region which may affect contour
performance could be considered. For example, locations could be classified in terms of
local weather patterns (e.g., whether or not strong seasonal storms are present) or local
bathymetry (e.g., is the water sufficiently shallow to affect wave propagation). In addition,
this work could be extended to a wider set of contour methods and sites and could be
used to evaluate new methods for calculating environmental contours of extreme sea states.
The contour methods that are studied in this work utilize differing contour construction
methods, which may impact the approach that should be taken for evaluating the contours
against one another. This remains an important area of future work that is beyond the
scope of the current study.

Furthermore, additional metrics beyond those detailed in this work could be included
in the proposed comparison framework to provide greater insight into the performance
of environmental contours of extreme sea states. These additional metrics could include
those to address issues pertinent to a specific application area or analysis discipline, such as
metrics related to structural response across contour methods or additional physics-based
metrics based on wave dynamics.
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Abbreviations
The following abbreviations are used in this manuscript:

HDC highest density contour
I-FORM inverse first-order reliability method
I-SORM inverse second order reliability method
KDE kernel density estimation
NDBC National Data Buoy Center
NOAA National Oceanic and Atmospheric Administration
OR overlapping ratio
OSP overlapping steepness to predicted
PCA principal component analysis
WDRT WEC Design Response Toolbox
WEC wave energy converter
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