

Ocean Testing of a Wave-Capturing Power Buoy

Kate Edwards and Mike Mekhiche

10 April 2013

Objective

- Describe deployment of an Autonomous PowerBuoy[®] (APB) off the coast of New Jersey
- Summarize APB ocean performance
 - Overall ocean operation
 - Electric power output

The Company: Ocean Power Technologies

- Ocean-tested, proprietary technology for producing electrical power from ocean waves. 51 patents issued.
- 35 employees include engineers and scientists
- Commenced active operations in 1994. Headquarters in Pennington, NJ. Subsidiaries in Warwick, UK and Melbourne, Australia
- Listed on NASDAQ (symbol OPTT)

PowerBuoy[®] Schematic

- Converts linear motion of float along spar into electrical power to grid (utility systems) or to a payload (autonomous systems)
- OPT Autonomous PowerBuoy business unit focuses on opportunities in defense and homeland security, oil and gas operations and oceanographic data collection

Surface Float

Spar Containing Power Takeoff

Heave Plate Constraining Spar's Motion

LEAP Project

- Littoral Expeditionary Autonomous PowerBuoy
- Naval Undersea Warfare Center (NUWC) Keyport Contracting Officer's Representative (COR): Matt Binsfield
- Autonomous power source for HF radar payload requiring continuous power delivery independent of wave conditions
- Rutgers and CODAR: coastal radar network
- Completed 3-month ocean test off NJ (Oct 2011)

LEAP Location

6

LEAP Deployment

System Components

- **Power takeoff** Convert mechanical to electrical power
- **Power management** Regulate variable wave power: Store during high waves, deliver in low, dump excess.
- **Control algorithm –** Automate system functions
- **Data acquisition** Collect sensor measurements and transmit in real time. Input to control algorithm. Used in reporting.
- **Operator interface** Monitor and change parameters
- **Mooring system** Maintain station
- Wave measurements Collected with RDI Acoustic
 Doppler Current Profiler

OCEAN POWER TECHNOLOGIES

System Control

- Designed for full autonomous operation
 - Control algorithm governs power capture and delivery in high, moderate, and low waves
 - Careful regulation of battery arrays
- Minimal operator intervention after deployment

Operator Interface

- System monitoring
- Update system parameters if needed

OCEAN POWER TECHNOLOGIES 10

Measurements

- Data collected by sensors throughout PowerBuoy
- Measurements transmitted by satellite in near real-time
- Transmission was reliable and sufficient for test monitoring and reporting

Example of Reported Information

LEAP Power Capture

- LEAP peak power several orders of magnitude times its rated average output; reached 3.5kW
- Hourly averaged power up to 2kW, test average >500W
- Data composited to obtain a measured power matrix (power vs. sea state)

Payloads

Power Assessment

• Evaluation of power matrix

- Measured power matrix can be used to estimate power at any location given its wave climate
- Comparison with power prediction model for better understanding of model's performance and limitations

• Source of wave measurements

- Teledyne RDI ADCP deployed at LEAP ocean test site
 - Accurate wave data available at end of test
- Wave measurements from National Data Buoy Center (NDBC)
 - Provided real-time data from remote wave buoys for daily reporting

Sea States Observed during LEAP

Sea States Observed during LEAP

Wave States Observed during LEAP Ocean Test (*10⁴) Measured during LEAP Ocean Test (2.5 months)

- Goal: collect data in many different sea states in order to fill out power matrix used in power projections
- Need enough observations within a sea state for robust statistics

Expected Sea States at LEAP Site

Wave JPD for NDBC 44025, Hs Scaled ($*10^4$)

18 Years of Data

LEAP Power Delivery

- In low waves, powered payloads from battery
- Payload power delivery uninterrupted throughout ocean test

Where Power Was Delivered In Different Sea States

LEAP Payload Performance

- First wave-powered deployment of HF radar payload
- Radar transmission powered continuously during deployment, except for planned shutdowns for testing
- Radar signal received at all shore stations
- Design accommodates other payloads

LEAP Mooring

- Single-point mooring designed for survival wave and currents
- Mooring loads estimated with OrcaFlex (commercial software)

Position of PowerBuoy in Mooring Watch Circle

19

Hurricane Irene Track

- LEAP site 40 km from storm center
- Several NDBC buoys in area went offline

Source: NOAA National Hurricane Center

Survived Hurricane Irene

- Post-hurricane inspection: topside and mooring system down to anchor
 - No damage
- System provided power to payload during Irene

Upcoming Deployments

- After recovery, improvements to the system's electrical and mechanical design
- Product renamed APB-350
- Preparing to deploy an APB-350 this summer off New Jersey. To demonstrate multi-sensor capabilities, the system will carry two payloads, a HF radar as well as a subsurface sonar unit.
- OPT is working toward a future APB-350 deployment for Homeland Security

Conclusions

- Ocean test demonstrated manufacture, deployment, and functional performance of APB-350 design
- Autonomous power capture and continuous delivery of power to payload
- Compare measured and predicted power generation
- Better understanding of physical processes
- Measured power matrix used to estimate power generation at any site

PowerBuoy Design Workflow

Power Prediction Model

Site Power Projections

- Each sea state: time-averaged power from model
- Include efficiency of mechanical input to electrical output
- Combine with site wave climate to obtain annual average power

Site Wave JPD (x10⁴)

OCEAN POWER TECHNOLOGIES

27

Animation of Mooring Design Model

Energy in Waves

- Waves transport energy
- Sun warms Earth, winds blow, make waves
- Resulting motion of water that devices can capture
- Up and down (heaving)
- Back and forth (pitching and rolling)

From S. Gillman, USC

Recent PowerBuoy Activities

- Working with Lockheed Martin towards wave farm in Australia
- Contracted by Mitsui Engineering & Shipbuilding to develop PowerBuoy for Japanese sea conditions
- Formed Autonomous PowerBuoy business unit to focus on smaller stand-alone systems

