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Overview

* Modeling Frameworks

* Inviscid Models
 CFD

* SPH Formulation (GPUSPH - beta.gpusph.org)

* Ongoing Work
e Sub-Surface WECs




Conventional Frameworks

* Inviscid/Linear Models
 Computationally efficient
* Requires tuning
* Does not directly resolve viscous fluid flows

*CFD

* Mesh-based Eulerian Framework

* Utilizes mesh-morphing or arbitrary mesh
interfaces (AMI) for object interfaces

PH Lagrangian Framework




SPH Formulation
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SPH Kernel
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SPH Recap

¢é4 GPUSPH

* Smoothed Particle Hydrodynamics (SPH), a Lagrangian mesh-free
method. Some advantages include:
* Mesh-free means no explicit surface tracking
* Lagrangian explicit formulation
* Large Eddy Simulation (LES)

e Can couple with multi-physics engines
* Project Chrono

Project Chrono




General GPUSPH Examples
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GPUSPH Model Validation

(a) Time=338s

e Several validation studies exist |
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Wave gauge No. 5; (x, y) = (7.02, 0.00) m
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Model Validation Results
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Ongoing Work — Motivation and Goals

* Motivation
e Reduces surface expression

* Enhances survivability increasing Depth

of Submergence

e Reduction of Ship-WEC interactions
* More consistent wave forcing

e Reduction in power density

* Goals

e Understand the dynamics and power generation as a function of submergence
epth




Ongoing Work - Domain

Width in Y is Wave
2.5*flap width / Gages\y
. . d A H
* 3D domain with
Periodic BC 1/10 slope
* Arbitrary wavemaker PTO T = Cyqw

and wave profile
e Custom PTO and solid

body constraints ﬁ







Ongoing Work — Dual Flap
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Conclusion - GPU-based SPH

* Explicit formulation allows for B
parallel computing on GPU nodes

e GPU capacity is limited by DRAM
* Speed scales with GPU number at

~85% efficiency

NVIDIA GEFORCE RTX 2080 Ti GPU
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Single Node GPU Performance for Stillwater Case

=== Linear Increase for A40

- A40s with 16E6 Particles per GPU
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-~ A100s with 150E6 Particles per GPU

11GB GDDR6 Memory

FP32 performance: 13.4 TFLOPS

NVIDIA CUDA Cores: 4,352
~$500
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Conclusion

e Significant work still needs to be done especially in boundary
condition improvements

* SPH is powerful CFD tool for complex geometries outside the reach of
other frameworks

* Rapid advancement in GPU power will correlate directly to resolvable
domain and speed
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Questions?

* Thank youl!
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