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Abstract

The control of wave energy converters (WECs) to maximize power capture
is a challenging problem. In particular, the nature of the wave excitation,
which is in general panchromatic (ormulti-sinusoidal), presents a reciprocat-
ing energy source that needs to be rectified through somemeans. In addition,
the development of suitable control-oriented models is also challenging,
requiring correct representation of system hydrodynamics and power take-
off (PTO) components, while also lending themselves to control synthesis
and real-time computational performance, along with a challenging opti-
mal control problem. This article presents a moment-based mathematical
framework for the formulation and solution of WEC control. It shows
that moments are ideally suited to WEC control in terms of their abil-
ity to accurately characterize the nature of the wave excitation force (and
the consequent evolutions in the system variables) while also gracefully
including hydrodynamic and PTO nonlinearities as well as a natural ex-
tension to WEC arrays. Model reduction, to mold the system model into
a control-friendly form, is also a feature of this framework.
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1. INTRODUCTION

Wave energy converter (WEC) prototypes come in a wide variety of shapes and sizes and utilize
a variety of operating principles (2). While this makes it challenging to identify a generic case,
the common goal is to maximize harvested energy for a given capital and operational expenditure.
Effective control of WECs has been identified as a key challenge in mitigating climate change (3),
and various approaches to WEC control have evolved over the past half century (4). In addition
to the variety of prototypes and principles, the generality of the WEC control problem demands
a comprehensive toolset—able to deal with both linear and nonlinear system representations and
extensible to multibody, multi-degree-of-freedom (multi-DOF), and multi-WEC cases—while
maintaining the possibility for real-time implementation. In addition, the construction of a full
system mathematical model, suitable for control synthesis, is not an insignificant step, nor is the
customization ofmodels tomake them tractable, both analytically and computationally, for control
design.

EarlyWEC controllers, in essence, exploited the maximum power transfer theorem (5), where
ocean waves are assumed to be monochromatic, or a predominant single (monochromatic) fre-
quency can be identified within a panchromatic sea spectrum. Such controllers could be extended
to WEC arrays but could not effectively handle panchromatic (realistic) ocean waves or system
physical constraints (force, displacement, etc.), nor could they be extended to the nonlinear case.
Crucially, for manyWEC types, the action of control itself serves to broaden the operational space
and excite significant hydrodynamic nonlinearities (6).

Contemporary WEC controllers, beginning in 2010 (7), adopted an approach based on model
predictive control (8), thoughwith a bilinear power objective rather than the usual quadratic terms.
This gave the potential to effectively handle system constraints, and the predictive framework
could incorporate estimation and forecasting of the wave excitation force, now required in the
solution of the panchromatic WEC control problem.However, the bilinear cost term needs to be
regularized by suitable quadratic terms to convexify the optimization problem, and the incorpora-
tion of a nonlinear model further accentuated the issue. Also, the zero-order-hold representations
are a relatively poor fit for the continuously changing but smooth signals associated with ocean
waves, with relatively short sampling periods heightening computational demand. A potential
solution was provided by Cretel et al. (9), who utilized a first-order hold, also alleviating the
convexity issue, albeit with realization issues. However, a variety of recent techniques using var-
ious basis function representations, falling into the category of spectral/pseudospectral methods,
have shown promise (4, 8) and can, in fact, be shown to be a subset of the framework presented
here.

This article1 presents a moment-based mathematical framework for the solution of the WEC
and WEC array control problem, with the following advantages:

1. The fundamental nature of the system signals can be specified by a signal generator, chosen
to be multiharmonic, that provides a good match with ocean and ocean-derived system
signals.

2. Mainly as a result of the first advantage, the analysis focuses exclusively on the steady-state
behavior of the system, with no effort expended on the system transient response, which is
of little interest for this application.

1A preliminary version of this review was presented in a conference paper (1); the present article significantly
extends that paper by providing a detailed account of each of the elements within the framework, starting
from the theoretical background and including experimental implementation of moment-based control for
WEC systems.
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3. The moment-based WEC control techniques, initially developed for linear WEC models,
can be extended to cover hydrodynamic and power take-off (PTO) nonlinearities.

4. The methods can be seamlessly extended to cover multibody, multi-DOF, and multi-WEC
cases, with an increase in the dimension of the representation.

5. Moment-based analysis was initially popularized in the control community as a model re-
duction tool (10), facilitating the customization of WEC models for control synthesis and
providing a mechanism to achieve a trade-off between objective fidelity and computational
complexity for specific WEC cases.

6. Moment-based controllers have been robustified to cater to uncertainty in both the system
model and excitation force estimates (see Section 5.4).

7. A set of efficient mathematical tools are available to solve the optimization problems arising
from themoment-based representation, and real-timeWECcontrol has been demonstrated
for both single WECs and arrays of WECs (see Section 6).

In this review, R+ denotes the set of nonnegative real values, while C0 denotes the sets of
complex values with zero real part. If x ∈ Cn, then the notation x j ∈ C denotes the jth entry of
x. The notation λ(A), with A ∈ Cn×n, is used for the set of eigenvalues of A. The notation NK

is used for the set of natural numbers up to K, i.e., NK = {1, . . . ,K} ⊂ N. The symbol � is used
for the standard Kronecker product. The notation I is used for the identity matrix, where the
dimensions are always clear from the context. The direct sum of Nmatrices Ai ∈ Rn×n is denoted
as

⊕N
i=1 Ai = diag(A1, . . . ,AN ) ∈ RnN×nN .

2. AN OVERVIEW OF THE FRAMEWORK

Figure 1 provides an overview of the moment-based control design framework presented in this
article, which highlights both the specific approach taken in this framework to achieve energy-
maximizing moment-based control solutions and alternative paths to those described in this
article. For instance, one alternative path involves the use ofmoment-based linearmodel reduction
to generate linear control-oriented models that are suitable for a wide range of optimal control
procedures, based on user preference and experience (e.g., the techniques mentioned in Section 1).

In general, as can be appreciated from Figure 1, the framework is comprehensive, guiding
the user from the initial modeling stage to the experimental implementation of control strategies.
If the ultimate objective is that of control design and synthesis, a primary goal is to transform
the system model into a suitable form for model-based control and estimation procedures.While
data-driven or data-based models can often be parameterized to meet the requirements of model-
based WEC control design (informing the modeling stage with respect to the main requirements
for control-oriented applications), physics-based models for hydrodynamics and PTO compo-
nents seldom do so, particularly in the case of the former, due to the intrinsic complexity behind
hydrodynamic modeling (see also the discussion in Section 3.1). Therefore, some form of model
manipulation or reduction is virtually always necessary. Within the moment-based framework,
both linear and nonlinear model reduction techniques have been developed to refine the models
for WEC control design purposes, as discussed at length in Section 4.

On the control design front, the framework encompasses linear and nonlinear WEC control
design, array control design, and robust control design to account formodeling uncertainty, always
in line with the ultimate aim of practical implementation. These designs are discussed explic-
itly in Section 5, and an overview of an experimental application on a WEC prototype (in both
stand-alone and array configurations) is provided in Section 6. For the case of estimation of wave
excitation forces, which are required as inputs for optimal noncausal WEC control schemes (see
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Figure 1

Overview of the moment-based framework for WECs, from the initial modeling stage (top) to the
experimental implementation of control strategies (bottom). Solid black arrows show the specific approach
taken in this framework to achieve energy-maximizing moment-based control solutions, and dotted gray
arrows show alternative paths that are also possible; solid rectangles indicate components that are included or
discussed within the presented framework, while dotted rectangles are alternative options that can be included
by exploiting tools from the framework but are not specifically addressed in this review. Abbreviations:
PTO, power take-off; WEC, wave energy converter. Figure adapted with permission from Reference 1.

Section 5) in both single devices and arrays, we direct readers to References 11 and 12, respec-
tively.We do note that the development of moment-based estimators and forecasters is an ongoing
research topic, with some progress reported in Reference 13.

3. PRELIMINARIES

This section briefly introduces both the fundamentals of control-oriented WEC modeling
(Section 3.1) and the main elements of moment-based theory (Section 3.2) as applied to WEC
systems. Additional references are provided where appropriate for further detailed exploration by
interested readers.
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3.1. Fundamentals of Control-Oriented Wave Energy Converter Modeling

The underlying modeling framework for a genericWEC system has its origins in the well-known
Navier–Stokes equations, which essentially define the dynamics of fluid–structure interactions in
both space and time.The nature of these equations is intrinsically complex, virtually always neces-
sitating sophisticated numerical schemes for computing approximate solutions of practical value.
Due to this underlying complexity and the computational burden associated with high-fidelity nu-
merical approximations, a set of assumptions are commonly employed within the literature when
deriving control-oriented models for WEC systems, forming potential flow theory (14). In par-
ticular, if we consider a generic body geometry in water waves, the main modeling assumptions
(MAs) characterizing linear potential flow theory are that (a) the flow is frictionless (inviscid) and
irrotational (MA1), (b) the amplitude of the bodymotion is significantly smaller than its dimension
(MA2), and (c) linear wave theory (as described in, e.g., Reference 15) holds (MA3).

These three assumptions (MA1–3), together with an associated set of boundary conditions
(14), give origin to a family of efficient numerical techniques known as boundary element meth-
ods (BEMs), which provide approximate solutions to the Navier–Stokes equations under linear
potential flow conditions. BEMs are popular within the WEC literature, particularly in control-
and estimation-oriented studies, with researchers exploiting several established BEM codes, both
open source (e.g., 16) and commercial (e.g., 17).

Linear potential flow theory, leveraging BEM techniques, gives origin to the most widely used
operator in control-oriented modeling for WECs: the so-called Cummins equation (18). Con-
sider, for simplicity, a WEC system moving in a single DOF.2 Following linear potential flow
theory, the equation of motion can be written, for t ∈ R+, as

mz̈ = fe + fr + fre − fu, 1.

wherem ∈ R is the mass (or, alternatively, inertia) of the device, z(t ) ∈ R denotes the displacement
of the floating body, fe(t ) ∈ R is the wave excitation force, fr(t ) ∈ R is the radiation force, fre(t ) ∈
R is the hydrostatic restoring force, and fu(t ) ∈ R represents the control input, exerted via an
associated PTO system.

The wave excitation fe is essentially the force exerted on the device by the action of the sur-
rounding wave field. Though fe can be considered a disturbance (i.e., an uncontrollable input) to
the WEC system, it plays a fundamental role in the device energy extraction process, being the
direct link to the wave energy source. The radiation force fr is defined as the hydrodynamic force
acting on the body due to the fluid itself, in the absence of incident waves, and can be written in
terms of the following convolution operator:

fr = −m∞z̈− ż ∗ kr, 2.

in which kr(t ) ∈ R is the (causal) radiation impulse response function, andm∞ ∈ R is the so-called
added-mass infinite-frequency asymptote (see, e.g., 5).

Remark 1. Though the map kr in Equation 2 defines an associated linear time-invariant system, the
numerical computation of such an impulse response is performed in a nonparametric form, using BEM
codes, and hence only a finite set of points (in either the time or frequency domain) is available (see,
e.g., 20). The associated lack of a closed-form solution effectively represents an issue, particularly from
a computational perspective. Section 4 explicitly addresses this issue using moment-based theory.

The restoring force fre is defined as the force arising from the balance of gravitational and
buoyancy forces, which, within linear potential flow theory assumptions, can be written in closed

2An analogous procedure can be followed for WEC systems moving in N DOFs (see, e.g., 19).

www.annualreviews.org • Control Framework for Wave Energy 231
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form as

fre = −shz, 3.

where sh ∈ R is referred to as the restoring coefficient. Finally, fu is the control input applied via the
corresponding PTO system on the WEC device. This input is to be designed in such a way that
maximum energy absorption from the incomingwave field is achieved, ideally in every possible op-
erating condition, hence significantly improving the overall performance of theWEC system.The
specific computation of fu is performed in terms of an associated optimal control problem (OCP),
which Section 5 formally describes and solves by leveragingmoment-based theory.With the forces
described above, Equation 1 can be written in terms of the followingWEC dynamical system G:

G :
{
z̈ = M̄ (−ż ∗ kr − shz+ fe − fu ), y = ż = v, 4.

where M̄ = M−1, withM = m + m∞, and, without any loss of generality, the output y is set to be
the velocity vector associated with the motion of the device ż, in line with the energy-maximizing
OCP for WECs, as defined in Section 5.

As discussed at the beginning of this section, the operator in Equation 4 is derived by ex-
ploiting linear potential flow theory assumptions. Since the energy-maximizing nature of the
control solution itself tends to require large device motion (displacement or velocity), the set
of hypotheses adopted for linear modeling can lead to nonrepresentative dynamical models. In
particular, under controlled conditions, MA2 can be potentially violated by the action of fu.
This phenomenon, known in the field as the WEC control paradox, is discussed at length in
Reference 6. In an effort to broaden the scope of application of Cummins’s formulation and
alleviate the overall impact of this control paradox, a common practice is to append a number
of relevant additional forces affecting the WEC system via relatively simple (though typically
nonlinear) analytical representations.

The most common source of nonlinearity included in Equation 4 stems from viscous drag
effects. This particular phenomenon, which can be attributed mainly to shear stress, is com-
monly added in terms of a C∞ Morison-like equation (21). Nonlinear restoring forces are also
often included, better able to represent WECs with a nonconstant cross-sectional profile. Given
the nature of the restoring phenomenon (which is linked to the static Froude–Krylov force; see,
e.g., 22), polynomial parameterizations in z are commonly employed (see, e.g., 23). Finally, recent
control-oriented studies (see, e.g., 24, 25) also include mooring forces as part of dynamical WEC
descriptions, effectively recognizing the relevance of these effects on the overall system response.
Adopted closed-form expressions for mooring forces are often based on polynomial represen-
tations, inspired by early results within the more general field of ocean engineering (see, e.g.,
26, 27).

We summarize the extensions to the linear Cummins formulation in Equation 4, discussed
immediately above, by means of a general (sufficiently smooth) nonlinear map fnl, i.e.,

G :
{
z̈ = M̄ (−ż ∗ kr − shz+ fe − fu + fnl ), y = ż = v. 5.

An overall schematic diagram of the dynamical Equation 5 can be appreciated in Figure 2, where
the device considered, for illustration purposes, is the so-called Wavestar system (see Section 6).
Furthermore, with an appropriate choice of state variables (i.e., x = [z, ż]T), Equation 4 can be
written in terms of a corresponding state-space representation,

G :
{
ẋ = g(x, fe − fu ), y = Cx, 6.

where the map g and corresponding output matrix C can be derived from Equation 5.

232 Faedo • Ringwood
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Figure 2

Schematic representation of the WEC dynamical equation. Note that cumulative converted energy is
optionally calculated by integrating the product of the control (PTO) force and the device velocity, indicated
by the dotted gray arrows. Abbreviations: PTO, power take-off; WEC, wave energy converter.

Remark 2. Following standard physical principles, it is possible to show that the zero equilibrium of
ẋ = g(x, 0) in Equation 6 is locally exponentially stable for any physically meaningful map g. For further
discussion, we direct interested readers to, e.g., Reference 28.

3.2. Fundamentals of Moment-Based Theory for Wave Energy
Converter Systems

Following the main modeling elements introduced in Section 3.1, we present a brief account
of the system-theoretic interpretation of moment-based theory for WEC systems (based on the
seminal work presented in Reference 10) and the first relevant application in the field (based on
work presented in Reference 29). The theoretical framework in Reference 10 and the associated
definition of a moment were originally exploited to produce reduced-order models for a large class
of dynamical systems in diverse operating (input) conditions (see Reference 30 and the review
presented in Reference 31). Reference 29 is, to the best of our knowledge, the first application
of moments that departs from the original model reduction objective, in which the framework in
Reference 10 is exploited to transcribe the wave energy energy-maximizing OCP into a finite-
dimensional nonlinear program (NP).

Within moment-based theory, the external inputs affecting theWEC system (i.e., fe and fu) are
expressed in terms of an implicit-form description. In particular, we define a signal generator G

[sometimes referred to as an exogenous system (32)] described, for t ∈ R+, by the set of ν first-
order equations

G :
{
ξ̇ = Sξ , fu = Luξ , fe = Leξ , 7.

with ξ (t ) ∈ Rν , S ∈ Rν×ν , and {L⊺
e ,L

⊺
u } ⊂ Rν . From now on, following Scarciotti & Astolfi (30),

we adopt the following set of standing assumptions (SAs) for the signal generator in Equation 7:
(a) the triple of matrices (Le − Lu, S, ξ (0)) is minimal (SA1),3 and (b) S is such that λ(S) ⊂ C0 with
simple eigenvalues (SA2).

3Note that this implies the observability of (S, Le − Lu) and the excitability of (S, ξ (0)); for a formal treatment
of excitability, we direct readers to Reference 33.
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SA1 stems from the fact that the signal generator in Equation 7 does not have any input and is
essentially driven by the initial condition ξ (0).Given that this signal generator characterizes inputs
to the WEC system under analysis, it is natural to construct Equation 7 in such a way that all the
modes of motion described by the dynamic matrix S are excited and that the inputs generated
are effectively observable. SA2 guarantees that the signal generator represented by Equation 7
produces bounded trajectories, which is also consistent with the practical nature of the WEC
application: fe is always bounded by virtue of the wave process itself, while fu is ultimately user
designed. Crucially, as discussed in Section 5, SA2 is also consistent with the oscillating nature of
the harvesting process.

If SA1 and SA2 hold, and given that the zero equilibrium of the WEC system in Equation 6 is
locally exponentially stable (see Remark 2), then there exists (10) a mapping π , locally4 defined in a
neighborhood 4 of ξ = 0, with π (0) = 0, that is the solution of the (invariance) partial differential
equation

∂π (ξ )
∂ξ

Sξ = g(π (ξ ),Leξ − Luξ ) 8.

for all ξ � 4, and the steady-state response of the interconnected WEC system represented by
Equations 6 and 7 is xss(t) = π (ξ (t)) for any x(0) and ξ (0) sufficiently small. In particular, the map-
ping Y = Cπ is defined as the moment of the WEC system in Equation 6 at the signal generator
(S, Le − Lu).

Remark 3. The moment Y of the WEC system in Equation 6 at the signal generator in
Equation 7, computed along a particular trajectory ξ (t), coincides with the (well-defined) steady-state
response of the output of theWEC system, i.e., yss(t ) = Y (ξ (t )). This is exploited for control-oriented
WEC modeling and optimal control synthesis in Sections 4 and 5, respectively.

In the special case in which the WEC system is described in terms of the linear dynamical
operator in Equation 4, the invariance equation represented by Equation 8 essentially becomes a
linear system of algebraic equations. In particular, the moment Y is such that Y (ξ ) ≡ Y ξ , with Y
computed as

Y = (Le − Lu )8, 9.

where the matrix 8 ≡ 8(S,G ) depends on both the specific parameters associated with the linear
WEC equation shown in Equation 4 and the nature of the matrix S in Equation 7. For a detailed
account of the computation of the matrix 8, we direct readers to, e.g., Reference 29.

Remark 4. As in the nonlinear case (see Remark 3), the moment Y of the linear system in
Equation 4 at the signal generator in Equation 7 is inherently linked to the steady-state output response
of the WEC device, i.e., yss(t) = Yξ (t) for any particular trajectory ξ (t).

4. MODEL REDUCTION FOR WAVE ENERGY CONVERTER SYSTEMS

Moments, as defined in Section 3.2, not only provide a specific parameterization of the steady-state
output response for linear and nonlinear systems in terms of the state vector associated with the
signal generator in Equation 7 but also play a crucial role in a state-of-the-art moment-matching-
based model reduction framework. This set of model reduction techniques, based on the concept
of a moment, involves the interpolation of the steady-state response of the output of the target

4All statements are local, although global versions can be straightforwardly derived.
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system to be reduced, by leveraging the discussion in Remark 3. In particular, the reduced-order
model obtained via moment matching has a steady-state response that matches the steady-state
response of the system to be reduced, by sharing exactly the same moment for a given class of
input signals.

4.1. Finite-Order Linear Parameterization

Recalling the discussion in Section 3.1 (particularly Remark 1), we note that the radiation impulse
response function kr, defining the WEC system G in Equation 4, is typically computed using
BEM codes—i.e., only a finite number of data points characterizing kr is available for modeling
purposes. The presence of this nonparametric impulse term implies both a representative and a
computational drawback for WEC control or estimation tasks, giving an overall input-to-state
nonparametric representation.

To address this issue, and motivated by the linear time-invariant nature of the underlying ra-
diation system, model reduction techniques can be employed, typically using a finite-dimensional
state-space representation, which should ideally retain the underlying physical properties that
characterize the WEC process. In particular, Faedo et al. (34) proposed a moment-matching-
based solution for single-DOF devices, which was later extended to multi-DOF systems (35,
36) and WEC arrays (37). Furthermore, note that a critical comparison between this moment-
based approach and a set of well-established techniques in the wave energy field (including, e.g.,
Reference 20) can be found in Reference 38.

To be precise, if the system is linear (as in the case discussed within this section), then the
steady-state output response is fully characterized by the associated WEC frequency-domain re-
sponse. In other words, as discussed in Section 3.2, since moments are in a one-to-one relation
with the steady-state behavior of the target system,matching moments directly implies interpola-
tion of the target frequency response at a finite number of points, here referred to as interpolation
frequencies. Furthermore, as shown by Peña-Sanchez et al. (38) and Faedo et al. (39), essential
physical properties of the device can be retained by (or enforced on) the reduced-order model
by moment matching as a result of this frequency interpolation feature, such as internal stability,
passivity, and zero dynamics—i.e., the approximating model is physically consistent.

In the following, we provide a brief account of the main elements involved in the computation
of a reducedmodel by moment matching for theWEC system in Equation 4. In particular, follow-
ing the set of standing assumptions for the corresponding signal generator (S, Le − Lu) outlined
in Section 3.2, let both the inputs of G be defined in terms of Equation 7 with a matrix S such
that λ(S) = ( jF ) ∪ (− jF ) ⊂ C0, where F = {ωp} fp=1 ⊂ R+ is a finite set of interpolation points,
and hence #F = 2 f . Leveraging the definition of a (linear) moment in Equation 9 and following
Astolfi (10) and Scarciotti & Astolfi (30), we find that the family of reduced-order models

G̃ :
{
2̇ = (S− 1L)2 + 1( fe − fu ), θ = Y2 ≈ y, 10.

where L = Le − Lu and 1 is any matrix such that λ(S) ) λ(S − 1L) = ∅, contains all the models
of dimension ν interpolating the moments of the WEC system at (S, L).

Remark 5.The family of models in Equation 10 is conveniently parameterized in terms of the matrix
1, which can be used to enforce specific properties in the reduced-order model, such as matching
with a prescribed set of eigenvalues 3, i.e., to guarantee that λ(S − 1L) = 3. The specific choice
of 1 for the WEC application case can be performed in terms of an offline optimization procedure
(as discussed in, e.g., Reference 34). Furthermore, Faedo et al. (39) included a specific algorithm for
enforcing passivity and zero dynamics, incorporating all the relevantWEC physical properties into the
computed moment-based parametric structure.
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Figure 3

Parameterization by moment matching for the Ocean Power Technologies WEC case with different sets of interpolation points for
(a) F1, (b) F2, and (c) F3. Abbreviation: WEC, wave energy converter. Figure adapted from Reference 41.

Remark 6. The reduced-order model in Equation 10 has dimension ν = 2 f = #F , where f is the
number of (user-selected) interpolation points in F . This is a consequence of the fact that, for each
frequency ωi, both positive and negative jωi are chosen as eigenvalues of the real-valued matrix S.

To briefly illustrate the moment-based finite-order parameterization method described above,
we present a case study based on a toroidal WEC geometry, which constitutes one of the main
components of a large class of devices, including, for instance, the well-known Ocean Power
Technologies point absorber WEC (40). The choice of the set of interpolation points (frequen-
cies) can be made by analyzing the gain of the target frequency response and selecting points
that characterize dynamically important features of the underlying WEC. A sensible selection
includes, for instance, the resonant frequency of the device under consideration. Note that this
is, effectively, the frequency where the maximum amplification occurs, i.e., the frequency char-
acterizing the H∞-norm of the WEC system G. Based on the provided discussion, different sets
of interpolation frequencies within this example case are chosen as follows: F1 = {2.3}, F2 =
{1, 2.3}, and F3 = {1, 1.8, 2.3}, with the property that F1 ⊂ F2 ⊂ F3. As can be appreciated from
Figure 3, the set F1 already includes a key interpolation point, i.e., the resonant frequency asso-
ciated with the DOF under analysis. F2 includes an additional low-frequency component, while
the set F3 further expands F2 by including a midfrequency component. As expected from the
theoretical foundations of this moment-based strategy, the approximating models have exactly
the same frequency-domain behavior as the target model for each element of the corresponding
interpolation set F , with a clear decrease in the overall approximation error from F1 to F3.

4.2. Nonlinear Model Reduction

If, instead of considering the linear operator in Equation 4, we assume that the WEC system is
described in terms of the general nonlinear system in Equation 4 (or, equivalently, Equation 6),
then the chosen representation not only is nonparametric (as discussed in Section 4.1) but also
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can present complex nonlinear effects arising from a diversity of modeling considerations (see
Section 3.1).Ultimately, depending on the nature of these terms, the specificWEC representation
can preclude both a well-posed control or estimation synthesis and the consequent real-time
implementation—i.e., there is a limit to the analytical complexity for which a controller or
estimator can be effectively synthesized and handled in real time.

The nonlinear moment-based framework, recalled in Section 3.2, has been recently shown
to be a valuable tool for model reduction of nonlinear WECs, with a pioneering application (42),
given the inherent preservation of steady-state response characteristics. In particular, by exploiting
the corresponding definition of a (nonlinear) moment analogously to Equation 10 [leveraging the
same choice of λ(S)], and following Astolfi (10) and Scarciotti & Astolfi (30), we can define a family
of reduced models for the nonlinear WEC system in Equation 6 that achieve moment matching
at (S, L) as

G̃ :
{
2̇ = (S− 1L)2 + 1( fe − fu ), θ = Y (2) ≈ y. 11.

Note that the family of models in Equation 11, also parameterized in terms of a constant matrix
1 (per Equation 10), is described by a linear differential equation with a nonlinear output map,
i.e., aWiener model. Furthermore, given the linear nature of 1, the determination of G̃ essentially
reduces to the computation of the mapping Y .

Clearly, the availability of Y in Equation 11 implies the availability of a closed-form solution
of the associated partial differential equation shown in Equation 8, which is far from trivial for
the rather generic nonlinear WEC model in Equation 6. To address this issue, Faedo et al. (42)
proposed a Galerkin procedure for the computation of an approximation of Y , based on the ap-
proximation framework for nonlinear moments presented in Reference 43. To briefly summarize,
it is assumed that the moment of the WEC system can be reasonably described in terms of a
finite-dimensional function space H (equipped with an inner-product operation), generated by a
family of NI continuous basis functions {ξ 7→ ϕi(ξ )}i∈I⊂N, #I = NI , i.e.,

Y (ξ ) ≈ Ỹ (ξ ) =
∑
i∈I

αiϕi(ξ ). 12.

The set of coefficients {αi}i∈I ⊂ R, corresponding with the ansatz shown in Equation 12, is
computed by following a Galerkin procedure, i.e., by projecting a well-defined residual equa-
tion (constructed in terms of the partial differential equation shown in Equation 8) overH . Faedo
et al. (42) defined the set of functions {ϕi} in terms of polynomial functions of the state vector of the
associated signal generator in Equation 7 with a user-defined maximum degree, hence providing
full control of the underlying characteristics of the reduced structure.

Adopting a similar set of assumptions, Faedo et al. (44) and Papini et al. (45) proposed a
data-driven model reduction by moment matching for WEC systems based on the theoreti-
cal framework of Scarciotti et al. (46). In particular, the same family of models represented by
Equation 11 was considered, including the approximation of Y in terms of a finite-dimensional
function space (i.e., Equation 12). The main difference resides in the fact that the associated set
of coefficients {αi} is computed by exploiting measurements of the steady-state response of the
WEC system, in contrast to the analytic Galerkin formulation of Faedo et al. (42, 43). This allows
for an approximation of the nonlinear WEC model G even in the case where the associated state
transition map f is only partially known (or even completely unknown) and is a powerful tool for
data-driven WEC modeling.

We briefly exemplify the moment-based nonlinear reduction procedure described above by
means of the (data-driven) case study analyzed by Papini et al. (45), based on a CorPower-
like wave energy absorption system (23) schematically illustrated in Figure 4 along with a
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Figure 4

(a) Schematic illustration of the CorPower-like device considered in the nonlinear model reduction case study. (b) Graphical appraisal
of the nonlinear map fnl considered in the case study, which is composed of both viscous effects and nonlinear restoring forces (see
Section 3.1). Figure adapted from Reference 45 (CC BY 4.0).

graphical appraisal of the nonlinear map fnl considered. We assume that the signal generator in
Equation 7 is described in terms of a single frequency component ωw characterizing the behavior
of the system under a monochromatic wave field, i.e., λ(S)= {± jωw}, and hence ξ (t ) ∈ R2. Several
initial conditions for the resulting signal generator (Equation 7) are considered, in order to explore
the operational space of theWEC system, according to the defined sea-state conditions. For each
of these scenarios, the corresponding steady-state outputs are collected and used in a least-squares
procedure for computation of the approximating moment Ỹ , described as in Equation 12.

In particular, polynomials in (ξ 1, ξ 2) are considered for the definition of the associated func-
tion space H . Figure 5a shows the corresponding approximation for the moment in terms of a
smooth manifold, and Figure 5b shows output time traces for a particular wave input realization
along with the evolution of the absolute value of the approximation error. It can be appreciated
that, once the transient period extinguishes, the target and approximating time traces become al-
most indistinguishable, as would be expected from the described moment-matching-based model
reduction procedure.

5. CONTROL FOR WAVE ENERGY CONVERTER SYSTEMS

As discussed in Section 1, the overall control objective for WEC systems is typically written in
terms of maximization of mechanical energy absorption, in turn minimizing the associated WEC
levelized cost of energy (see, e.g., 4, 47). To be precise, theWEC control problem can be generally
written, for a given time interval � = [0, T0] ⊂ R+, in terms of the following OCP:

{yopt, f optu } = argmax
{y, fu}

E(y, fu ),

subject to: WEC dynamics G :
{
ẋ = f (x, fe − fu ), y = Cx,

Constraints S :
{
(y, fu ) ∈ X × Fu, ∀t ∈ �, 13.
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Figure 5

Performance of the data-driven nonlinear model reduction by moment matching for WECs. (a) The approximation for the moment in
terms of a smooth manifold. (b, top) Output time traces for both the target nonlinear (solid black line) point absorber system G and the
moment-based reduced-order model (dashed gray line) in Equation 11 with the corresponding approximating moment Ỹ for a
particular wave input realization. (b, bottom) The evolution of the absolute value of the approximation error. Abbreviation: WEC, wave
energy converter. Figure adapted from Reference 45 (CC BY 4.0).

where we recall that y = ż (i.e., the device velocity), and the map E represents the average
mechanical energy of the WEC system, i.e.,

E( y, fu ) = 1
T0

∫
�

y(τ ) fu(τ )dτ. 14.

The notation yopt and f optu is used to represent the optimal velocity of the WEC system and the
optimal velocity under the optimal energy-maximizing control solution, respectively. The sets
X and Fu represent the admissible values for output and input variables (i.e., constraints), re-
spectively, that are included in the OCP to guarantee the safe operation of the WEC device and
associated PTO system.

Clearly, the OCP in Equation 13 is defined over an infinite-dimensional space. The underly-
ing idea, first posed for linear WEC systems by Faedo et al. (29), is to use the parameterization
of the steady-state response of the WEC system in terms of moments to provide a transcrip-
tion of Equation 13 into a finite-dimensional NP carried over the function space induced by the
signal generator in Equation 7. The objective of this section is to provide an overview of how
moment-based theory for WECs, as presented in Section 3.2, can be effectively used to com-
pute an approximate solution of Equation 13 for a wide variety of WEC models and operating
conditions, as detailed in the following.

5.1. Linear Wave Energy Converter Control

As briefly introduced in Section 5, the main idea, originally posed by Faedo et al. (29), is to solve
the problem shown in Equation 13 by exploiting the steady-state parameterization of the WEC
system in terms of the corresponding moment. To be precise, we replace the dynamical behavior
of the WEC system G with the associated moment-based equation (i.e., either Equation 8 or
Equation 9, depending on the nature of G). To achieve this, the first step is to define a signal
generator (Equation 7) to provide an implicit-form description for the wave excitation force input
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fe and, consequently, the applied control input fu. Motivated by the harmonic nature of the wave
process (see, e.g., 15, 48), the matrix of the associated signal generator is described in terms of a
finite number of harmonics of a given fundamental frequency ω0 = 2π/T0 ∈ R, i.e.,

S =
f⊕

p=1

[
0 pω0

−pω0 0

]
, 15.

so that λ(S) = { ± jpω0}, in line with SA2 (see Section 3.2).

Remark 7.One can verify that, under SA1, the dynamic matrix shown in Equation 15 is such that

X = span
({ξi (t )}i∈Nν

) = span
({cos(pω0t ), sin(pω0t )}p∈N f

)
16.

so that fe and fu are essentially described in terms of a T0-periodic map in �.

Formally, for the case of the linear WEC model in Equation 4 with the signal generator in
Equation 7, matrix S in Equation 15, and associated moment computation in Equation 9, the
OCP in Equation 13 can be transcribed to the following steady-state formulation:

{Y opt,Lopt
u } = arg max

{Y,Lu}
E(Y ξ ,Luξ ),

subject to: Moment-based equation : Y = (Le − Lu )8,

Constraints :
{
(Y ξ ,Luξ ) ∈ X × Fu, ∀t ∈ �, 17.

where the corresponding optimal output and input maps can be computed as yopt = Yoptξ and
f optu = Lopt

u ξ . We further note that, due to the nature of the space of functions generated by the
entries of the state vector associated with the signal generator with the matrix in Equation 15 (see
Remark 7), the relation (29)

E( y, fu ) 7→ E(Y ξ ,Luξ ) = 1
T0

∫
�

Y ξ (τ )Luξ (τ )dτ = 1
2
Y TLu 18.

holds. Leveraging the result recalled in Equation 18, we can further write the transcribed OCP in
Equation 17 in terms of the finite-dimensional NP:

{Y opt,Lopt
u } = arg max

{Y,Lu}
1
2
Y TLu,

subject to: Moment-based equation : Y = (Le − Lu )8,

Constraints :
{
(Y ξ ,Luξ ) ∈ X × Fu, ∀t ∈ �̃ ⊂ �, 19.

where �̃ = {ti}i∈I�
, #I� = Nc, represents a finite set of collocation instants used to enforce the

constraints in Equation 13, now parameterized in terms of the corresponding signal genera-
tor. If the moment-based equation in Equation 19 is effectively included directly as part of the
corresponding mapped objective, it is possible to show that the transcribed NP is of a quadratic
type, i.e., can be written in terms of a quadratic program (QP) in Lu. Furthermore, such a QP is
inherently concave due to the nature of the WEC conversion process (i.e., the passivity property
of G; see the discussion in Section 4.1 and Reference 29).

Remark 8.The underlying concaveQP nature of Equation 19 is a fundamental feature of this moment-
based transcription process. In particular, due to the nature of the chosen signal generator and the
connection between moments and steady-state response, the transcribed problem effectively has a
unique globally optimal solution, allowing for the utilization of efficient numerical optimization rou-
tines (see, e.g., 49) to compute a solution to the energy-maximizing WEC control problem. Note that

240 Faedo • Ringwood



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
13

0.
20

.3
5.

12
8 

O
n:

 T
ue

, 1
1 

M
ar

 2
02

5 
20

:2
6:

24

AS07_Art10_Ringwood ARjats.cls June 21, 2024 14:3

this is typically not the case in other direct optimal control techniques, where regularization terms are
used to guarantee the existence of a unique solution (see the discussion in Section 1).

5.2. Nonlinear Wave Energy Converter Control

If, instead of considering the linear operator in Equation 4, we assume that the WEC system is
described in terms of the general state-space description (Equation 6), the procedure outlined
in Section 5.1 can be followed analogously, with some fundamental differences, as outlined in
the remainder of this section. In particular, in accordance with the linear case in Section 5.1,
the idea is to replace the dynamical constraint in Equation 13 with the corresponding moment,
which can now be computed in terms of the nonlinear partial differential equation shown in
Equation 8, as opposed to the linear equation shown in Equation 9. The reader can appreciate
that there is an immediate difficulty in following these steps: This pathway would require a closed-
form expression for the moment Y , which is, as discussed for the nonlinear model reduction case
in Section 4.2, generally impossible to compute. Faedo et al. (50) explicitly solved this problem
for the WEC control case by leveraging the approximation technique proposed in Reference 43.
We briefly discuss the main underlying elements in Reference 50, in particular the definition of
the so-called extended signal generator G , as follows:

G :



ξ̇ = Sξ , fe = Leξ , fu = Luξ ,

S = S⊕
 f⊕

p= f+1

[
0 pω0

−pω0 0

] ,

Le =
[
Le 0

]
, ξ (0) =

[
ξ (0)T ξ

T
0

]T
,

20.

where the pair of matrices (S, ξ (0)) ∈ Rν×ν × Rν is excitable.
The system in Equation 20 is an extension of the signal generator in Equation 7 (with the

matrix in Equation 15) in the following sense: Consider the definition of the induced space X in
Equation 16, and let X = span{ξ i}i∈Nν

. It is straightforward to see that λ(S) ⊂ λ(S) and, given the
excitability condition on the pairs (S, ξ (0)) and (S, ξ (0)), that X ⊂ X . Furthermore,

X = X ∪ span
({cos(pω0t ), sin(pω0t )} fp= f+1

)
, 21.

so that the signal generator G extends G by including a larger set of harmonics of the fundamental
frequency ω0 in the state space associated with such an implicit-form description.

Remark 9.Note that fe, originally written in terms of the signal generator in Equation 7, with matrix S
in Equation 15, is defined in terms of the extended structure G by simply leveraging a suitable inclusion
operator Le 7→ Le.

Using the extended generator in Equation 20, we can write an associated moment equation (as
in Equation 8) for the definition of the correspondingmoment.Furthermore, for a given trajectory
ξ (t ), Faedo et al. (50) proposed the following approximation:

yss(t ) = Y (ξ (t )) ≈ Y ξ (t ), 22.

where the approximated moment Y is computed in terms of a nonlinear algebraic system of
equations of the form

R(Y,Lu ) = 0. 23.
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The residual map R in Equation 23 is defined in terms of the nonlinear dynamics of the WEC
system in Equation 6 (or, alternatively, Equation 5) and projected onto the space induced by X

in Equation 21, giving origin to Equation 23, i.e., in a Galerkin-like procedure. As demonstrated
by Faedo et al. (50), uniform convergence toward yss(t) can be guaranteed for a given trajectory
ξ (t ) as ν → ∞ in Equation 20, i.e., by modifying the dimension (order) of the associated extended
generator.

Considering the approximation in Equations 22 and 23, we can then transcribe the OCP in
Equation 13 into a finite-dimensional NP by leveraging the connection between moments and
steady-state behavior, i.e.,

{Y opt
,Lu

opt} = arg max
{Y,Lu}

1
2
Y

T
Lu,

subject to: Moment-based equation : R(Y,Lu ) = 0,

Constraints :
{
(Y ξ ,Luξ ) ∈ X × Fu, ∀t ∈ �̃ ⊂ �. 24.

Remark 10.Using standard assumptions with respect to the nonlinear map fnl and characterizing the
WEC model in Equation 5, one can show that the transcribed OCP in Equation 24 can be written
in terms of a concave QP program plus a nonlinear bounded term. Using this decomposition, Faedo
et al. (50) showed that Equation 24 always admits an energy-maximizing solution, also giving explicit
conditions for global optimality. This allows for the application of efficient numerical routines for the
computation of the moment-based solution (e.g., 51).

Application of this nonlinear framework, apart from the pioneering Reference 50, can also
be found in References 52 and 53, which additionally include relevant extensions to the original
class of nonlinear effects considered in Reference 50. In particular, Reference 52 includes nonlin-
ear PTO effects in terms of an efficiency map characterizing the mechanical-to-electrical energy
conversion, exploiting the physical arguments in Reference 54. On the other hand, Reference 53
effectively includes nonlinear Froude–Krylov effects (both static and dynamic; see Reference 22)
by leveraging a data-based modeling approach suited for the moment-based transcription
method.

5.3. Real-Time Implementation: The Receding-Horizon Formulation

As discussed in Section 3.1, the wave excitation force fe is virtually always unmeasurable, requir-
ing both estimation and forecasting to compute instantaneous and future values within a given
set �, respectively, for effective computation of the associated optimal control input. Within the
presented moment-based framework, this implies knowledge of the associated implicit-form de-
scription for fe, in terms of the signal generator in Equation 7. In particular, to solve the OCP in
real time, accommodating a corresponding estimate of fe, Faedo et al. (55) proposed a receding-
horizon formulation of the moment-based transcription described in Sections 5.1 and 5.2. This
was later exploited by Mosquera et al. (56) and Faedo et al. (57), who generated the optimal
laws {yopt, f optu } within a sliding window and fed them as optimal references to a lower track-
ing loop. In particular, both works considered higher-order sliding-mode controllers to achieve
robust reference tracking in finite time.

To be precise, Faedo et al. (55) wrote the set � in Equations 19 and 24 as �K = [K1h,K1h +
T0] ⊂ R+, K ∈ N, where T0 denotes, in this case, the length of the Kth time window (i.e., the time
horizon) in which Equation 13 is effectively maximized, and where 1h denotes the receding time
step. The receding-horizon reference generation procedure is then as follows:
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1. Solve Equations 19 and 24 for the time window �K—i.e., compute the set RK : {yopt, f optu }.
2. Provide the reference set RK for the inner tracking loop in the interval [K1h, (K + 1)1h] ⊂

R+, i.e., for a single receding-horizon step 1h.
3. Move �K 7→ �K + 1 and go back to step 1.

While the T0-periodicity nature for fe, arising from the (harmonic) implicit-form representa-
tion in Equation 20, has been shown to be valid for sufficiently large T0 in numerous studies (see,
e.g., 48, 58), within the receding-horizon OCP formulations associated with Equations 19 and 24,
the length of the time window is commonly chosen following a rather conservative approach, to
keep the associated computational requirements within real-time limits. This, in turn, naturally
creates an issue when attempting to represent fe in terms of the implicit form of Equation 20.
Faedo et al. (55) addressed this issue by exploiting windowing functions: Suppose we analyze fe
within a single window (time interval) �K. Within this set, we define the so-called apodized (i.e.,
windowed) wave excitation force f ϑ

e as

f ϑ
u = fuϑ , ∀t ∈ �K , 25.

where the map ϑ : �K → [0, 1] is used to smoothly bring fe down to zero at the edges of the set �K,
so that the derivative of its correspondingT0-periodic extension is sufficiently smooth (59). Finally,
following Faedo et al. (55), we can bring f ϑ

e (approximately) to the implicit form of Equation 20
by orthogonal projection on the set spanned by X , to subsequently solve Equations 19 and 24
accordingly, for each �K.

5.4. Robustifying the Control Solution

WECmodels, as derived based on Section 3.1, are inherently affected by uncertainty, particularly
arising in the hydrodynamic modeling stage. This is due to the relatively restrictive set of assump-
tions MA1–3, used to arrive at the simplified representation given by Cummins (see Section 3.1).
Furthermore, system uncertainty is not the sole source of uncertainty intrinsically affecting the
WEC control problem. In particular, given that fe is virtually always unmeasurable, estimates are
sought via estimation and forecasting techniques (see the discussion in Section 5.3), so that un-
certainty in the information fed to the corresponding OCP is also ubiquitous. Sections 5.4.1 and
5.4.2 now discuss the system and input uncertainty cases, respectively, offering an overview of the
set of robust moment-based solutions available for WECs.

5.4.1. System uncertainty. We begin by assuming that the linear WEC equation G ≡ G0

(Equation 4) can be adopted as a nominal model of the device, with a corresponding (nominal)
linear moment equation given in terms of Equation 9 (i.e., Y a Y 0), associated with a nominal
output y a y0. In a more realistic scenario, the model describing the WEC dynamics is affected
by modeling errors, which can be written in terms of a suitably defined uncertainty. In particular,
we consider that the nominal WEC system is perturbed by a multiplicative output uncertainty
map (41, 60), characterized in terms of a stable linear time-invariant system H δ , with input y0 and
output d1, and corresponding moment at Equation 7 given by D δ = Y 0δ. This is schematically
illustrated in Figure 6.

Within this formulation, and analogous to Equation 9, the moment Y δ of the uncertain WEC
system is essentially written as

Y δ = Y 0 +Y 0δ = (Le − Lu )8(I + δ). 26.

The uncertainty, defined via the stable system H δ , is then fully parameterized in terms of δ and
directly affects the moment-based representation of the nominal WEC system in Equation 4.
If we further assume δ ∈ P , with P a convex polytope defined as the convex hull of a finite set
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Hδ

yδ
ss (Y0 + Y0δ) ξ

Y0δξ

Y0ξ0
Leξfe
Luξfu

Sξξ·

Uncertain WEC system

Figure 6

Schematic representation of the uncertain WEC system. Abbreviation: WEC, wave energy converter.
Figure adapted from Reference 41.

of NV vertices, i.e., P = conv(VP ), #VP = NV , then the moment-based robust formulation of the
problem in Equation 19 can be written following a worst-case performance (WCP) approach
(61). The underpinning concept behind this approach, which originated in the field of decision
theory and is known as Wald’s minimax (or maximin) paradigm (62), essentially optimizes a given
objective for the worst-case scenario with respect to the defined uncertainty. In the spirit of the
WCP method, the robust moment-based energy-maximizing formulation for uncertain WEC
systems can be defined in terms of Equation 26 as follows:

{Y δopt,Lδopt
u } = arg max

{Y δ ,Lu}
argmin

δ∈VP

1
2
Y δTLu,

subject to: Uncertain moment-based equation : Y δ = (Le − Lu )8(I + δ),

Constraints :
{
(Y δξ ,Luξ ) ∈ X × Fu, ∀(δ, t ) ∈ VP × �̃, 27.

where the NP in Equation 27 computes the worst-case scenario for theWEC energy-maximizing
problem with respect to every possible uncertainty δ in the polytope P .

With mild assumptions on the nature of the uncertainty δ, it is possible to show that
Equation 27 can be written as a max-min problem composed of a concave QP problem in Lu

and a linear program (LP) in δ. This has a very important implication, which is already reflected
in the transcription in Equation 27: The unique solution of the robust moment-based WEC for-
mulation is reached precisely on the convex hull of the uncertainty set P—i.e., the solution lies
precisely at one of the vertices VP . This essentially means that it is sufficient to solve the NP in
Equation 27 only for the NV elements of the finite set VP .

We exemplify the robustmoment-based solution in the following, based onReference 63.Con-
sider a spherical heaving point absorber under regular wave excitation, represented in terms of the
implicit form of Equation 7, with matrix S as in Equation 15 and a single frequency component
ω0. Let s0h denote the nominal hydrostatic stiffness of such a system, and suppose its actual value
is such that sh ∈ Sh, with Sh = [−1.3s0h, 1.3s

0
h] ⊂ R—i.e., it can vary within ±30% of its nominal

value s0h.Figure 7a illustrates the polytopeP ⊂ R2 for the defined hydrostatic stiffness uncertainty,
plotted in terms of its set of vertices, along with the nominal value for the hydrostatic stiffness;
Figure 7b illustrates the results of nominal and robust moment-based control performance in
terms of energy absorption, considering various levels of uncertainty for the parameter sh, repre-
sented as a percentage deviation from its nominal value s0h.TheWCP, for all cases, occurs when the
parameter sh deviates by−30% from its nominal value.Note that the optimalWCP is achieved by
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Figure 7

(a) The uncertainty polytope P ⊂ R2 for the defined hydrostatic stiffness uncertainty (gray shading), plotted in terms of its set of vertices
(open circles). The nominal value for the hydrostatic stiffness is represented by the point in R2 corresponding with zero uncertainty (filled
circle). (b) The results of nominal and robust moment-based control performance in terms of energy absorption, considering various
levels of uncertainty for the parameter sh, represented as a percentage deviation from its nominal value s0h. The nominal performance is
indicated by black circles. Two distinct robust performance cases are presented: one based on computing a moment-based control
solution considering the polytope P (gray diamonds) and a more conservative case, represented by the polytope P□, as shown in panel a
(green squares). Abbreviation: WCP, worst-case performance. Figure adapted from Reference 41.

employing the robust energy-maximizing strategy computed with the polytope P , based on prior
knowledge of the range of variation of the uncertain parameter, while a clear drop in performance
(in terms of WCP) can be directly observed for the case where the more conservative polytope
P□ is considered.

5.4.2. Input uncertainty. For the case of input uncertainty, one can pursue an analogous for-
mulation to that presented in Section 5.4.1 for the case of system uncertainty. In particular, it is
assumed that the WEC system is driven by what is now referred to as the nominal signal genera-
tor G ≡ G 0 in Equation 7, which is associated with a nominal wave excitation force input fe = f 0e .
Similarly to Section 5.4.1, a multiplicative output uncertainty framework is considered (see 41,
63), as illustrated schematically in Figure 8.

Within this formulation, the output vector describing the uncertain wave excitation force f δ
e =

Lδ
eξ is essentially written as Lδ

e = L0
e + L0

eδ, so that the corresponding moment for the overall
uncertain WEC system can be computed in terms of the following relation:

Y δ = (L0
e + L0

eδ)8. 28.

Following a WCP approach, as for the case of system uncertainty in Section 5.4.1, we can write
the robust moment-based formulation for the case of input uncertainty in terms of the following
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L0eξf 0e

L0eξ

L0eδξ
Hδ

yδ
ss Yδξ

Sξξ·

Luξfu

Sξξ·

Uncertain signal generator

Figure 8

Schematic representation of the uncertain signal generator. Figure adapted from Reference 41.

min-max problem:

{Y δopt,Lδopt
u } = arg max

{Y δ,Lu}
argmin

δ∈VP

1
2
Y δTLu,

subject to: Uncertain moment-based equation : Y δ = (L0
e + L0

eδ)8,

Constraints :
{
(Y δξ ,Luξ ) ∈ X × Fu, ∀(δ, t ) ∈ VP × �̃, 29.

where we assume δ ∈ P , with P a convex polytope as in Section 5.4.1. As explicitly shown by
Faedo et al. (63), the formulation in Equation 29 always admits a unique solution, due to the linear
nature of δ in the associated moment-based equation and the inherent concavity of Equation 19.
Furthermore, as in the case of system uncertainty, the unique solution of the robust moment-
based WEC formulation for the input uncertainty case is reached precisely at one of the vertices
VP associated with the corresponding polytope.

5.5. The Case of Wave Energy Converter Arrays

Within the moment-based framework presented in this review, the case of WEC arrays can be
dealt with analogously to what has been presented so far in Section 5, with a suitable redefinition
of the associated signal generators. The specific theoretical framework is detailed in References 64
and 65. In brief, each signal generator needs to be augmented by the number of devices in the array
Nd accordingly. This can be achieved straightforwardly by replacing each corresponding dynamic
matrix S with its augmented counterpart, i.e., with INd ⊗ S. This naturally implies that the finite-
dimensional moment-based programs presented in Sections 5.1 and 5.2 will now be carried over
higher-dimensional spaces with respect to their single-device counterparts—i.e., the optimization
space is augmented by the number of devices Nd in both cases. Nonetheless, as further clarified
in References 64 and 65, this does not affect the main benefits of the moment-based optimal
transcription, always admitting a globally optimal energy-maximizing solution, in both linear and
nonlinear settings.

6. EXPERIMENTAL IMPLEMENTATION
OF MOMENT-BASED CONTROL

This section presents an overview of the experimental implementation and assessment ofmoment-
based control, as described in Section 5 and effectively reported in References 66 and 67. In

246 Faedo • Ringwood



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
13

0.
20

.3
5.

12
8 

O
n:

 T
ue

, 1
1 

M
ar

 2
02

5 
20

:2
6:

24

AS07_Art10_Ringwood ARjats.cls June 21, 2024 14:3

13 m

6.21 m

Layout 0 Layout 1

Layout 2 Layout 3

Depth from SWL: 0.9 m

6.01 m 39.0 cm

4.20 m

3

4

5
6

3.80 m

Waves

25.0 cm

8 m

20.0 cm

90.5 cm

y

x

2 1

3 2 1

a

b

cPosition
sensorPTO

system

Acceleration
sensor

Wave
direction

Force
sensor

Reference
point

30˚

CG
SWL

CB

Figure 9

Schematic representation of the wave basin at the Ocean and Coastal Engineering Laboratory at Aalborg
University (panel a) and an experimental prototype of the Wavestar system (panel b). Three prototypes were
placed within the wave basin for the experimental campaign, each mounted on a gantry by means of a
supporting structure. Four different layout configurations (layouts 0–3; panel c) are considered in
Reference 67, involving up to three different devices operating simultaneously within the basin.
Abbreviations: CB, center of buoyancy; CG, center of gravity; PTO, power take-off; SWL, still water level.

particular, both of those studies considered the same prototype system, described in this section.
The main difference is that Reference 66 considered a single prototype, while Reference 67 ex-
tended these experimental results by effectively implementingmoment-based control for different
arrays of WEC systems. Given the greater degree of generalization, this section focuses on the
results reported for the array case in Reference 67.

The experimental system considered in Reference 67, illustrated in Figure 9, is a small-scale
(1:20) prototype of the Wavestar WEC device (68), tested in the basin facilities available at the
Ocean and Coastal Engineering Laboratory at Aalborg University, Denmark, as part of a larger
experimental campaign in WEC modeling and control executed in September 2022 (69). The
system is composed of a floater connected through an arm to a pivoting point fixed in a reference
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frame. In the equilibrium position, the arm sits at ∼30° with respect to the horizontal reference
frame. The system is free to move in a single DOF and extracts energy from pitch motion (about
the reference point; see Figure 9) via the attached PTO (linear motor/generator) sitting on the
upper structural joint of the device arm (for further detail, see Reference 69). The dimensions of
the basin, the placement of the three prototypes, and the four layout configurations considered in
Reference 67 are shown in Figure 9.

To guarantee operation within the conditions computed via the optimal moment-based algo-
rithm (as described in Section 5.2), the optimal trajectories uopt and yopt are fed to an inner tracking
controller, which is in charge of robustly driving the system toward the designed conditions. To
achieve this, a proportional–integral–derivative (PID)–like continuous sliding mode controller is
used, as developed and proposed by Pérez-Ventura et al. (70). Estimation of the wave excitation
force, required for effective implementation of the optimal moment-based reference generation
procedure, uses relatively standard techniques, as described by Faedo et al. (66).

Within this experimental campaign, the time horizon T0 for optimal receding-horizon
moment-based trajectory generation (see Section 5.2) is set to 10 s, i.e., a fundamental frequency
ω0 ≈ 0.63 rad/s, while the final value for the dimension (order) of the corresponding extended
signal generator (as in Equation 20) is ν = 30, meaning that 15 harmonics of ω0 are considered
for the construction of λ(S). The moment-based generation sampling rate is set to 25 Hz, i.e.,
a sampling time 1h = 0.04 s, consistent with the experimental studies described by Ringwood
et al. (54) and Faedo et al. (66). Constraints are considered for the PTO forces, such that
fu � [−12.5,12.5] N·m for each device involved in any particular configuration, according to
the specifications for this particular prototype adopted by Ringwood et al. (54). For a detailed
account of the tuning rules used within the implementation presented in this section, we direct
readers to References 66 and 67.

Figure 10 presents an overview of the experimental performance results obtained within this
study, for all the tested layouts and sea states considered, including a comparison with an optimally
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Figure 10

Energy absorbed by each controller for every layout and sea state tested (top). The improvement ratio was obtained by considering the
moment-based control solution with respect to the benchmark (passive) controller (bottom).
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tuned benchmark (proportional–passive) controller (see, e.g., 5, 71). In particular, and directly
following the control objective in Equation 14, the mean absorbed energy for each full test is
considered, taking into account all the devices involved in a given configuration. This is presented
explicitly in Figure 10 for each layout, sea state, and control scenario considered.Note that values
of up to≈2.8 times the energy absorption can be obtained with respect to the benchmark (passive)
controller by exploiting moment-based WEC solutions, elucidating the major potential of this
framework also in experimental scenarios.

7. CONCLUSIONS

Effective commercialization of wave energy technology inherently requires appropriate control
technology that is able to maximize power capture from the wave resource and hence contribute
to lowering the associated levelized cost of energy. Nonetheless, the WEC control problem itself
does not represent a traditional (stabilization, tracking, or regulation) control objective but rather
depends on a suitably defined optimal control formulation, which needs to be solved efficiently
in real time. This review offers an overview of moment-based theory as applied to the WEC
control problem. We show that this formalism is ideal for solving the WEC control problem,
including effective parameterization and model reduction of potentially complex hydrodynamic
WEC models. The choice to parameterize the OCP in terms of moments, via a suitably defined
signal generator, results in computationally efficient solutions that allow real-time implementa-
tion even for arrays of WEC systems, as demonstrated by convincing experimental results. In
particular, leveraging tailored approximation methods enables the transition from linear to non-
linear WEC representations—required by the use of the control action itself (which effectively
enhances nonlinear behavior when attemptingmaximization of convertedmechanical energy)—to
be relatively smooth, guaranteeing the existence of globally optimal solutions, for both linear and
nonlinear cases, and hence allowing for the utilization of efficient numerical routines for real-time
implementation.
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