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Abstract: The Gulf of California has many regions of potential tidal-stream energy that have been
identified and characterized using in-situ measurements and numerical ocean models. The Midriff
Islands region has received particular attention due to its increased current speeds and high kinetic
energy. This increase in energy can be seen in the formation of internal wave packets propagating
for several hundred kilometers. Here we present a brief description of internal wave measurements
travel towards the Northern Gulf and explore energy generation sites. In this paper we characterize
the tidal inflow and outflow that passes throughout the Midriff Islands in the central part of the Gulf.
We use a three-dimensional numerical ocean model that adequately reproduces the tidal flow and
the increase in speed and kinetic energy between the islands. The current flow structure shows the
highest velocity cores near the shore and far from the bottom. During the rising tide, the maximum
current flow (~0.6 ms−1) was found between Turón Island and San Lorenzo Island, from the surface
to 200 m depth. When the currents flowed out of the Gulf, during the falling tide, the maximum
negative current (−0.8 ms−1) was found between Tiburon Island and Turón Island, from near the
surface to 80 m depth. Although there are favorable conditions for power generation potential by
tidal flows, the vertical variability of the current must be considered for field development and
equipment installation sites.

Keywords: modeling of tidal energy flows; “in situ” assessment; gulf of California; Midriff archipelago

1. Introduction

Tidal energy is unevenly distributed in the different oceans. It tends to be concentrated
near underwater sills and in narrow areas between islands. In these regions, strong tidal
currents arise, which transform part of the energy of the barotropic tidal flow into its
potential form, generating internal (baroclinic) tidal waves. These flows, together with
the barotropic flow, create a complex picture of dynamics in certain regions of the ocean.
Because internal waves create intense vertical movements, cause mixing of water layers,
and contribute to the redistribution of nutrients from the depths of the ocean to the surface,
they are being actively studied by scientists from different countries.

Large-amplitude internal tidal waves have been observed near submarine sills in
many regions of the world, in particular in the Gulf of California (GC) [1–4], along the
Pacific coast of Mexico, [5–8], as well as in many other regions of the world, such as in
the Andaman [9–13] and Sulu Seas [14,15]. Previous authors [16] consider that in general,
for the world ocean, the energy of the internal semidiurnal tide is 10–50% of that of the
barotropic tide. The ratio of the energy of the baroclinic tide to that of the barotropic tide
can be calculated from the following expression:

ζ =

N
∑

I=1
δ2

IWi
hi

δ2
BT H

(1)
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where δ2
IWi

is the variance of the current fluctuation caused by internal tides at the cor-
responding level; δ2

BT is the variance of the current due to the barotropic tide; hi is the
thickness of the i-th layer; and H is the bottom depth at the mooring, given by the equation:

H =
6

∑
i−1

hi (2)

Studies [17] have estimated that in a mooring installed in the northern Gulf of Califor-
nia, the baroclinic tide receives up to 45% of the energy from the barotropic tide, which is
close to the upper bound of the range suggested by [16], therefore the process by which
these internal waves are generated must be a very important source of energy.

Internal tidal waves in the sill area of the GC have been characterized using satellite
observations. [2] were the first to analyze Synthetic Aperture Radar (SAR) images in the
GC, and based on a simple nonlinear model of the Korteweg-de-Vries equation (KdV), they
determined that groups of short-period internal tidal waves with a semidiurnal periodicity
were generated at San Esteban sill during spring tides. [18] also used satellite images to
report on the initial stages of the distortion of the thermocline by tidal flows over San
Esteban Sill.

Although the process of internal tides is well known and the propagation and disinte-
gration of these internal waves has been studied, in order to identify particular high energy
sites, an analysis of the vertical structure of marine currents is required in the areas where
the most intense current flows occur. Herein we present the characterization of the vertical
structure (in depth) of the current that passes between the Islands using the output data
of a three-dimensional model. This place in the GC has been identified as one of the sites
with the highest kinetic energy and it is necessary to identify the characteristics of the flow
and determine the sites with the highest speed and energy of the current, which can occur
in the deep or superficial layers.

In Section 2 we present an overview of the study region in the central Gulf of California,
showing the islands and seamounts. In Section 3 we present the numerical model and
the methodology used to quantify the physical flux variables in the vertical depth section
between the islands. Finally, a description of numerical model results and the discussion is
presented in Section 4, with conclusions in Section 5.

2. Study Area

Large amplitude internal tidal waves are generated in the sill area of the productive
Gulf of California (GC), Mexico, which is located between an archipelago with several
channels that separate the northern and the central regions (Figure 1). The tides in the GC
are in co-oscillation with the Pacific Ocean and because of the length of the Gulf, they are
almost resonant to the semidiurnal tidal frequency [19]. These topographic and dynamic
features cause strong tidal currents in this area (up to 1.0 m s−1), which release a large
amount of turbulent kinetic energy that have an important impact on regional physics
and biology [6,20,21]. In [22], the results of numerical modeling of the baroclinic currents
generated by internal tides in the study area are discussed.

The region of the large midriff islands in the northern part of the GC is of great
scientific interest as an area of concentration of tidal energy entering from the ocean. This
part of the Gulf was the subject of active research in the 1980 by scientists from CICESE
(Center for Scientific Research and Higher Education, Ensenada, Mexico) and the Scripps
Institute of Oceanography, as part of the Pichicuco joint project to study the thermohaline
structure and dynamics of the Gulf of California [1].

The Gulf of California stretches for almost 1500 km from northwest to southeast,
between the Baja California Peninsula and western continental Mexico and is about 200 km
wide. The circulation in the Gulf is strongly influenced by the processes in the straits
connecting the Guaymas Basin with the northern part between 28◦ and 29◦ north latitudes.
The islands of San Lorenzo, San Esteban and Tiburon, each about 15 km wide, shorten the
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cross section of this part of the Gulf and dramatically increase the speed of tidal currents in
this area. The westernmost Ballenas-Salsipuedes channel has a depth of more than 1600 m
at its center. The central San Esteban channel is located between the islands of San Lorenzo
and San Esteban and is the widest. There is also a third channel between the islands of San
Esteban and Tiburon, which also plays a significant role in regional water exchange.
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Figure 1. (a) Study area in the Gulf of California. (b) Islands and inter-island channels in the area
of San Esteban Sill (courtesy of M. Lavin). The rectangle shows the location of the underwater sill.
(c) Vertical component of the tidal current velocity in the study area, calculated using the POM model.

3. Methodology
3.1. Numerical Model

As mentioned above, the highest concentration of kinetic energy in the Gulf occurs
in the Midriff Region, so the model configuration includes only this area with a relatively
high resolution compared to other models [23,24]. For this experiment, we used the
Princeton Ocean Model [25] that resolves the hydrostatic primitive equation under the
Boussinesq approximation. The model uses a sigma coordinate system in the vertical
direction, and the horizontal grid discretized in an Arakawa-C differencing scheme with
Cartesian coordinates (x, y), with 1-km horizontal resolution and 41 sigma levels in the
vertical direction. The initial conditions for velocity is zero and temperature and salinity
are specified in the entire domain as a uniform profile with no horizontal variation in order
to avoid pressure gradients.

The numerical domain (Figure 2a) has an open boundary condition at the left and
right (southeast and northwest in the gulf). The x coordinate is aligned in the along-gulf
direction and the y coordinate, in a cross-gulf direction, such that they are oriented toward
the northwest and southwest, respectively. In the left boundary condition, we used a time-
dependent tidal flow velocity as forcing while in the right boundary we used a radiation
condition of the normal velocity component. The model simulation was for 30 days and
reaches its dynamic equilibrium in the first 2 days. We analyze the most energetic day to
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represent the general scenario for inflow and outflow currents, on the assumption that
temporary variations only increase or decrease the intensity of the values but not the spatial
variability in depth. For detailed numerical model validation, see [22].
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Figure 2. (a) Bathymetry of the Midriff archipelago area in the Gulf of California. The transect (A-B)
used for quantitative estimates of the inflow and outflow of tidal energy. (b) depth profile showing
the three sections across the Gulf along the transect (A-B), from Tiburón Island (Tib) to Baja California
(BC), with Turón Island (Tur) and San Lorenzo Island (Lor) along the transect.

3.2. Variable Vertical Quantification for Each Depth Section

This contribution consists of quantifying and characterizing the flow passing through
the narrow section between the Island in the middle of the Gulf, in the across-gulf line
(Figure 2a) through the Island, which we consider as the entrance of the energy to the
Northern Gulf. All the analyses are based on the along-gulf component of the three-
dimensional ocean model velocity (u). Figure 2b, corresponds to a vertical section in depth
from point A in Tiburón Island (Tib) to point B in Baja California (BC), passing through
Turón Island (Tur) and San Lorenzo Island (Lor). As we have shown in Figure 2b, there are
three sections between the Islands, numbered (I), (II) and (III), where we calculate the area
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for each pass. Multiplying the velocity (u) in each node in the vertical cell area, we obtain
the volumetric flux (Q), given by:

Q = u · dy · dσ, (3)

where dy (=1000 m) is the numerical model horizontal resolution and dσ is the differential
between numerical model sigma-levels, which is variable according to depth H.

In order to calculate the kinetic energy (KE) during the tidal cycle, we used the expression:

KE =
1
2
ρou2 (4)

where ρo is the reference density and u the component of velocity in the direction along the
gulf. In this case, the KE units are Joules per cubic meter (J m−3 = Kg m2 s−2 m−3) that can
be multiplied by time (1 s) in order to obtain the KE in Watts per cubic meter (W m−3).

3.3. Measurements on a Submerged Mooring

To estimate the kinetic energy flux in situ, we used the data of the currents measured
on the mooring which was established to measure the disintegrations of internal waves
generated by the barotropic tide at the San Esteban sill. The measurements were carried out
at the end of September 2012 on board the R/V Francisco de Ulloa. The buoy was installed
in Tiburon Basin (−122.87◦ E, 28.93◦ N) at a seabed depth of 430 m, 32 km northwest of
San Esteban Sill (Figure 1c).

The ADCP Nortek 400 kHz was installed at 80 m depth measuring upward, at 17 levels
every 30 s, with a cell size of 400 cm. Due to the lack of sufficient battery capacity of the
device, measurements were conducted for only 2.25 days. A more detailed description of
these measurements can be found in [21].

4. Results and Discussion

The general circulation in the Gulf of California during the tidal cycle produces an
inflow and outflow that it is quite strong in some parts of the Gulf, reaching velocities
greater than 1.0 m s−1 principally between the Midriff Islands in the Central and Northern
Gulf [26–29]. When the tidal wave enters the Northwest area of the Gulf, it encounters
a narrowing in the central gulf at the Midriff Islands of reduced width and depth, and
therefore a considerable increase in velocity occurs.

One of the main processes that occur in the Gulf is the generation and propagation of
internal waves [2] by the hydraulic jump caused by the passage of the tidal wave over the
thresholds that extend between the mainland and the San Lorenzo, San Esteban and Tiburon
Islands (dashed line in Figure 2). These internal waves propagate for several hundred
kilometers, producing significant vertical movements that affect the biological productivity
of the region. Our model implementation can reproduce the principal characteristics of
internal wave patterns, shown in Figure 3 (upper panel), using the along-gulf velocity
component, that it is produced by the internal hydraulic jump in the San Esteban and San
Lorenzo Sills (Figure 3, lower panel). After accumulating large amounts of energy in the
region between the Islands, the turbulent kinetic energy dissipates towards the Northern
Gulf [6,22]. This internal wave generation is important and validated by the numerical
model used, and much of the energy generated is due to baroclinic processes that are
generally absent from the more-widely used 2D numerical ocean models.

4.1. Numerical Results

The reduced width and depth of the section through which the current flows produce
a significant increase in speed, with a significant increase in kinetic energy, as shown in
Figure 4, where the black arrows show the vertically-integrated velocity and the color
tones correspond to the kinetic energy in units of J m−3. The highest kinetic energy occurs
between the islands.
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Figure 4. Maps of eddy kinetic energy and vertical integrated velocity in the Gulf of California Great Island Region for tidal
inflow (a) and tidal out flow (b).

At the entrance to the Gulf, the width is ~193 km with a maximum depth of 4100 m,
whereas between the islands the width is 55 km with three sections that have depths
between 400 and 600 m (Figure 2). The area of each section is shown in Figure 2b, (I)
between Tiburon Island and Turón Island is 2393.41 km2, (II) between Turón Island and
San Lorenzo Island is 4924.75 km2 and, (III) between San Lorenzo Island and the coast of
Baja California is 5580.73 km2. Unexpectedly, the quantity of water that flows through each
section is not proportional to its area.
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Table 1 shows the calculated transport in Sverdrups (1 Sv = 106 m3 s−1) for the three
sections during the inflowing and outflowing tidal current. In the numerical experiment,
Section II is where the flows in both directions reach maximum values.

Table 1. Numerical values of the area and inflowing and outflowing transport in the depth sections
between the Midriff Islands.

Section Area (km2) Inflow Transport (Sv) Outflow Transport (Sv)

I 2393 1.13 −1.05
II 4924 1.75 −2.07
III 5580 1.39 −1.53

Figure 5 shows two depth profiles of the velocity component along the Gulf at the
three sections between the Islands. These velocity values correspond to times when the
inflow (Figure 4a) and the outflow (Figure 4b) are at their maximum. Velocities vary
throughout each section, with less intense currents occurring in Section III, with maximum
values of 0.5 m s−1 in the upper depths and lower speeds of 0.1 m s−1 between 200 m
depth and the bottom.
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The most intense currents were found in Section II, where values greater than 0.6 m s−1

occur on the Turón Island side from the surface to the bottom at 300 m deep. In Section I,
the inflow is baroclinic during the rising tide. In our model experiment, the intense current
flow towards the head of the Gulf in Section I occurs at the bottom and there is a soft core
of outflow near the surface.

These three-dimensional velocity sections represent the values at each numerical grid
node, however the velocity is in reference to the area of the cell to which it belongs, as it
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represents a fluid variable termed the volume flux, Q, in m3 s−1, seen for inflow (Figure 6
upper panel) and outflow (Figure 6 lower panel).
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To characterize the kinetic energy produced in each of these sections through which
the tidal wave passes in its progression towards the northern part of the Gulf, the kinetic
energy (KE) of the along-gulf component current is shown in Figure 7, corresponding to the
output data from the model, during the highest inflow and outflow. The results indicate
that the highest energy is concentrated at the sides of the Islands, being greater at the side
of Turón Island and near the coast of Baja California (see maps in Figures 4 and 7).

In the vertical direction, in the channel between Isla Tiburon and Isla Turón (Section
III), the highest concentration of KE occurs in the upper-layers/deeper-layer when tidal
currents are outflowing/inflowing (Figure 7a,b). In Section II, between Turón Island and
San Lorenzo Island, there are two cores of lower KE, one in the deep part extending to
the bottom at 400 m depth and another near the surface next to Turón Island between the
surface and 100 m deep (Figure 7a,b). In Section III, between San Lorenzo Island and the
Baja California peninsula, which is the channel with the largest area, the KE does not reach
the values of the other two sections, and the cores of high KE are located near the surface,
between the surface and 100 m deep for outflow, and between the surface and 300 m deep
for inflow (Figure 7a,b). Contrary to the other sections, when the current is outflowing,
only one core of intense KE is observed in Section II near the bottom.

Following [24] we calculated the Energy Production (EP) for a time lapse of one
day. Figure 7c shows the mean EP in KW h for 24 h, where we can see that between San
Lorenzo (LOR) and Turon (TUR) Islands (Section II) near the bottom and toward the Turon
Island and between Turon (TUR) and Tiburon (TIB) Islands, next to the Turon Island shore
showing high KE values between the Islands, These sites could be considered suitable for
the installation of alternative energy production equipment.
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4.2. Results of Field Measurements

When analyzing the model results of current velocities and kinetic energy values, we
used the previously obtained data from a moored ADCP Nortek 400 kHz, which was placed
north of the sill (Figures 1, 8 and 9) (details in [21]. The currents were measured every
4 m at 17 levels (from 80 to 12 m), with a time interval of 30 s. Horizontal currents were
rotated in an angle of 30◦ to the u-axis, i.e., along the direction of the tidal flow from the
sill to the northeast. This direction is shown by the bold dashed line in Figure 3a. During
the measurements, the maximum velocity of the horizontal currents in the indicated water
layer was approximately ±0.6 ms−1.
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the horizontal component v and (b) vertical component w of the current velocity. (c) a group of
large-amplitude solitons (wave heights of 55–70 m, periods of 12–15 min). (d) Vertical temperature
profiles measured near the mooring during the experiment (19 casts total).
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The horizontal and vertical components of currents at 62 m depth can be seen in
Figure 8. The moving stream included barotropic and baroclinic components, which cannot
be separated in our instrumental measurements, as this requires measurements in the entire
water column from the surface to bottom. However, we can make some important estimates.
As can be seen from Figure 8b, the baroclinic flow (vertical component of currents) caused
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by dispersive internal waves is significant and when groups of nonlinear waves (solitons)
pass the mooring, it reaches 30–40 cm s−1, which is comparable to the barotropic flow.

The vertical displacements of water layers were calculated using the mooring data.
This technique converts the time series of temperature into heights, for a determined depth,
based on the relationship: ∆ζz(t) = ζz(t1) − ζz(t0) = [T(t1)− T(t0)]/

(
dT/dz

)
, where

ζz(t1) and ζz(t0) are vertical displacements at level z times t1 and t0, which originate
temperature fluctuations T(t1), T(t0).

(
dT/dz

)
is the average vertical temperature gradi-

ent [20,30]. The average vertical temperature gradient was estimated using 3-h cast data
from the ship’s CTD SBE-19+ during the experiment.

Calculations have shown that the leading waves in the group have a height of over
70 m. They can be seen in the sea surface as smooth (divergence in the interior) and rough
zones (convergence in the interior), with stripes 200–300 m wide, extending across the Gulf.
They are also clearly visible in satellite imagery [2,3].

The horizontal flow velocities measured by the ADCP (Figure 9a) agree with the
model data, and the vertical-temporal variability of the kinetic energy calculated in the
measurement layers between 12 and 80 m levels (Figure 9b) also shows good agreement
with the measured data.

5. Conclusions

We present numerical ocean modelling results of depth-characterized flows between
the Midriff Islands in the Gulf of California, reported by many authors as potential zones
for possible production of renewable energy [12].

The numerical domain covers the region of the Midriff Islands and is forced only with
tidal flux, since it is the main forcing in the dynamics of the Gulf. The numerical model
adequately reproduces the increase in speed in this region and the passage of internal
wave patterns toward the lee of the islands during the inflow and outflow of the tidal
semidiurnal cycle, showing the increase in kinetic energy. The velocities obtained with our
three-dimensional model in the region are similar to those reported by [12]. Because this
area has been identified as a region with great potential for the production of renewable
energy, the temporal and depth characterization of flows that pass between the islands
provided herein are critical to consider in alternative energy channeling deployments.

We define a section in depth between Tiburon Island (TI) and the Baja California
(BC) coast that passes the Turón and San Lorenzo Islands (dashed line in Figure 2a), of
approximate width of 56 km where the velocity values of the current lead to the calculation
of the volumetric flows (Q) and the kinetic energy (KE). This section is where the tidal
inflow and outflow increase in velocity producing large amounts of kinetic energy (KE).

Our model results show that the transport is not proportional to the transversal area
of each section, with transport being greatest in Section II, with values of 1.75 Sv in inflow
and 2.07 Sv in outflow, between Turón and San Lorenzo Islands.

The characterization of the along-gulf velocity component shows spatial differences
for inflow and outflow. During the inflow, the highest velocity values are present in the
surface to bottom core of Section II, and reach values of 0.8 m s−1, while during the outflow,
the highest velocity values are present in the surface core of Section II and the bottom core
of Section I, with maximum values of 0.8 m s−1 as well. The lowest speeds are presented
in Section III, near BC, with maximum values of 0.5 m s−1 in surface layers. Our in-situ
measurements indicate that there are vertical movements of up to 70 m at 60 to 70 km
distance from the islands. We consider that it is important to study the propagation of
this energy associated with internal waves and to identify the process of evolution and
dispersion of these waves towards the upper gulf. Although there is high energy in the
area between the islands, the cores with the highest speed and kinetic energy are separated
from the shoreline and the seabed. These results are important for the consideration of
marine energy generation system installation.
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