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a b s t r a c t 

Renewable energy is an essential factor in guaranteeing the sustainability of society. In Japan, there have 

been developments to harness energy from the ocean. The Tsugaru strait, in the northern region of Japan, 

is an area that has attracted attention for this purpose. We propose a tidal/ocean power generator uti- 

lizing a Flaring Flanged Diffuser (FFD) to harness the power. However, for the power generators utilizing 

FFD to generate power at the optimal condition, design values based on the stream regimes need to be 

determined. In this paper, the objective is to forecast the design values of tidal/ocean power generators 

utilizing FFD. We are especially interested in the dimensions of the diffuser shape that relate to effective 

factors for increasing flow velocity. Fluid field data around FFD is obtained by experimentation. The fluid 

field data is measured by particle image velocimetry (PIV). The trained deep neural network can forecast 

design values from a given fluid field. Moreover, we can recognize correlations between the changes in 

design values and the increase of fluid velocity. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Renewable energy is an essential factor in guaranteeing the sus- 

ainability of society. At present, almost all of the energy in the 

orld relies on fossil fuels. Renewable energy is expected as a re- 

lacement for non-renewable energy sources. 

To effectively harness the energy in any condition, researchers 

eed to predict the trend of natural phenomena. Mathematical 

odels are used to predict a trend of flow (e.g., tidal flow, wind). 

iu, Li, Billinton, Wang and Yu (2015) use Wakeby distribution 

or the modeling of tidal current speed. Jónsdóttir and Milano 

2020) constructed stochastic models to predict wind power fluc- 

uations and tidal flow power in the all-island Irish transmission 

ystem. To efficiently obtain energy from the source, there have 

een also attempts to control the power plant by mathematical 

odels. Marei, Mokhtar and El-Sattar (2015) propose the MPPT 

maximum power point tracking) strategy of AWS (Archimedes 
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ave swinging)-based wave energy conversion system . The un- 

cented Kalman filter algorithm is used to estimate the float ve- 

ocity. Suchithra, Ezhilsabareesh and Samad (2019) propose the 

EPT (best efficiency point tracking) method of wave energy con- 

erter by higher-order sliding mode controller. Lust, Bailin and 

lack (2021) performed the model experiment of the H-Darrieus 

ross-flow hydrokinetic turbine. Han, Jung and Hwang (2021) clar- 

fied the optimal layout of a tidal current turbine farm in a shal- 

ow channel to maximize power production by numerical simula- 

ion. High-resolution rapid refresh model and computational fluid 

ynamics are used to study dynamic line ratings ( Abboud et al., 

019 ). Bayesian network is used to forecast load ( Bessani, Massig- 

an, Santos, London & Maciel, 2020 ). These studies are conducted 

y using mathematical models without the use of machine learn- 

ng. 

On the other hand, machine learning is focused as one of the 

ethods to manage renewable energy. There have been studies 

f machine learning for forecasting ocean energy, like wave en- 

rgy and tidal energy. Bento, Pombo, Mendes, Calado and Mari- 

no (2021) optimized deep learning neural networks to forecast 

he wave energy flux and other wave parameters. Moth-frame op- 

imization is used to modulate configurations of networks and 

nput data. Aly forecasts tidal current constitution by a hybrid 
 under the CC BY-NC-ND license 
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Fig. 1. Schematic illustration of tidal/ocean power generator with “Flaring Flanged 

Diffuser” (FFD). 

Fig. 2. The concept illustration of machine learning architecture to optimize design- 

ing of tidal/ocean power generator. 
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odel of wavelet neural network, artificial neural network (ANN), 

ourier Series based on least squares, and Recurrent Kalman Fil- 

er ( Aly, 2020 b). Machine learning is also used to control ocean 

ower plants. Amundarain, Alberdi, Garrido, Garrido and de la Sen 

2012) controlled a wave power plant by ANN and improved per- 

ormance during voltage dips in the grid. M’zoughi, Garrido, Gar- 

ido, La Sen and De La (2020) constructed an ANN-based air- 

ow control system of oscillating water column (OWC) to pre- 

ent stalling phenomena. This ANN forecasts the velocity of air- 

ow from the amplitude and period of the wave. M’zoughi, Gar- 

ido, Garrido and De La Sen (2020) constructed a rotational speed 

ontrol system of the turbine in OWC by ANN-based MPPT. This 

NN forecasts the rotational speed of the turbine from the ampli- 

ude and period of the wave. Ghefiri, Bouallègue, Garrido, Garrido 

nd Haggège (2018) Forecast the proper rotational speed and the 

lade pitch angle of tidal stream generator from the flow veloc- 

ty by multi-layer ANN. In addition, machine learning is used to 

orecast wind velocity and energy ( Bastos, Oliveira & Milidiú, 2021 ; 

an, Li, Zhou & Tang, 2021 ; Liu, Zhou & Qian, 2021 ; Toubeau et al.,

021 ). These forecasts can be used for the control of wind power 

lants. Machine learning is also used in PV (Photovoltaic) systems 

s a battery smoothing controller using total sky images ( Ryu, Ishii 

 Hayashi, 2021 ). The load, where to use energy, is also forecasted 

y machine learning ( Aly, 2020 a; Atef & Eltawil, 2020 ; Chen, Wang,

ang & Li, 2019 ; Khwaja, Anpalagan, Naeem & Venkatesh, 2020 ; 

emarzadeh & Keynia, 2021 ; Sideratos, Ikonomopoulos & Hatziar- 

yriou, 2020 ; Wen, Xie, Fan & Feng, 2020 b, 2020 a; Zheng, Wang,

iu & Liu, 2019 ; Zhu, Geng & Wang, 2021 ). There has also been

 study of load disaggregation by machine learning ( Xia, Wang, 

hang & Xu, 2019 ). Machine learning is used in not only engineer- 

ng but economics. Riddervold, Riemer-Sørensen, Szederjesi and 

orpås (2020) propose methods to predict the bidding strategy in 

eservoir hydro. 

In this study, we focus on ocean energy, especially the energy 

rom ocean/tidal flow. According to the review article on ocean 

ower technology by Wilberforce et al. (2019) , the potential es- 

imate for tidal energy was given as 3TW. Ocean energy plants 

ave merits: the equipment space does not require land use, which 

an be expensive or scarce, and the energy density is higher than 

ir. The social acceptance of ocean energy is considered. The case 

tudy of an OWC shoreline plant of Mutriku provides an analysis of 

he social acceptance of ocean energy plants ( Heras-Saizarbitoria, 

amanillo & Laskurain, 2013 ). In Japan, there are developments to 

arness energy from the ocean. In the southern region of Japan, 

here is a 100 kW class prototype subsea floating type ocean cur- 

ent power generation system "Kairyu." The demonstration test of 

airyu was conducted in the waters off the coast of Kuchinoshima, 

oshima, Kagoshima Prefecture New Energy and Industrial Tech- 

ology Development Organization (2021) . 

The Tsugaru strait, in the northern region of Japan, is an area 

hat has attracted attention for the utilization of tidal/ocean en- 

rgy. Unidirectional tidal and ocean flow with high energy density 

rifts between the main island and Hokkaido Island. Energy har- 

esting, equipping multiple tidal/ocean power generators in The 

sugaru strait, has shown to be effective. There have been many 

ays in which these methods can be improved. We propose a 

idal/ocean power generator utilizing a Flaring Flanged Diffuser 

FFD), as shown in Fig. 1 , to harness the power effectively. The flar-

ng shape and the flange increase the tidal/ocean flow velocity, and 

table energy can be extracted. 

However, for the power generators utilizing FFD to generate 

ower in the optimal condition, design values based on the stream 

egime need to be determined. Although there have been some 

ontrol methods of ocean power generators, a method to forecast 

esign value has not yet been established. Our research group in- 

estigates the optimal designing of tidal/ocean power generator by 
2 
achine learning architecture. The concept of whole structure is 

hown in Fig. 2 . 

The architecture inputs boundary condition and whole design 

alues, and outputs the spec of the tidal/ocean power generator. 

n the hidden layer, spatio-temporal fluid field information is con- 

idered. As a first step, the relation between fluid field and design 

alue is needed. 

In this paper, the objective is to forecast the design value of 

idal/ocean power generators utilizing FFD. We are especially inter- 

sted in the dimensions of the diffuser shape that relate to effec- 

ive factors for increasing flow velocity. This is our new challenge 

nd there are no comparisons. To achieve the objective, deep learn- 

ng is used to describe the relationship between the velocity field 

nd the design values. To obtain learning data, model experiments 

ased on measurement in The Tsugaru strait are conducted. First, 

ovies of fluid flow with particles are recorded by a high-speed 

amera in model experiments by a 2-dimensional slitted tank. For 

implicity, we conducted a 2-dimensional experiment. Second, the 
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Fig. 3. Shapes of Flaring Flanged Diffuser (FFD) model. No. 0 is the basic shape of the diffuser. Flange length h , outlet diameter D ’ (that depends on opening angle), and 

full-length L are changed, respectively. 

d

l

s

i

t

2

t

i

m

2

s

f

b

f

j

t

w

t

F

b  

a

e

4  

p

fl

m

i

t

2

v

a

o

m

a

i

s

7

l

t

H

c

fi

i

i

r  

fl

m

f

o

l  

a

a

p

3

3

l

l

w

e

a

J

p

n

d

v  
ata of flow velocity field is obtained by the particle image ve- 

ocimetry (PIV) method. Then, deep learning describes the relation- 

hip between input data and output data. The velocity field data 

s input data, and the design value data is output data. Finally, a 

rained deep neural network can forecast design values. 

. Materials and methods for measuring fluid field 

Fluid field data around the Flaring Flanged Diffuser (FFD) is ob- 

ained in experiments. The fluid field data is measured by particle 

mage velocimetry (PIV). In this section, the details of the experi- 

ental operations are explained. 

.1. Materials 

First, the diffuser model is manufactured as follows. Fig. 3 

hows the shapes of the FFD model. 

Mehmood, Liang and Khan (2012) clarified that a flaring dif- 

user increases fluid velocity. The jet stream would be generated 

y the low internal pressure that is caused by the uplifting ef- 

ect of the flaring shape. In addition, we confirmed that a stable 

et stream is being generated by adding a flange on the outlet of 

he diffuser. Ring vortex is generated downstream. This ring vortex 

ould extend the low-pressure region. Considering these accelera- 

ion effects of fluid velocity, FFD is employed in this study. 

Two-dimensional FFD models are manufactured by changing 

lange length h , outlet diameter D ’, and full-length L based on the 

asic shape of the diffuser, No. 0 as shown in Fig. 3 . Note as an

side, outlet diameter D ’ depends on opening angle. These mod- 

ls are made from a clear acrylic resin. The width of the model is 

0 mm, which is the same as the width of the tank used in ex-

eriments. Then, the model experiments are conducted in a steady 

ow circulation tank, as shown in Fig. 4 . The circulation tank is 

ade of acrylic resin and has a rectifier board with holes in its 

nlet and outlet. A magnet pump generates the steady flow of the 

ank with a maximum flow rate of 900 cm 

3 /s. 

.2. Methods 

Fluid field data is measured by PIV as follows. First, mainstream 

elocity is modified by generating steady flow circulation without 
3 
 diffuser. The velocity is modified based on the flow conditions 

f the Tsugaru Strait. In the Tsugaru strait, the energy density is 

inimized in summer duration. The fluid velocity is 87.7 cm/s at 

 depth of 10 m in this duration. The fluid velocity in the model 

s downscaled as 16.5 cm/s, 1/ 
√ 

28 of original velocity, by Froude 

imilarity. To conduct PIV, polystyrene particles with a diameter of 

0 μm (Thermo Fisher, 4230A) are dispersed in the tank. A blue 

aser irradiates the particles with 1 W power to observe their mo- 

ion. A high-speed camera with a frame rate of 200 fps (Direct, 

AS-L1) is used to record the movies of the motion of the parti- 

les irradiated by a blue laser. 

By analyzing the movies (continuous images) by PIV, the fluid 

eld data is obtained. ImageJ, image processing software, is used 

n PIV analysis. PIV analysis confirmed that main stream veloc- 

ty reaches target value (16.5 cm/s) with 750cm 

3 /s of pump’s flow 

ate. And then, the FFD model is installed as shown in Fig. 4 . The

uid field data is obtained by observing flow conditions around the 

odel using PIV. Since the tank and the diffuser model are made 

rom clear acrylic resin, the blue laser can pass through the regions 

f the diffuser model. It is confirmed that the effect of scattered 

ight is negligible. The coordinate is set as Fig. 4 . The origin O is

t the bottom of the downstream, the positive direction of the x - 

xis points to the upstream, and the positive direction of the z -axis 

oints upward in a vertical direction. 

. Making data of fluid field and forecasting design values 

.1. Making data of fluid field 

Using the fluid field data obtained by the experiment, the re- 

ation between the FDD model’s fluid field and design values is 

earned by a deep learning model. The learned deep neural net- 

ork can forecast design value from the desired fluid field. The 

nvironment of machine learning is as follows. Python is used 

s a programming language. Integrated development environment 

upyter Notebook is used to write and execute the program. 

The fluid field data is stored in NumPy arrays in the Python 

rogramming language. Before the execution of deep learning, it is 

eeded to store the data in an array. The experimental data, coor- 

inate value ( x and z ), and horizontal/vertical velocity speed ( u and 

 ) are recorded in a CSV file. The CSV interface library in Python is
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Fig. 4. Experimental setting with steady flow circulation tank. 

Table 1 

Quantities of meshes of position data. 

No. of Diffuser Shape x range y range 

0 35 47 

1 36 47 

2 36 47 

3 35 47 

4 35 47 

5 35 47 

6 35 47 

7 35 47 

8 35 47 

9 35 48 

10 35 47 

11 35 47 

12 48 47 
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Fig. 5. The detail of the fluid field tensor shape. The tensor has 5 dimensions. In 

deep learning, only horizontal velocity u is used. 
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sed to store the data. The quantity of meshes of position data de- 

ends on the shape of the diffuser model as Table 1 . 

Thus, to store whole data, a 3-dimensional array with the shape 

f 2 × 48 × 48 is adopted. The first element indicates the direction 

f velocity, u and v . The second and third elements respectively 

ndicate the x and z position. In deep learning, only horizontal ve- 

ocity u is used. The quantity of movie frames and shape varia- 

ions are also considered. The shortest movie has 4900 frames. 13 

inds of diffuser models were made. Thus, the whole tensor shape 

s 2 × 13 × 4900 × 48 × 48. The detail of the fluid field tensor shape

s shown in Fig. 5 . 

In learning by the deep neural network, the fluid field data is 

nputted as a one-dimensional tensor. Fluid velocity series on the 

 -axis at y = 0 are stored in an array, and this operation is repeated

y changing the value of y . This fluid field tensor is transformed by 

unction f to input fully connected neural network as follows. 

f : R 

n d ×n v ×n t ×n x ×n y → R 

n d n v n t ×n x n y (1) 

here n d denotes the number of diffuser shapes, n v denotes the 

umber of fluid flow directions, n t denotes the number of time 

rame, n x denotes the number of segments for x -axis, and n y de- 

otes the number of segments for y -axis, respectively. In deep 

earning, the number n v is one since only horizontal velocity u is 

sed. The number n n v n t denotes the number of sample data. The 
d 

4 
umber n x n y denotes the size of tensor that is inputted to a deep

eural network. 

Fig. 6 shows a screenshot of the movie and a color gradation of 

tored data. By comparing the movie and the stored data, it is con- 

rmed that the data can describe the fluid field since the fluid ve- 

ocity in the central region is higher than the velocity of the upper 

nd bottom region. To conduct deep learning, it is better to nor- 

alize the data to be within the region of [ −1, 1] ( Chollet, 2017 ).

hus, all velocity data is divided by the maximum flow speed in 

he data. Performing the above processing, 127,400 sets of fluid 

eld data are obtained from the data by PIV analysis. Fig. 6 (b) 

hows the color contour of experimental data. The color gradation 

hows the magnitude of the horizontal fluid velocity u . The red 

olor indicates a faster one, and the blue color indicates a slower 

ne. The white color indicates average velocity. Originally, there is 

o fluid velocity in the region covered by the diffuser. However, to 

nput a deep learning network, this region has the average velocity 

s padding data. In the same way, the region outside of the data 
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Fig. 6. (a)Screenshot of the movie and (b)color contour of fluid field in experiment. 

Fig. 7. Schematic diagram of the deep neural network to forecast design values. The size of the tensor is compressed from 2304 to 1024, 256, 64, and 3 by going through 

the dense layer. 
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ange has the average velocity as padding data. As shown in Fig. 

 (b), the fluid velocity in the central area is faster, and the velocity 

s slower on the downside and upper side. Thus, the increase of 

uid velocity is observed. 

.2. Architecture of deep learning for forecasting design values 

By using a deep neural network, the design value forecast is 

erformed from fluid field data. The schematic diagram of the ar- 

hitecture of the deep neural network is shown in Fig. 7 . Dense 

ayers are adopted. The relation between the input and the output 

f the layer is as follows. 

 n +1 = σ ( W n z n + b n ) , (2) 

here z n and z n + 1 denotes the input and output tensor respec- 

ively. W n and b n denote the weight and bias tensor respectively. 

unction s is sigmoid function as follows. 

( s ) = 

1 

1 + e −s 
, (3) 

here s denotes a variable. In the calculation, this function is ap- 

lied to each element in the variable tensor. To smoothly output 

he design value data and adequately compress the information, 

he quantity of nodes (the size of output tensor) smoothly de- 

reases from the quantity of input data to that of output data. 

inary cross-entropy B ( T,z n ) is used as the loss function. Function 

 ( T,z n ) is as follows. 

 ( T i , z N,i ) = −[ T i log ( z N,i ) + ( 1 − T i ) log ( 1 − z N,i ) ] , (4) 

Where T i is true value, and z N,i is predicted value on the out- 

ut of final layer. i denotes element number of the output of final 
5 
ayer, and it also denotes flange length h , outlet diameter D’ , or 

ull-length L . Adam ( Kingma & Ba, 2014 ) is used to search mini-

al value of the loss function for adjusting weight tensor W n and 

ias tensor b n . This is a simple way of deep learning, however, this 

ethod could be applied to the design of tidal/ocean power gen- 

rator. 

By using the trained deep neural network, forecasting design 

alues from a given fluid field is performed. In the strait with var- 

ous fluid fields, a flexible design method is needed. The trained 

eep neural network would be a good guideline to search opti- 

al design values to increase fluid velocity magnitude. To perform 

 search of optimal design values, evaluations of the deep neural 

etwork are conducted as follows. First, the errors in 13 kinds of 

iffusers are obtained by inputting given training data (fluid field). 

econd, forecasted design values are evaluated by inputting the un- 

nown data of which fluid velocity is changed. 

. Results and discussions 

A deep neural network is trained to fit the fluid field data and 

esign value data. Accumulating epochs, the accuracy goes 100%, 

nd the loss goes 0.478. The neural network needs 30 epochs of 

earning to obtain enough accuracy to forecast design values. 

.1. Evaluation of error for forecasting design values 

Design values are forecasted by the learned deep neural net- 

ork. In this section, the error between forecast value and exper- 

mental given value is discussed. For every thirteen kinds of dif- 

user design, ten fluid field data are randomly sampled. The design 
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Fig. 8. Comparisons of forecast errors of flange length h , outlet diameter D ’, and full-length L . Horizontal axis shows design value h , D ,’ and L on (a), (b), and (c), respectively. 

The vertical axis shows forecast error by the deep neural network. 
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alues are forecasted using these 130 data. Fig. 8 shows compar- 

sons of the errors. The horizontal axis shows design values h , D ’, 

nd L . Vertical axis shows forecast error by the deep neural net- 

ork. A plot shows the average error of 10 forecast values. An er- 

or bar shows the maximum and minimum errors. The errors are 

ithin almost ±0.1%. Thus, it could be expected that design values 

re forecasted with high accuracy using unknown fluid field data 

uch as interpolation of experimental data. 

Figure 8 (a) shows the comparison of forecast errors of h , D ’, and

 by changing flange length h . Increasing flange length h , the error 

ecreases to near 0%. This would be because of flow stability. In- 

reasing flange length h , the flow outside of diffuser is difficult to 

isturb the flow inside of diffuser. Because of this effect, the flow 

nside of diffuser is stable. Thus, the recognition of fluid field data 

ould be easier. Figure 8 (b) shows the comparison of forecast er- 

ors of h , D ’, and L by changing outlet diameter D .’ There is an

utlier in the errors. This is because the fluid field data that is dif-

cult to recognize would be sampled. Figure 8 (c) shows the com- 

arison of forecast errors of h , D ’, and L by changing full-length L .

ncreasing full-length L , the error decreases to near 0%. This would 

e because of flow stability. Increasing whole length L , the flow 

utside of diffuser is difficult to disturb the flow inside of diffuser. 

ecause of this effect, the flow inside of diffuser is stable. Thus, the 

ecognition of fluid field data would be easier. 

.2. Forecasting design values when fluid velocity is magnified 

Finally, magnifications of design values are discussed when the 

uid velocity on the inside region of the diffuser is magnified. It 

eans that the correlation between fluid velocity and design val- 

es is clarified, and it is expected that the changing scheme of de- 

ign values is clarified to obtain a higher magnification of fluid ve- 

ocity. 

First, fluid velocity in input data is magnified. The magnified 

uid field data is shown in Fig. 9 . 

As shown in Fig. 9 (b), the fluid velocity is magnified in the cen-

ral area of the fluid field. Inputting the magnified fluid field data 

o a deep neural network, magnifications (changes) of design val- 

es are obtained. The fluid field data with 13 kinds of design val- 

es are used. The data is sampled on the same frame. The design 

alues with non-magnified fluid velocity are called h 0 , D ’ 0 , and L 0, 

espectively. The forecasted design values h , D ’, and L are investi- 

ated to clarify the correlation between fluid velocity and design 

alues. 

Figure 10 shows the relation between the magnification of fluid 

elocity v / v and the magnification of design values h / h , D ’/ D ’ ,
0 0 0 

6 
nd L / L 0 . The horizontal axis shows the magnification of fluid ve- 

ocity v / v 0 and is on a logarithmic scale. The vertical axis shows

he magnification of design values; flange length h / h 0 , outlet diam- 

ter D ’/ D ’ 0 , and full-length L / L 0 . The solid line shows the average

agnification of h / h 0 , D ’/ D ’ 0 , and L / L 0 in 13 kinds of design values.

he colored area shows the sample standard deviation of h / h 0 , D ’/

 ’ 0 , and L / L 0 . 

First, there is a correlation between lengthening flange length 

 and increase fluid velocity v , as shown in Fig. 10 (a). On the av-

rage value, flange length h increases by about 1.15 times. Consid- 

ring the sample standard deviation, the increase of flange length 

 is between 0.95 and 1.35 times. It indicates an approximate 35% 

f increase of flange length h at the maximum. Some values in- 

icate a decrease of h . However, since the rate of decrease is low 

nd the amount of data is fewer than the others, it is adequate 

o express that the flange length h increases. Moreover, the flange 

ength h decreases on the design value No.3 and No.4 in 13 kinds 

f designs. Then, there is a correlation between slightly lengthen- 

ng outlet diameter D ’ and increase fluid velocity v , as shown in 

ig. 10 (b). On the average value, outlet diameter D ’ increases by 

.03 times, 3% of the increase. Although the sample standard devi- 

tion is considered, the increase of outlet diameter D ’ is between 

.95 and 1.1 times. The rate of magnification is lower than in the 

ther case. Lastly, there is a correlation between shortening full- 

ength L and increase fluid velocity v , as shown in Fig. 10 (c). On

he average value, full-length L decreases by 0.91 times. Consid- 

ring the sample standard deviation, the increase of full-length L 

s between 0.77 and 1.06 times. It indicates an approximate 23% 

f decrease of full-length L at the maximum. Some values indicate 

n increase of L . However, since the rate of increase is low and 

he amount of data is fewer than the others, it is adequate to ex- 

ress that the full-length L decreases. Moreover, the full-length L 

ncreases on the design value No.9 and No.10 in 13 kinds of de- 

igns. 

In conclusion, there is a trend of correlation between "increase 

f flange length", "slight increase of outlet diameter", "decrease of 

he whole length", and "increase of fluid velocity". Although there 

re some standard deviations in 13 kinds of designs, this trend 

f correlation will contribute to the decision of design value of 

idal/ocean power generators utilizing FFD. 

Fig. 10 shows the limitation of the model. Variances of pre- 

icted design value increases by getting as far away from the 

rue value(experimental value). However, the limitation of ac- 

uracy can be extended if the model learns with experimen- 

al data with new condition. Additionally, we aim to measure 

he fluid field in 3D experimental setting as Fig. 11 . This 3D 
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Fig. 9. (a)Original fluid field data and (b)magnified fluid field data. On (b), the fluid velocity is magnified in the central area by ten times. 

Fig. 10. Relation between the magnification of fluid velocity v / v 0 and the magnification of design values; (a)flange length h / h 0 , (b)outlet diameter D ’/ D ’ 0 , and (c)full length 

L / L 0 . Horizontal axis shows the magnification of fluid velocity v / v 0 , and is on logarithmic scale. Vertical axis shows the magnification of design values; flange length h / h 0 , 

outlet diameter D ’/ D ’ 0 , and full length L / L 0 . 

Fig. 11. Experimental setting to measure the fluid field in 3D. Two blue lasers irra- 

diates the particle in the fluid. 
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uid field data will contribute to verify the validation of the 

odel. 

. Conclusion 

In this paper, the objective was to forecast the design value of 

idal/ocean power generators with Flaring Flanged Diffuser (FFD). 

e were especially interested in the dimensions of the diffuser 

hape that relate to effective factor for increasing flow velocity. 

Fluid field data around FFD is obtained by experimentation. The 

uid field data is measured by particle image velocimetry (PIV). 
7 
Forecasting design values from a given fluid field is performed 

y the trained deep neural network. The errors are within almost 

0.1%. Thus, it could be expected that design values are forecasted 

ith high accuracy using unknown fluid field data such as inter- 

olation of experimental data. Now, we can decide design values 

ased on the stream regime to efficiently extract tidal/ocean en- 

rgy by each power generator utilizing FFD in the strait with vari- 

us streams. 

We also investigated the correlation between fluid velocity and 

esign values. There is a trend of correlation between "increase 

f flange length", "slight increase of outlet diameter", "decrease 

f whole length", and "increase of fluid velocity". This trend of 

orrelation will contribute to the decision of the design value of 

idal/ocean power generators utilizing FFD. 

As a future work, the proposed method will be applied to 

he developments of ocean power generators in various stream 

egimes. 
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