

Experimental assessment of the effect of water depth on mooring line tensions for two different WEC mooring configurations under solitary waves

Álvaro Gallardo Rivera

Gonzalo Tampier, Patricio Winckle, José Ahumada

Barranquilla 22 of January 2024

Resource

Significant wave height [m] - Average of 2020

Resource

Significant wave height [m] - Average of 2020

*Source: Ringwood, John and Brandle, Gabriel (2015) A new world map for wave power with a focus on variability. Proceedings of the 11th European Wave and Tidal Energy Conference. ISSN 2309-1983

Tsunamis in Chile

- On average, one tsunami every 14 years
- WEC expected service life: 20 years

Local Conditions in Chile

RESOURCE / COSTS

Local Conditions in Chile

The tsunami phenomenon

L>> HLinear behavior

Wave transformationNon-linear behavior

Tsunami modelling

Wave transformation

Initial wave profile

Bathymetry

Wave-structure interaction

Run-up, inundation

Methodology

- Physical model
- 1:75 scale
- Solitary waves
- Generic models
- Simple bathymetry

Generic WEC models

Point absorber

Experimental setup

			nFS [m]	n/nmax				
	P1	0.700	52.50	1				
	P2	0.467	34.88	0.66			Line	
	P3	0.413	30.53	0.58				
	P4	0.359	26.25	0.50		1-4		
	P5	0.189	13.43	0.26				
	3907		 	3545		995 1	013	2957
		I	2 5		P4	P3	P2	
X			1					
			1		1			

Waves

Results: horizontal mooring

Results: vertical mooring

Conclusions and future work

- Results can be considered for mooring, technology and site selection.
- Depth and mooring configuration are crucial for survaviability evaluation of WEC.
- Vertical mooring has minimum wave forces.
- Numerical model needed to study more realistic conditions
- Compare this forces with extreme sea states

Thank you!

alvaro.gallardo@uach.cl