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A B S T R A C T

In recent years, there has been a notable increase in interest towards Flexible Wave Energy Converters
(FlexWECs). These flexible energy harvesters solve structural design challenges faced by rigid-body WECs
by responding to external loading by changing shapes. Typically, the structures are made from rubber-like
materials which pose few challenges from a material modelling point of view. Firstly, the material is in the
finite strain regime requiring a hyperelastic modelling approach, but more critically the material response is
expected to change during the operational lifetime. There is softening from both time-dependent viscoelasticity
and micro-void growth caused by fatigue loading. The goal of this paper is to understand the latter mechanism
and how it manifests within a membrane. To account for this damage accumulation, the gradient-enhanced
nonlocal damage model is coupled to a hyperelastic Neo-Hookean constitutive law. The framework has been
implemented in the commercial finite element software ABAQUS by exploiting its fully coupled thermo-
mechanical formulation. A parametric study is performed on two FlexWEC archetypes: a submerged pressure
differential and a floating bulge wave attenuator. The performance evaluation of these devices is carried out by
analysing the evolution of the pressure–volume relation and pressure-stretch relation, respectively. The results
show that the nonlocal aspects of damage in the pressure differential FlexWECs are small due to membrane
action, but the saturation of damage does affect the pressure–volume function of each membrane. However,
in the case of attenuator, the damage regularisation plays a crucial role in its behaviour due to the steep
stress gradient from the crest of the wave. The outcomes from these analyses suggest FlexWEC design is
advantageous from a fatigue loading perspective as it always reaches an equilibrium state which minimises
the stress-differential, reducing the likelihood of localised crack growth.
1. Introduction

Since the latter half of the 20th century, ocean wave energy has
been actively investigated as a promising renewable energy resource.
Owing to its abundance and high energy density (Clément et al.,
2002), wave energy presents a huge opportunity to help countries
meet their net-zero targets. Conventional wave energy converter de-
signs have captured this energy using a rigid body hydrodynamic
interface, e.g., floater, buoy, pitching flap etc. The kinetic energy of
this interface is converted to electrical energy at a Power Take-Off
(PTO) (Yemm et al., 2012; LLC, 2022) . However, there has been a lack
of breakthrough designs achieving commercialisation, contrary to other
renewable energy technologies. This is partly due to the significant
engineering challenges from corrosive mechanisms and highly variable
loading cycles; a stormy sea state can be an order of magnitude
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greater than a calm one. To withstand these harsh conditions, wave
energy devices consist of large heavy metallic machinery with a high
capital expenditure and low operational bandwidth. To address these
issues, wave energy developers, academics and governmental bodies
have made a paradigm shift to more compliant structures, with the
aim of improving reliability, efficiency and cost. Even within flexible
structure designs, there is a hierarchy of integration. Flexible Wave
Energy Converter (FlexWEC) patents date back to the 1970s (French,
1979), with renewed interest in 2010s (Farley and Rainey, 2011). These
designs replace the rigid body primary mover with a membrane-like
structure which can adapt to external loading through changing shape.
However, they still keep rigid elements such as the PTO and housing
structure (Babarit, 2018; Pecher and Kofoed, 2017; Milani et al., 2023;
Renzi et al., 2021; Abad et al., 2023).
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Direct Generation (DG) (Anon, 2023d) and Distributed Energy Con-
verter Technologies (DEEC-Tec) (Anon, 2023b) fully integrate the en-
ergy generation into the compliant structure, leading to potentially
even greater cost savings. This can be achieved using Dielectric Elas-
tomer Generators (DEGs) (Moretti et al., 2020b; Koh et al., 2010) and
Dielectric Fluid Generators (DFGs) (Duranti et al., 2017) which harvest
energy through the principle of varying capacitance. The two funded
design competitions by Wave Energy Scotland (WES) (Anon, 2023a)
and the US Department of Energy (Anon, 2023c) aim to provide the first
steps in concept design generation of these technologies. For a review
of the state-of-the-art FlexWEC and Direct Generation technologies,
see Collins et al. (2021) and Moretti et al. (2020a).

One crucial consideration when designing these WECs revolves
around the selection of the appropriate material. FlexWECs can experi-
ence strains of up to 100%, while DG WECs may go beyond 200% due
to the necessity of varying capacitance. Additionally, for an economi-
cally viable design, these structures must endure a substantial number
of cycles, ranging from 106 to 107 cycles. To meet these demanding
equirements, elastomeric composites emerge as a promising choice
ue to their exceptional stretchability and well-documented fatigue
esistance [REF]. However, working with elastomers introduces its own
et of challenges, including changes in mechanical properties due to
iscoelasticity and fatigue. Collins et al. (2023) have demonstrated that
iscoelasticity can lead to issues such as creep and alterations in the
ressurisation properties of pneumatic FlexWECs. It is worth noting
hat the levels of hysteresis remained relatively low when strains were
elow 100%. On the other hand, fatigue damage results in a gradual
oftening of the material over tens of thousands of cycles, which has the
otential to adversely affect the performance of the device, i.e. lower
perational bandwidth from a reduced pressurisation window (Esmaeili
t al., 2023). Furthermore, it is important to consider that this softening
rocess may be further exacerbated by other sources of damage, such
s chemical ageing and biofouling caused by the marine environment.
onsequently, gaining a comprehensive understanding of the device’s
erformance throughout the entire material life cycle becomes crucial,
s it allows to make accurate predictions regarding the decay in power
utput over time. This understanding is not only critical for forecasting
erformance degradation but also for minimising the risk of catas-
rophic failures resulting from the development of significant cracks in
he material and structural instabilities.

From a numerical perspective, computational mechanics models
epresent a vital tool for validating different design configurations.
n quasi-brittle materials, the formation of macro-cracks through the
oncentration of micro-cracks is modelled using Continuum Damage
echanics (CDM) with two main approaches. The first approach is

ased on the local action of stress concentration and the development
f cracks (Holzapfel, 2000). One of the earliest studies in this field
as due to Kachanov (1958) wherein a reduction in the stress-bearing
rea is considered to model creep failure. A detailed review of local
ethods can be found in Krajcinovic and Lemaitre (1987) and Lemaitre

nd Chaboche (1990). One of the main disadvantages of these local
ethods is that they fail to give meaningful results due to the loss of

llipticity. Hence the mathematical system becomes ill-posed and fails
o converge. This is also apparent from the mesh-dependent nature
f the damage zone. On top of that such a theory assumes that the
aterial is homogeneous at every length scale, however in reality,

here exists a length scale below which the material is heterogeneous.
ence, the nonlocal distribution of damage becomes necessary. The

econd approach is generally referred to as the nonlocal damage model
hich ensures the nonlocality by introducing an internal length scale
arameter which regularises the damage. This can further be accom-
lished by two approaches namely integral-type and gradient type.
or instance, Bažant and Jirásek (2002) and Bažant and Pijaudier-
abot (1988) used an integral-based formulation in which the spatially
eighted averages of the internal variable is introduced as a nonlocal
2

ariable for the damage regularisation. However, these come with
complications related to linearisation and add to the computational
effort (Waffenschmidt et al., 2014). On the other hand, the gradient-
based approach introduces higher-order gradient terms of the nonlocal
variables, see Lasry and Belytschko (1988), Mühlhaus and Alfantis
(1991), Polizzotto et al. (1998), Eringen and Wegner (2003), Umesh
and Rajagopal (2019), Rawat et al. (2021). This results in an ad-
ditional Euler–Lagrange equation and its boundary condition in the
nonlocal variable. Readers are directed to some of the pioneering
works on gradient-based damage models by Pamin (1994), de Borst
and Pamin (1996), Peerlings et al. (1996a,b), Dimitrijevic and Hackl
(2007), Liebe et al. (2001), Steinmann (1999). Recently Waffenschmidt
et al. (2014) provided a detailed algorithmic implementation of a
nonlocal gradient-enhanced continuum damage model at finite strains.

Phase-field modelling is another class of nonlocal damage models
which concentrate on a finite zone with steep gradients in the vicinity
of discontinuity due to cracks. de Borst and Verhoosel (2016) provides a
detailed comparison between gradient-enhanced and phase-field nonlo-
cal damage models. Despite the numerous advantages of the phase-field
models (Denli et al., 2020; Konica and Sain, 2023; Dal et al., 2022), a
gradient-enhanced model is of more interest due to its ease of imple-
mentation in a commercial software such as through the interface of
the user subroutine (UMAT) format of ABAQUS, whereas a phase-field
nonlocal model requires the implementation at an element formulation
level. This was shown by Ostwald et al. (2019), where the similarity
of the gradient-based damage model with the steady-state tempera-
ture equation is explored to use a coupled temperature–displacement
element (already devised in ABAQUS) to simulate the evolution of
damage. The finite strain formulations followed the same derivation
process as performed by Waffenschmidt et al. (2014).

Modelling damage is not the full story since the geometry of the
WEC needs to be accurately discretised and modelled under the ap-
propriate boundary conditions. For WECs, it is necessary to perform
a fluid–structure interaction (FSI) analysis. Although using membrane-
like structures presents a significant numerical challenge, due to the
strong inertial effects of the fluid acting on the membrane. As a result,
previous studies have simplified the model using analytical representa-
tions for membrane mechanics, see earlier work by Selby and Shannon
(2009). Some studies have tried to couple CFD with FEM, although the
computational cost remains too significant for widely accepted use.

In this work, there were two main goals: firstly to understand how
damage affects the device under different loading conditions. Secondly,
to understand the effect of nonlocality of the damage accumulation and
the resulting failure mode shape. To achieve these goals, as a first step
we adopted the already devised methodology presented by Ostwald
et al. (2019) for finite element simulations. The finite strain hyperelas-
ticity model is coupled with gradient enhanced nonlocal damage model
to predict the onset and the propagation of damage. The FlexWEC
style devices and strain duty (<100%) were chosen to keep consistent
with the previous work of Collins et al. (2023). Since the damage
mechanisms are the primary focus of this work, the FSI problem is
simplified to only consider the performance of the membrane structure
to the changing external fluid pressure. This is achieved by decoupling
the external force from the membrane deformation and is assumed to
be a function of the wave height thereby resulting in a quasi-static
condition. Numerous literature can be found that use such methodology
to simplify the analysis (Selby and Shannon, 2009; Eriksson et al., 2016;
Bonet et al., 2000; Verron et al., 2001; Coelho et al., 2014).

This paper is organised into the following sections: Section 2 pro-
vides a detailed overview of a gradient-enhanced damage model. Here
we talk about the kinematics of the problem, strain energy enhance-
ment, key governing equations leading to the coupled boundary value
problem. Further, this section also explains the ABAQUS implemen-
tation using the UMAT format and damage evolution, irreversibility
condition leading to the update of the history variable using a Newton–
Raphson scheme. In Section 3, numerical validation of our ABAQUS

implementation is demonstrated through two examples available in the



Applied Ocean Research 142 (2024) 103843D. George et al.

c
t
s
d

𝐅

a
a
a
p

s
u
v
(

e

𝛹

i
f
s

𝑓

w
i
o
t

𝛱

literature. Section 4 deals with the numerical examples and parametric
study of two classical FlexWECs namely a stadium geometry and a tube
geometry. This is followed by a detailed discussion on the effects of
damage mechanisms on the performance of each device. Further, the
study is concluded with a brief summary and conclusions in Section 5.

2. Numerical implementation of a gradient-enhanced nonlocal
damage model

This section gives an elaborate description of the algorithmic forms
of a gradient-enhanced nonlocal damage model and its ABAQUS im-
plementation. Noteworthy to mention here that ABAQUS or any other
user-friendly commercial software does not have any nonlocal damage
models implemented as a standard scheme. Hence, the UMAT subrou-
tine interface of ABAQUS enabling a user to implement any custom
constitutive models is adopted here. Fig. 1 illustrates the solution proce-
dure in ABAQUS UMAT originally designed for a thermo-mechanically
coupled problem which is exploited here as it has algorithmic similar-
ities with a gradient-enhanced nonlocal damage model. The input file
contains all the information about the model such as geometry, mesh,
material parameters, and boundary conditions. The file is submitted for
analysis using ABAQUS COMMAND in conjunction with the UMAT.for
file (in FORTRAN format). For the efficient calculation of results,
the UMAT subroutine requires the calculation of six parameters as
described in Table 1 for a coupled temperature–displacement problem
(same as in the case of nonlocal damage model). Once the solution
process is finished, ABAQUS CAE is used to view the results stored in
the ∗ .odb file. Furthermore, suitable Python and Matlab scripts can be
used to generate the figures presented in this work.

The first and foremost step in solving a continuum problem at finite
strain is establishing its kinematics. The deformation of a body can be
mathematically expressed in terms of a mapping 𝜑 which relates its
final coordinates to the initial coordinates. Let 𝐱 = 𝜑(𝐗, 𝑡) denotes the
deformation map of a body represented by 0 ⊂ R3 at the reference
onfiguration and  ⊂ R3 at the current configuration where 𝐗 denotes
he reference configuration such that 𝐗 ∈ 0 and 𝐱 ∈  represents the
patial configuration. The two-point deformation gradient tensor 𝐅 is
efined by the referential gradient of the deformation map as

=
𝜕𝜑
𝜕𝐗

= 𝛁𝟎𝝋 (1)

nd 𝐽 = det𝐅 is the Jacobian of the deformation gradient 𝐅. In order to
ccount for the nearly-incompressible behaviour of rubber-like materi-
ls, the deformation gradient is usually decomposed into a volumetric
art and an isochoric part, i.e., 𝐅 = 𝐅vol𝐅iso = 𝐅vol𝐅̄, where 𝐅vol = 𝐽

1
3 𝐈,

𝐈𝑖𝑗 = 𝛿𝑖𝑗 . This classical decomposition usually used for rubber-like
materials results in a volumetric–isochoric decomposition of the total
energy function, i.e. 𝛹int = 𝛹vol(𝐽 )+𝛹iso(𝐅̄). The damage regularisation
is achieved by adding the nonlocal contribution of damage progression
to the standard strain energy density function. Thus the enhanced
energy density reads as:

𝛹int(𝐅, 𝜙,𝛁0𝜙, 𝑘) = 𝛹vol
loc (𝐽 )+𝑓 (𝑘)𝛹 iso

loc (𝐅̄)+𝛹grad
nloc (𝐅,𝛁0𝜙)+𝛹plty

nloc(𝜙, 𝑘) (2)

Here, 𝑘 is the history variable and 𝜙 is the nonlocal damage variable.
In Eq. (2), 𝑓 (𝑘) denotes the damage function which degrades only the
isochoric part of the energy density (𝛹 iso

loc (𝐅)) such that

𝑓 (𝑘) ∶ R+ → (0, 1] |
{

𝑓 (0) = 1, lim
𝑘→+∞

𝑓 (𝑘) → 0
}

(3)

As standard, the local contribution is decomposed into volumetric and
isochoric components such that 𝛹vol

loc (𝐽 ) = 𝐾
2
[𝐽 − 1]2 and 𝛹 iso

loc (𝐅̄) =
𝜇
2
[

𝐼1 − 3
]

, where 𝐼1 = tr(𝐅̄𝑇 ⋅ 𝐅̄) and 𝐾 is the bulk modulus, 𝜇 is the
hear modulus. Note that, for simplicity, we take simple forms of vol-
metric and isochoric parts of the energy function. For more advanced
olumetric and isochoric energy functions, see Hossain and Steinmann
3

2013), Steinmann et al. (2012). Further, the nonlocal contribution is
Fig. 1. Flowchart illustrating the solution strategy of ABAQUS and variable definitions
using user subroutines UMAT and UMATHT.

Table 1
Overview of the variables that need to be defined in the UMAT subroutine for a coupled
temperature–displacement problem.

UMAT variable Definition

STRESS Cauchy’s stress
DDSDDE Jacobian matrix
DDSDDT Variation of stress increments with respect to temperature
RPL Volumetric heat generation
DRPLDE Variation of stress with respect to strain increments
DRPLDT Variation of RPL with respect to temperature

added in two steps as 𝛹grad
nloc =

𝑐𝑑
2
𝛁0𝜙 ⋅ 𝐂−1 ⋅ 𝛁0𝜙 =

𝑐𝑑
2
𝛁𝜙 ⋅ 𝛁𝜙 and

𝛹plty
nloc =

𝛽𝑑
2

[𝜙 − 𝑘]2 such that 𝛹grad
nloc introduces the gradient of 𝜙 and

𝛹plty
nloc adds a penalty for the difference between 𝜙 and 𝑘. Therein, 𝑐𝑑 is

the damage regularisation parameter 𝛽𝑑 is the penalty parameter and
the material and spatial gradients are related by 𝛁0𝜙 = 𝛁𝜙 ⋅ 𝐅 where
𝛁 = 𝜕

𝜕𝐱
. The present work assumes a hyperelastic behaviour of the

membrane material and adopts the classical nearly incompressible Neo-
Hookean model for the strain energy density function for simplicity.
However, other advanced strain energy functions suitable for hypere-
lastic materials are straightforward to apply. Further incorporating the
definitions of 𝛹grad

nloc and 𝛹plty
nloc, the internal contribution of the strain

nergy density becomes

int(𝐅, 𝜙,𝛁0𝜙, 𝑘) =
𝐾
2
[𝐽 − 1]2 + 𝑓 (𝑘)

𝜇
2
[

𝐼1 − 3
]

+
𝑐𝑑
2
𝛁0𝜙 ⋅ 𝐂−1 ⋅ 𝛁0𝜙 +

𝛽𝑑
2

[𝜙 − 𝑘]2 (4)

The present study assumes that the damage in rubber-like materials
s concentrated on the isochoric part of the strain energy density
unction, see Jha et al. (2019). A common choice of 𝑓 (𝑘) is adopted
atisfying equation Eq. (3)

(𝑘) ∶= 𝑒(−𝜂𝑑 [𝑘−𝑘𝑑 ]) (5)

here 𝜂𝑑 is the damage saturation parameter and 𝑘𝑑 is the damage
nitiation parameter. Now the total potential energy of the system is
btained by integrating the total strain energy density function over
he entire domain, e.g.,

tot = 𝛱int +𝛱ext (6)

= 𝛹int + 𝛹vol
ext + 𝛹 sur

ext (7)
∫0
∫0

∫𝜕0
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where 𝛹vol
ext and 𝛹 sur

ext represent the body force per unit volume and the
raction force per unit area in the reference configuration, respectively.
y invoking the principle of minimum potential energy and applying
he product rule and Gauss’ divergence theorem, the strong forms in
eference configuration are obtained as

𝛁0 ⋅ 𝐏 + 𝐁 = 𝟎 in 0 (8)

𝐏 ⋅ 𝐍 = 𝐓 on 𝜕0 (9)

𝛁0 ⋅ 𝐘 + 𝑌 = 0 in 0 (10)

𝐘 ⋅ 𝐍 = 0 on  (11)

where, the first Piola stress 𝐏 = 𝜕𝐅𝛹int and 𝐘 = 𝜕𝛁0𝜙𝛹int are flux
terms and 𝑌 = −𝜕𝜙𝛹 and 𝐁 are source terms. The corresponding
trong forms in the spatial configuration are obtained by performing
he transformations on flux-like quantities as 𝐲 = 𝐽−1𝐘𝐅𝑇 and source
erms as 𝐛 = 𝐽−1𝐁, leading to

𝛁 ⋅ 𝝈 + 𝐛 = 𝟎 in  (12)

𝝈 ⋅ 𝐧 = 𝐭 on 𝜎 (13)

− 𝑐𝑑𝛁 ⋅ [𝛁𝜙] = 𝛽𝑑 [𝑘 − 𝜙] in  (14)

𝛁𝜙 ⋅ 𝐧 = 0 on  (15)

ere, the damage variable (𝜙) satisfies the zero flux condition in the
hole boundary resulting in the so-called natural boundary condition.
ollowing the standard definition, the second Piola–Kirchhoff’s stress is
xpressed as (Hossain and Steinmann, 2013; Steinmann et al., 2012)

= 𝐒vol + 𝐒iso, (16)

= 2
𝜕𝛹int
𝜕𝐂

= 𝐾𝐽 [𝐽 − 1] 𝐈 + 𝑓 (𝑘)𝜇𝐽−2∕3
[

I − 1
3
𝐂−1 ⊗ 𝐂

]

∶ 𝐈 (17)

here, I𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑘𝛿𝑗𝑙 and 𝐈𝑖𝑗 = 𝛿𝑖𝑗 . Since ABAQUS requires the evaluation
f Cauchy stress 𝝈, the push-forward operation is employed and the
esult is stored in a Voigt notation in the variable STRESS,

= 𝐽−1𝐅 ⋅ 𝐒 ⋅ 𝐅. (18)

imilarly, the tangent matrix is also defined as follows:

𝑖𝑗𝑘𝑙 =
1
𝐽

[

𝐹𝑖𝐼𝐹𝑗𝐽𝐹𝑘𝐾𝐹𝑙𝐿𝐶𝐼𝐽𝐾𝐿+ 1
2
[

𝛿𝑖𝑘𝜎𝑗𝑙 +𝛿𝑗𝑙𝜎𝑖𝑘+𝛿𝑖𝑙𝜎𝑗𝑘+𝛿𝑗𝑘𝜎𝑖𝑙
]

]

(19)

where

𝐶𝐼𝐽𝐾𝐿 = 2
𝜕𝑆𝐼𝐽
𝐶𝐾𝐿

(20)

he tangent matrix d thus calculated is stored in a Voigt (matrix–
ector) notation in the variable DDSDDE of ABAQUS. The necessary
ngredients required for the UMAT implementation of a hyperelastic
roblem is complete now. However, the computation of the fully
oupled tangent matrix requires the calculation of some additional vari-
bles. The variation of the stress with respect to the damage variable
s defined as
d𝝈
d𝜙 = 𝐅 ⋅

d𝐒
d𝜙 ⋅ 𝐅𝑇 (21)

which is stored in the variable 𝙳𝙳𝚂𝙳𝙳𝚃. Now the damage component of
the algorithm needs to be defined. Firstly the damage source term is
stored in the variable RPL following Eq. (14) as

𝑟𝜃 = 𝑟𝜙 = 𝚁𝙿𝙻 = 𝛽𝑑 [𝑘 − 𝜙] (22)

Please note that in the current implementation damage variable 𝜙 and
temperature variable (𝜃) are analogous. Further the sensitivities of RPL
with respect to the damage variable and strain need to be defined
where,

𝙳𝚁𝙿𝙻𝙳𝚃 =
d(𝚁𝙿𝙻)

d𝜙 = 𝛽𝑑

[

d𝑘
d𝜙 − 1

]

(23)

𝚁𝙿𝙻𝙳𝙴 = 𝐅 ⋅
d(𝚁𝙿𝙻)

⋅ 𝐅𝑇 = 𝛽 𝐅 ⋅
d𝑘

⋅ 𝐅𝑇 (24)
4

d𝐂 𝑑 d𝐂
he current UMAT is implemented in the set of reference configuration.
ence, the push forward operation is required to obtain the correspond-

ng values of relevant quantities (e.g., stress in Eq. (16) and tangent
perator in Eq. (20)) in the current configuration.

.1. Weak forms and linearisation

The coupled system of equations is solved in the finite element
ramework by establishing the weak forms and the corresponding
esiduals as follows

𝐫𝑢 = ∫
𝝈 ∶ 𝛁𝐰𝑢d𝑣 − ∫

𝐛 ⋅ 𝐰𝑢d𝑣 − ∫𝛤𝑛
𝐭 ⋅ 𝐰𝑢d𝑎 = 𝟎,∀𝐰𝑢 ∈ 𝐮 (25)

𝜙 = ∫
𝛁𝜙 ⋅ 𝛁𝑤𝜙d𝑣 − ∫

𝛽𝑑 (𝑘 − 𝜙)𝑤𝜙d𝑣 = 0,∀𝑤𝜙 ∈ 𝜙 (26)

here, 𝐮 and 𝜙 are the test function spaces for the displacement
ield 𝐮 and nonlocal damage field 𝜙, respectively. Further, the lin-
arised system of equations of the coupled problem can be represented
n an element level as
𝐊𝑒

𝑢𝑢 𝐊𝑒
𝑢𝜙

𝐊𝑒
𝜙𝑢 𝐊𝑒

𝜙𝜙

]

[

𝛥𝐮𝑒
𝛥𝜙𝑒

]

=

[

𝐫𝑒𝑢
r𝑒𝜙

]

(27)

here,

𝑒
𝑢𝑢 =

d𝐫𝑒𝑢
d𝐮 ; 𝐊𝑒

𝑢𝜙 =
d𝐫𝑒𝑢
d𝜙 ; 𝐊𝑒

𝜙𝑢 =
dr𝑒𝜙
d𝐮 ; 𝐊𝑒

𝜙𝜙 =
dr𝑒𝜙
d𝜙

It is important to note that the weak forms and the subsequent lineari-
sation presented here illustrate the coupled system for a compressible
material. However, when the material response approaches incompress-
ibility, the displacement formulation often cannot yield meaningful
results. Due to the high ratio of bulk to shear modulus, the stiffness
matrix becomes singular for nearly incompressible problems. Moreover,
the stress values can exhibit large oscillations at integration points
within an element, unless a reduced integration is used. Numerous
techniques like mixed formulation, three-field formulation, selective
reduced integration with hourglass control, enhanced-strain method, 𝐅̄
method etc. exist in the literature to overcome this problem (Kadapa
and Hossain, 2022; Kadapa et al., 2016; Kadapa, 2019; de Souza
Neto et al., 1996; Neto et al., 2005). ABAQUS uses a mixed for-
mulation in which a new variable to represent the volume change
𝐽 is introduced (Anon, 2021). Further, the strain energy density is
augmented by introducing the constraint 𝐽 − 𝐽 = 0 with the help of
a Lagrangian multiplier 𝑝̂ = − 𝜕𝑈 (𝐽 )

𝜕𝐽
. The formulation can be accessed

by using hybrid elements in conjunction with the total formulation in
ABAQUS UMAT. 𝐽 is made available in UMAT at STRESS(NTENS+1)
s a read only variable where NTENS is the number of independent

stress variables. Further, the following additional derivatives need to
be supplied in UMAT: 𝐾̂ = 𝜕2𝑈

𝜕𝐽2 and 𝜕𝐾̂
𝜕𝐽

at STRESS(NTENS+2)
and STRESS(NTENS+3) respectively. Thus a nearly incompressible
problem can be solved effectively in ABAQUS using hybrid elements.

2.2. Damage evolution and irreversibility

The previous section fully defines the coupled system whereby the
sensitivities of the stress and the damage source with respect to the
field variables are defined. However, the damage initiation and its
irreversibility condition need to be addressed. In order to understand
both conditions, the thermodynamics of the damage process needs to
be explored. Following the procedure put forward by Waffenschmidt
et al. (2014), the thermodynamic driving force of the damage can be
expressed as

𝑔 = −
𝜕𝛹int
𝜕𝑑

= 𝛹iso + 𝛽𝑑 [𝜙 − 𝑘] 𝜕𝑘
𝜕𝑑

(28)

where, 𝑑 = 1 − 𝑓 (𝑘) gives the extend of damage such that

𝑑 =

{

0 pristine
(29)
1 fully damaged
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Fig. 2. A 3D-block under compression: sketch of the problem with boundary conditions, displacement profile and comparison of mesh convergence results with Kadapa and Hossain
(2022).
Fig. 3. Comparison of load–displacement curves with that of Ostwald et al. (2019).
Black lines represent the undamaged case whereas the red lines represent the damaged
case for 𝜂𝑑 = 0.002 MPa−1. Further the dotted lines correspond to Ostwald’s results and
the firm lines are that of the current simulation results.

Now a damage condition function 𝛷𝑑 ≤ 0 can be defined to describe
the state of the material such that

𝛷𝑑

{

< 0 elastic
= 0 damage

(30)

Now the damage condition is defined in terms of the history variable
as

𝛷𝑑 = 𝑔 − 𝑘 ≤ 0 (31)

Further, the damage irreversibility is ensured by the so-called Karush–
Kuhn–Tucker condition where,

𝑘̇ ≥ 0, 𝛷𝑑 ≤ 0, 𝑘̇𝛷𝑑 = 0 (32)

Since Eq. (31) is nonlinear in 𝑘, the value of 𝑘 for the current increment
is sought in an implicit Backward Euler scheme using the Newton–
Raphson method, where the implicit scheme ensures an unconditional
stability. Thus the updated 𝑘 is evaluated as

𝑘𝑛+1 = 𝑘𝑛 + 𝛥𝑘𝑛+1 (33)

where,

𝛥𝑘𝑝+1𝑛+1 = 𝛥𝑘𝑝𝑛+1 −

[d𝛷𝑑 |𝑘𝑝𝑛+1

d𝛥𝑘𝑝𝑛+1

]−1

𝛷𝑑 |𝑘𝑝𝑛+1
(34)

Here, 𝑝 denotes the Newton–Raphson iteration and 𝑛 corresponds to
the load step number. Thus the updated history variable 𝑘 satisfying
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Eq. (31) is used to calculate the degradation function 𝑓 (𝑘) leading to
the assessment of the extend of damage 𝑑.

3. Validation of the UMAT implementation

In this section, the UMAT implementation of the damage model
is validated against other published data. This is done in two steps.
Firstly, the competence of the nearly incompressible implementation is
validated against the well-known example of 3-D block under compres-
sion. This is important because the hybrid elements used in ABAQUS
are made effective in nearly incompressible regimes by altering the
UMAT to account for the modified variable 𝐽 . In the second example,
the gradient-enhanced damage model is validated for a compressible
Neo-Hookean problem wherein a rigid sphere penetrates a plate which
undergoes damage. The results are compared with those presented
by Ostwald et al. (2019).

3.1. Quasi-incompressibility: Block under compression

In this example, the UMAT is compared against a three-field formu-
lation using the case of a block under compression. The results of the
three-field formulation are extracted from Kadapa and Hossain (2022)
following a Neo-Hookean material model having the following strain
energy density.

𝛹loc =
𝜇
2
[𝐼1 − 3] + 𝐾

2
[ln(𝐽 )]2 (35)

The corresponding second Piola stress is defined as

𝐒 = 𝜇𝐽−2∕3
[

I − 1
3
𝐂−1 ⊗ 𝐂

]

∶ 𝐈 +𝐾ln(𝐽 )𝐂−1 (36)

A quarter of the block is modelled using appropriate boundary con-
ditions via its symmetry. Fig. 2(a) represents the part of unit dimensions
modelled in ABAQUS. The numerical tests are carried out using two
different pressure values; 320 MPa and 160 MPa applied in the area
marked in the sketch. The Young’s modulus is taken as 𝐸 = 240.565MPa
and the quasi-incompressibility of the problem is ensured by setting the
Poison’s ratio 𝜈 = 0.4999. Damage progression is disabled in UMAT for
this example. The deformed configuration of the block for a pressure
value of 320MPa is illustrated in the Fig. 2(b). Further, the maximum
vertical displacement referred to as compressibility is shown in Fig. 2(c)
against four different mesh sizes illustrating good convergence. The
hybrid coupled temperature–displacement element C3D8HT is used
here and the results show good agreement with that of the three-field
formulation presented in Kadapa and Hossain (2022).
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Fig. 4. Comparison of the contour plots of von Mises stress and damage field 𝑑 with that of Ostwald et al. (2019). Here the damage field 𝑑 is stored as SDV2 in the UMAT
implementation.
3.2. Nonlocal damage model: Contact problem

In this example, a plate indentation test is simulated where a
rigid sphere penetrates a specimen undergoing damage. A rectangular
block of dimension 200 mm × 100 mm × 15 mm is indented with
a rigid sphere. A quarter of the geometry is modelled with symmet-
ric boundary conditions, using 10,000-C3D8T coupled temperature–
displacement elements. The sphere is set to penetrate the plate by
3.3 mm and a frictionless boundary is used between them. The Young’s
modulus and Poison’s ratio are 210 GPa and 0.3 respectively. A com-
pressible Neo-Hookean material model is here.

𝛹loc = 𝑓 (𝑘)
[

𝜇
2
[𝐼1 − 3] − 𝜇ln(𝐽 ) + 𝜆

2
[ln(𝐽 )]2

]

(37)

where, the Lame’s constants are given by 𝜆 = 𝐸𝜈
[1 + 𝜈][1 − 2𝜈]

and

𝜇 = 𝐸
2[1 + 𝜈]

. The corresponding second Piola stress is defined as

𝐒 = 𝑓 (𝑘)
[

𝜇[𝐈 − 𝐂−1] + 𝜆ln(𝐽 )𝐂−1
]

(38)

Fig. 3 represents a comparison of the normalised reaction force
versus indentation depth plot for the current UMAT and the Ostwald
et al. (2019) results. The plot shows good agreement for undamaged
and damaged cases (𝜂𝑑 = 0.002 MPa−1). Further, Fig. 4 illustrates the
contour plots of von Mises stress and damage variable 𝑑 in the de-
formed configuration. The damage contours of both Ostwald’s and the
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current UMAT implementations match showing the maximum damage
values of 39.54% and 40.38%, respectively. Further, the simulation
result shows a von Mises stress of 39.7 GPa which is comparable to
that of Ostwald’s results. Thus the two examples illustrated confirm the
efficacy of the gradient enhanced nonlocal damage model implemented
in the UMAT.

4. Damage analysis for selected FlexWECs

The extreme loads encountered by a wave energy device is largely
a result of the wave conditions and subsequent hydrodynamic loads
on the structure. The structural response of a WEC is influenced by
the control system and tuning of the device, i.e., the Power Take-
Off (PTO) system. For a rigid-body structure, the device typically
enters a survival state whereby the device locked or with minimal
movement where the hydrostatic stiffness is increased significantly.
The load concentrates about a point, e.g. the hinge between two
moving bodies, resulting in a high stress concentration and a potential
fatigue failure. An analysis here may utilise traditional accumulative
damage laws (Zurkinden et al., 2013; Ambühl et al., 2015), and fracture
mechanics approaches (Shittu et al., 2021).

In comparison, a pressurised FlexWEC can be deflated to minimise
loading to enter its survivability state. Therefore, the highest loads
are more likely to occur in operation, hence an ‘extreme state’ here
is referred to when the structure is the furthest away from its initial
equilibrium position coinciding with the maximum force applied. By
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Fig. 5. Hydrostatic boundary conditions for a stadium membrane geometry. Here 𝛱1 and 𝛱2 represent the cutting plane normal to the top view of the membrane passing through
the corresponding dotted lines shown. The outline of the membrane thus obtained is referred to as 𝛱1 and 𝛱2 splines respectively.
Fig. 6. Mesh convergence results for stadium geometry using C3D8HT elements. The
number of elements of 36270 shows good convergence and is adopted in the following
studies.

considering the classification for flexible wave energy converters as
proposed in Collins et al. (2021), two case studies are analysed here:
a submerged air-filled stadia membrane and a water filled near-surface
cylindrical tube. These membrane-based FlexWECs respond to loading
through changes in deformed shape. Since the designs presented in this
section are pressurised volumes, the working fluid is controlled via a
pressure regulator. Therefore, these analyses are pressure controlled to
achieve the deformation modes under the external hydrostatic condi-
tions. In reality, it is expected that the nonlinearities of the surrounding
fluid would play a significant part in the external hydrodynamics and
the subsequent deformed shape, however, this is beyond the scope of
the current investigation. As the membrane occupies different deformed
shapes and the stress is dispersed over a wide area, the crack growth
occurs in more of a diffused sense with micro-void formation occurring
all over the membrane surface. The severity of the crack formation is
witnessed as a reduction in the stress following the classic continuum
damage theory of Lemaitre and Chaboche (1990). The nonlocal aspect
of the model presented in Section 2 allows for an understanding of
the non-homogeneous softening as a result of micro-softening and how
this influences the structural behaviour of the device. The effects of
softening are twofold: firstly it changes the limit point of the structure,
i.e., the point at which structure will fail. Secondly, the softening
changes the natural frequency and operation parameters of the device.
Therefore, it is an important aspect of consideration from a design
longevity and energy harvesting perspective.

The stadium and tubular case studies are given in Section 4.1 and
Section 4.2, respectively. For each section, the geometry and boundary
conditions are presented. Following this, the two analyses are per-
formed, firstly a failure mode analysis illustrating the expected failure
when comparing a damaged and undamaged membrane. Secondly, a
parametric study is performed whereby, the damage saturation, thresh-
old, and gradient are modified. It should be noted that the membrane
7

clamping mechanisms in both analyses were simplified. The goal of this
study was to see how damage affects the global membrane mechanics.

4.1. Submerged pressure-differential geometry (stadium geometry)

A submerged pressure differential is a device situated on the subsur-
face, which harvests energy due to induced pressure variations caused
by wave motion on the surface. Several devices and concepts exist in
the literature proposing flexible membranes as the interface such as the
mWave by Bombora (Ryan and Ryan, 2017; Leighton et al., 2021), m3
Wave (McNatt et al., 2014; Babarit et al., 2017), balloon configuration
by Kurniawan and Greaves (2016), dual-membrane converter by Milani
et al. (2023), and dielectric elastomer WEC by Righi et al. (2021). In
these devices, the membrane encloses an air-filled cell which acts as
a pneumatic pump corresponding to the wave cycle, either using an
air-turbine or dielectric elastomer generator to convert the mechanical
energy to electricity. The previous paper by Collins et al. (2023) uses
a circular disc angled 40 degrees with pre-strains of 25% and 50%.
From the interest of nonlocal damage, different amount of stretch
result in different degrees of damage. Therefore, the dimensions of the
case study in Collins et al. (2023) is increased longitudinally to create
a stadium-shaped membrane resulting in non-equibiaxial strain. The
dimensions and boundary conditions are not based on any real-world
design and remain fictitious in this study.

4.1.1. Geometry and boundary conditions
This case study employs a stadium-shaped membrane with two

planes of symmetry; see Fig. 5 for information on the size and mesh
chosen. A pre-strain of 25% is applied in the short axis. To ensure there
was no boundary condition related effects, a ring of perimeter elements
with no damage applied was included in the analysis which was ignored
in the final simulation. In Eq. (39), the membrane pressure is given
which is the summation of internal air 𝑃air and external hydrostatic
pressure 𝑃hydro acting over surface 𝑆,

𝑃mem = ∬𝑆

(

𝑃air − 𝑃hydro
)

𝑑𝑆 (39)

where the hydrostatic pressure 𝑃hydro is a function of water density 𝜌w,
gravity 𝑔 and the coordinate system ℎ(𝑥, 𝑦, 𝑧)

𝑃hydro = 𝜌w𝑔ℎ(𝑥, 𝑦, 𝑧) (40)

The internal air pressure is given based on ideal gas laws, i.e.,

𝑃air(𝑡) =
𝑛𝑅𝑇
𝑉

(41)

where 𝑛, 𝑅 and 𝑇 refer to the number of moles, universal gas constant
(8.31 JK−1mol−1) and temperature (K), respectively. The pressure is
imposed and the volume is calculated at each time-step following the
triple integration under the membrane surface relative to a reference
point ℎref

𝑉 = 𝑉 (ℎ(𝑥, 𝑦, 𝑧) − ℎref) 𝑑𝑉 (42)
∭𝑉
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Fig. 7. Inflation of the stadium membrane using an undamaged Neo-Hookean hyperelastic material. The left and right plots correspond to 𝛱1 and 𝛱2 splines, respectively. The
inflated shape is plotted for three different load steps, where the 𝑧 axis corresponds to the depth whereas 𝑥 and y correspond to the two planar directions.
.

In a finite element context, this volume may be calculated using the
summation of pyramid elements which is given as

𝑉 ≈
𝑛=1
∑

𝑒𝑙

(1
6
𝐴𝑒𝑙ℎ𝑒𝑙

)

(43)

where 𝐴𝑒𝑙 is the area of the base of the pyramid (membrane surface)
and ℎ𝑒𝑙 is the height of the pyramid from the centroid of the base to
the apex which occurs at the reference point located at 𝛱1 ∩𝛱2. After
the pre-strain is applied, the air and hydrostatic pressures are applied
simultaneously such that 𝑃air − 𝑃hydro = 0, referred to herein as the
equilibrium position. For the remaining analysis, the internal pressure
is ramped above and below the hydrostatic pressure to simulate the
operation of the membrane under quasi-static wave loading conditions.
The boundary value problem is solved using finite element analysis
in ABAQUS. Fig. 6 illustrates the mesh convergence study for the
problem and the final mesh adopted in the following section has a total
of 36270-C3D8HT elements with six elements across the thickness to
capture the bending behaviour without shear locking.

4.1.2. Failure analysis
To analyse the failure modes of the membrane with and without

damage, two models are compared: a Neo-Hookean hyperelastic model
and a nonlocal Neo-Hookean damage model. A further parametric
study of the nonlocal model is performed in Section 4.1.3. Table 2
shows the parameters selected for the two materials, i.e., the shear and
bulk modulus are identical but one has damage and nonlocal aspects.
The elastic material properties are adopted from experimental results
and the hyperelastic fitting presented in Collins et al. (2023). For the
simulations, the independent variable is the pressure, which is ramped
above the equilibrium position and is quasi-static with no dynamic
effects considered, therefore the flow-rate of inflation is irrelevant in
this analysis.
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Table 2
Failure analysis comparison between hyperelastic and hyperplastic material parameters

𝜇 [MPa] 𝐾 [MPa] 𝜂𝑑 [Pa−1] 𝛽𝑑 [Pa−1] 𝑐𝑑 [Pa−1m2] 𝜅𝑑 [Pa]

Hyperelastic 0.4 400 – – – –
Hyperplastic 0.4 400 3 ×10−5 1000 1 ×10−6 1200

Three figures show the progression of the inflation: Figs. 7 and 8
show the two-dimensional plots corresponding to the 𝛱1 and 𝛱2 splines
under the hydrostatic pressure field for an undamaged and damaged
membrane, respectively. While Fig. 9 shows the pressure–volume func-
tion for both materials with timestep marker points corresponding to
Fig. 7 and Fig. 8.

The results show some interesting phenomena. The hydrostatic
pressure acting on the membrane surface 𝑆 changes with depth, the
membrane accommodates to this change of the pressure by occupying
teardrop shape. Both membranes are inflated until failure is reached,
where the failure is defined as the point at which the membrane
reaches the critical pressure 𝑃cr of a limit point instability. At this
point there is an abrupt change in the inflation characteristics resulting
in a catastrophic failure of the FlexWEC device. When damage is
considered, the membrane softens as a result of micro-void formation.
As a result, the sensitivity to the pressure-differential changes. As can
be seen in Fig. 9, the undamaged membrane can withstand a greater
pressure for the same volume of air added compared with a damaged
membrane, i.e., 4.4 v. 3 kPa at 1 m3 and 6.6 v. 4.1 kPa at 1.5 m3.
Additionally, as the inflation progresses the pressure increments for the
outward displacement reduces, which occurs until the critical pressure
𝑃cr is reached, witnessed as a plateauing of the pressure–volume curve.
Due to the limitations of the finite element method, the solution fails
to converge beyond this value, an estimated of the expected curve is
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Fig. 8. Inflation of the stadium membrane using the damaged Neo-Hookean hyperelastic material. The left and right plots correspond to 𝛱1 and 𝛱2 splines, respectively. The
inflated shape is plotted for three different load steps, where the 𝑧 axis corresponds to the depth and 𝑥 and y correspond to the two planar directions. Here the extend of damage
is plotted using a red colourmap.
Fig. 9. Pressure–volume function with timestep markers for undamaged and nonlocal
damaged membrane material. Here the black and red lines represent the undamaged
and damaged material respectively.

given by the dotted line, whereby the pressure reduces for continued
outward displacement. For the damaged membrane, the 𝑃cr is lower:
4.5 v. 8.6 kPa, with the volume is also lower at 1.97 v. 2.43 m3. The
latter can be explained as a result of the nonlocal aspects of the damage
accumulation resulting in a different deformed shape with a lower
volume at 𝑃cr. This is evident when comparing Fig. 7 and Fig. 8, the
membrane occupies a different shape as a result of non-homogeneous
softening in the membrane. In Fig. 8, the damage is nearly equal across
𝛱1 spline, the softening of approximately 30% in this plane is witnessed
as a more ovoidal shape due to membrane compensation to the external
hydrostatic pressure. The nonlocal aspect of the model is highlighted
along the 𝛱 spline with a damage differential of 30% to 0%, i.e. no
9

2

Fig. 10. Pressure–volume function for twelve different parameters governing the
nonlocal behaviour of the membrane material.

damage occurring at extreme ends of the membrane. As a result, the
membrane has pronounced softening along the centre portion resulting
in a more pyramidal shape, which encompasses a lower volume of air
when compared to the more bulbous shape in Fig. 7.

4.1.3. Influence of nonlocal damage parameters
In this section, twelve different studies are performed to assess the

influence of various nonlocal material parameters on the performance
of the membrane. Three values of 𝜂𝑑 = [2 × 10−5, 3 × 10−5, 4 × 10−5]Pa−1

in combination with two values of 𝛽 = [1000, 1]Pa−1, 𝑐 = [1 ×
𝑑 𝑑
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Fig. 11. Illustration of the effect of damage for Case6 and Case10 as compared to the undamaged membrane. The left and right plots correspond to the 𝛱1 and 𝛱2 splines
respectively. All the membranes are plotted at the instant of instability.
Table 3
Material properties considered in the parametric study.

Case 𝜇 [MPa] 𝐾 [MPa] 𝜂𝑑 [Pa−1] 𝛽𝑑 [Pa−1] 𝑐𝑑 [Pa−1m2] 𝜅𝑑 [Pa]

Undamaged 0.4 400 – – – –
1 0.4 400 2 ×10−5 1000 1 ×10−6 800
2 0.4 400 2 ×10−5 1000 1 ×10−6 1200
3 0.4 400 2 ×10−5 1 1 ×10−6 1200
4 0.4 400 2 ×10−5 1000 1 1200
5 0.4 400 3 ×10−5 1000 1 ×10−6 800
6 0.4 400 3 ×10−5 1000 1 ×10−6 1200
7 0.4 400 3 ×10−5 1 1 ×10−6 1200
8 0.4 400 3 ×10−5 1000 1 1200
9 0.4 400 4 ×10−5 1000 1 ×10−6 800
10 0.4 400 4 ×10−5 1000 1 ×10−6 1200
11 0.4 400 4 ×10−5 1 1 ×10−6 1200
12 0.4 400 4 ×10−5 1000 1 1200

10−6, 1]Pa−1m2 and 𝑘𝑑 = [800, 1200]Pa are used. Table 3 lists the com-
binations of these material properties considered in the study. Fig. 10
illustrates the evolution of the pressure–volume relation corresponding
to each parameter. As already established in the previous section,
there is a clear reduction in the 𝑃cr and volume at failure indicating
a reduction in the pressure enduring capacity of the membrane as
damage accumulates. Consequently, the influence of nonlocal damage
parameters is studied in detail here. From Fig. 10, it can be inferred that
both 𝛽𝑑 and 𝑐𝑑 have negligible influence on 𝑃cr for all the values of 𝜂𝑑 .
However, 𝑘𝑑 has a slight influence, showing a small reduction in 𝑃cr for
Case1, Case5 and Case9 while 𝜂𝑑 is fixed. This is inline with the damage
formulation as a lower value of 𝑘𝑑 leads to an early onset of damage
resulting in a lower 𝑃cr. On the contrary, 𝜂𝑑 has the biggest influence
on the pressure–volume relation. A 𝑃cr of 8.6 kPa at undamaged state
is reduced to roughly 6 kPa, 4.5 kPa, and 3.25 kPa for 𝜂𝑑 values if
2 × 10−5, 3 × 10−5, 4 × 10−5Pa−1, respectively. A higher value of 𝜂𝑑 leads
to a faster saturation of damage resulting in an earlier instability of the
membrane.

Fig. 11 illustrates the inflated states of membranes corresponding to
the undamaged state, Case6, and Case10. Here, the membrane plotted
in solid black corresponds to the undamaged case and the ones plotted
in the dotted line correspond to the two damaged cases. The superposed
figure compares the effect of damage on the shape and size of the mem-
brane in 𝛱1 and 𝛱2 splines, respectively. As shown in Fig. 10, there is
a reduction in the volume enclosed due to the accumulation of damage.
The membranes reaches a damage level of 40% and 30% for Case6
and Case10, respectively. Moreover, both the damaged membranes
exhibit a slight difference in shape as discussed in Section 4.1.2. Fig. 12
shows the damage contour plot corresponding to the undamaged state
and Case1 to Case12. Similar to that of the pressure–volume relation,
𝜂𝑑 has the most significant influence on the damage profile of the
membrane. Case1 to Case4 experience a damage level of roughly 20%
irrespective of the value of 𝛽 , 𝑐 and 𝑘 . However, the damage values
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𝑑 𝑑 𝑑
are increased to 30% and 40% for 𝜂𝑑 values of 3×10−5 and 4×10−5Pa−1,
respectively. Moreover, it is also observed that the degradation happens
over a large portion at the centre of the membrane irrespective of the
damage regularisation parameters. This could be due to the fact that the
damage energy release rate is almost constant in the central portion of
the membrane as the strain energy density remains the same due to
membrane action.

4.2. Attenuator (cylindrical tube geometry)

An attenuator is a device located near the surface orientated per-
pendicular to the wave crest. The use of a tubular membrane using the
so-called ‘bulge wave’ theory presented by Lighthill (2001) has been an
active field of research recently. Several devices exist such as the Ana-
conda (Farley and Rainey, 2011; Farley et al., 2012), SBM S3 (Pollack
and Jean, 2012; Jean et al., 2012), Electric Eel (Grey and Borth-
wick, 2014) and NREL’s DEEC-Tec cylindrical configuration (Boren
and Weber, 2022). The wave travelling alongside the tube transfers
energy to an inner fluidic portion resulting in a bulge of pressurised
seawater. This grows progressively larger along the length of the tube
which can either be harvested through a mechanical or a dielectric
elastomer PTO. In recent times, there has been research into both
floating air bag (Kurniawan et al., 2017) and floating clam-type (Zheng
et al., 2023) wave energy converters. Additionally, the study of floating
wave hydrodynamics holds significance for the development of floating
membrane structures used in applications involving wave and solar
energy harvesting (Michele et al., 2023).

4.2.1. Boundary conditions
The tube length is 200 m, with a diameter and tube thickness

of 5.0 m and 0.2 m, respectively. In the first step, the membrane
is pressurised to 1 kPa relative to the external fluid. The boundary
condition is applied such that a bulge starting from 1 kPa gradually
increasing along the length of the tube to mimic the bulge growth (see
Fig. 13). The pressure acting the membrane 𝑃mem is the summation of
static equilibrium 𝑃stat, dynamic 𝑃dyn and external hydrodynamic 𝑃hydro
pressure acting on the membrane surface 𝑆, i.e.,

𝑃mem = ∬𝑆

[(

𝑃stat + 𝑃dyn
)

− 𝑃hydro
]

𝑑𝑆 (44)

where 𝑃dyn is an idealised case of bulge growth in a tube

𝑃dyn = 𝐴(𝑡) sin
(

𝜋𝑙(𝑥)
𝑥(𝑡)

)

(45)

in which 𝐴(𝑡) is the time-dependent amplitude which results in the
growth of bulge along the length of the tube, 𝑥(𝑡) is the time-dependent
centroid coordinate of the bulge and 𝑙(𝑥) is the length scale parameter
dependent on the centroid coordinate. The membrane displacement
is fixed where the bulge starts and is free to contract and expand at
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Fig. 12. Damage contour plot at the last converged load step of stadium geometry. Fig. 17(g) to Fig. 12(l) corresponds to Case1 to Case12 and Fig. 12(m) represents the undamaged
hyperelastic state.
the other end, allowing for the near incompressibility of the mem-
brane. One-quarter of the membrane is simulated corresponding to the
slice obtained by 𝛱 ∩ 𝛱 . Similar to the previous example, hybrid
11

1 2
coupled temperature–displacement elements are used here. The num-
ber of C3D8HT elements was chosen as 18,000 based on the mesh
convergence study presented in Fig. 14.
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Fig. 13. Hydrostatic boundary conditions for a cylindrical membrane geometry. Here 𝛱1 and 𝛱2 represents the two cutting plane normal to the front view passing through the
dotted lines shown.
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Fig. 14. Mesh convergence results for attenuator using C3D8HT elements. The number
of elements of 18,000 shows good convergence.

Table 4
Failure analysis comparison between hyperelastic and damage material parameters.

Case 𝜇 [MPa] 𝐾bulk [MPa] 𝜂𝑑 [Pa−1] 𝛽𝑑 [Pa−1] 𝑐𝑑 [Pa−1m2] 𝜅𝑑 [Pa]

Hyperelastic 0.4 400 – – – –
1 0.4 400 5 ×10−5 1000 1 ×10−6 100
2 0.4 400 5 ×10−5 1 1 ×10−6 100
3 0.4 400 5 ×10−5 1000 1 100
4 0.4 400 1 ×10−4 1000 1 ×10−6 100
5 0.4 400 1 ×10−4 1 1 ×10−6 100
6 0.4 400 1 ×10−4 1000 1 100
7 0.4 400 2 ×10−4 1000 1 ×10−6 100
8 0.4 400 2 ×10−4 1 1 ×10−6 100
9 0.4 400 2 ×10−4 1000 1 100

4.2.2. Failure analysis
Similarly to the case study presented in Section 4.1.2, two materials,

one undamaged and the other damaged are compared under identical
boundary conditions. Due to the different scale of the ‘Bulge Wave’
FlexWEC as well as different strain duty, different parameters for
the nonlocal damage aspects are considered by keeping the elastic
properties unchanged, see Table 4 for details. Figs. 15(a) and 15(b)
show the outline of the bulge wave travelling through the Attenuator
device corresponding to an undamaged and damaged (case1) material.
The bulge locations at different time steps are shown here, such that the
last time step corresponds to the point of instability. During the initial
pressurisation stage, a small amount of damage occurs, as the bulge
progresses this damage becomes larger until an aneurysm forms. Here
the damaged material results in an early onset of aneurysm compared
to the undamaged case. This early onset can be characterised by iden-
tifying the location of the aneurysm and the corresponding pressure
𝑃𝑐𝑟. The undamaged attenuator undergoes instability at roughly 160 m
whereas for the damaged case it occurs at 140 m. A similar reduction in
critical pressure from 13 kPa to 12.3 kPa is also observed at a maximum
damage value of 15%. Further, Fig. 16 provides the pressure vs radial
stretch plot for different cases of material properties listed in Table 4.

Here nine different damage cases are studied to assess the effect
of various nonlocal damage parameters. Three values of 𝜂𝑑 = [5 ×

−5 −4 −4 −1
12

10 , 1 × 10 , 2 × 10 ]Pa in combination with two values of 𝛽𝑑 = t
[1000, 1]Pa−1, 𝑐𝑑 = [1 × 10−6, 1]Pa−1m2 and 𝑘𝑑 = 100Pa are used.
ontrary to the stadium membrane, the displacement/radial stretch
t failure is almost invariable showing a maximum variation of only
.1%. All the cases presented in Fig. 16 show a failure stretch in the
ange of 1.86–1.9 and the corresponding displacements of 4.3 m to
.5 m. Similar to the stadium geometry, 𝜂𝑑 has the biggest influence
n 𝑃𝑐𝑟. However, the damage regularisation parameter 𝑐𝑑 has a direct
nfluence on 𝑃𝑐𝑟 compared to the penalty parameter 𝛽𝑑 . This influence
s more pronounced for higher values of 𝜂𝑑 . i.e. for 𝜂𝑑 = 5×10−5Pa−1, a
hange in 𝑐𝑑 from 1×10−6 to 1Pa−1m2 results in a 2.6% increase in 𝑃𝑐𝑟.
owever, this difference becomes 7.8% and 13% for 𝜂𝑑 = 1 × 10−4Pa−1
nd 2×10−5Pa−1 for the same change in 𝑐𝑑 . This is because an increase
n 𝑐𝑑 results in a more diffused damage profile resulting in a higher
oad carrying capacity. Fig. 17 clearly illustrates this effect where
he damage contour is plotted on a cut section of the tube showing
ts internal surface. The damage profile is diffused upstream of the
ulge wave resulting in a more uniform damage distribution for higher
alues of 𝑐𝑑 . However, for smaller values of 𝑐𝑑 the damage is more
oncentrated on the downstream side of the wave. This effect is more
hysical as the bulge wave moves along the length of the tube, the
aterial on its upstream side is always in pristine condition (if the

ffects of initial pressurisation are ignored) compared to that on the
ownstream side where there is already some damage accumulated
rom the previous loadstep. Hence the choice of 𝑐𝑑 becomes critical
o capture the behaviour of the device. The figure also suggests that
or higher values of 𝜂𝑑 (cases 3–9), the tube undergoes more damage
uring the initial pressurisation stage as opposed to smaller values
cases 1–3) where the bulk of the tube is nearly undamaged.

. Conclusion

The present study investigated the response of two different types
f FlexWECs made from rubber-like materials. These devices include a
ubmerged air-filled membrane operating on the pressure differential
rinciple and a near surface water-filled tube operating on the bulge
ave principle. The simulations assumed a quasi-static condition which
nabled the modelling of both the membrane devices at their equilib-
ium state by neglecting the hydrodynamic effects. This simplification
acilitated a faster computation of results but at the expense of accuracy
f a fully coupled multiphysics analysis. However, the goal of this
aper was to understand the effect of damage accumulation on the
embrane response. To achieve this goal, the constitutive modelling
as done based on a Neo-Hookean hyperelastic material in conjunction
ith nonlocal gradient-enhanced damage modelling. This approach
nabled the study of the softening effects in the membrane material
aused by micro-void formations. A parametric study was performed to
nderstand the effects of different nonlocal material parameters on the
erformance of both devices. The findings revealed that the most sig-
ificant influence on the critical pressure of both devices came from the
amage saturation parameter (𝜂𝑑). However, the damage regularisation
arameters namely 𝑐𝑑 and 𝛽𝑑 had negligible effects on the performance
f air-filled membranes. Contrary to other crack propagation problems,
he stadium membrane experiences a similar level of material softening
hroughout the whole structure since the stress differential is small due

o membrane action. Consequently, the nonlocal aspects of the model
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Fig. 15. The results of attenuator inflation corresponding to four different timesteps are presented here when the bulge wave moves from left to right of the tube. The vertical
axis is marked as z showing the height of the bulge wave and the length of the tube is marked along 𝑥 direction. The internal pressure leading to the bulge wave motion and the
corresponding damage is illustrated using two separate colorbars as marked.
Fig. 16. Pressure vs stretch diagram for attenuator corresponding to the undamaged
and damaged hyperelastic materials.
13
are relatively small and have little effect on the overall membrane
response. The damage saturation parameter still influences the critical
pressure of the membrane. However, for the attenuator device, the
damage regularisation parameter 𝑐𝑑 influences the diffusion of damage
in the material such that a higher value of 𝑐𝑑 leads to an undesirable
distribution of damage in the membrane. Furthermore, it was also
observed that both the devices at the limit state do not fully degrade.
In future, this model can be extended account for other physical mech-
anisms such as viscoelasticity and in-silico fatigue damage using a
cyclic counting algorithm. The case studies presented herein represent
relatively low changes in stretch and due to membrane action: a low
degree of stress variation. However, Direct Generation or DEEC-Tec
designs are expected to exhibit much higher strains and potentially
utilise auxetic structures. These designs will make for interesting future
case studies along with the incorporation of electro-mechanical fatigue.
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Fig. 17. Damage contour plot at the last converged timestep of attenuator geometry. Fig. 17(a) to Fig. 17(i) corresponds to Case1 to Case9 and Fig. 17(j) represents the undamaged
hyperelastic state.
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