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Abstract—In this paper the influence of having different sizes
of wave energy converters in the same park is evaluated by the
extension of a customizable tool based on a genetic algorithm.
Two different cost function are used in the optimization scheme
and their results compared. The method has been applied to
simultaneous optimization of some important design variables
of a wave energy farm, such as the geometry of the buoys and
the damping coefficient of the electric generator. Spatial layout
optimization has also been performed with hybrids parks, i.e.
arrays consisting of point absorbers of different dimensions. It is
shown that the choice of the cost function has a great impact on
the results of the optimization and that a slightly larger power
production can be achieved by deploying devices of different sizes
in a hybrid park.

Index Terms—Wave energy arrays, genetic algorithm, opti-
mization, different WECs, wave parks, hybrid parks.

I. INTRODUCTION

Point-absorber wave energy converters (WECs) of relatively

small rated power will in general be deployed in large arrays

of many devices to achieve a large enough power to cover

for costs of installation and maintenance. The devices in the

park will interact both hydrodynamically and electrically, and

the performance of the full wave energy park is influenced

by many parameters such as park layout, distance between

devices, power take-off and dimensions of the individual

devices. An optimal park will produce maximal annual energy

with low power fluctuations and low costs for installation and

maintenance. For this reason, the optimization of WEC array

design parameters is one of the most challenging and urgent

goals within the wave energy research community.

Most of the previous array modelling and experimental

studies published in the field have been based on arrays of

identical devices. Few previous works have shown insight

on possible benefits resulting by deployment of parks with

different sizes of the devices (hybrid parks) ( [1], [2]), but no

systematic optimization approach has yet been pursued.

In this paper two different applications using a customizable

tool based on a genetic algorithm are presented; the model

was firstly introduced in [3] and [4] and here extended to

perform optimization of hybrid parks by the hydrodynamic

model developed in [2].

The optimized parks consist of up to 12 point absorber wave

energy converters of the kind developed at Uppsala University,

whose working principle consists of a linear direct-driven

permanent magnet generator located on the seabed driven by

a floating buoy at the sea surface [5].

Genetic algorithm optimization methods applied to wave

energy arrays have been initiated in the works of [6]–[9]:

the object of these works included the optimization of the

geometric layout of identical point-absorber WECs [6]–[9], or

the optimization of the power take-off (PTO) parameters given

a fixed layout and floaters geometries [8].

In [3] and [4], the genetic algorithm used in this paper was

introduced for optimization of the radius, draft and damping

coefficient of a single WEC and validated against parameter

sweep (PS) of the same variables. The agreement was excellent

(less than 0.2 % difference in the final average power output

calculated by the two methods was obtained in 20 simulations)

and computational cost was shown to be low (GA converged

to solution in around 11 % of the time required to perform

PS). In this paper, the method is further developed and used

to study arrays of non-homogeneous WECs size and PTO

constants which is of highest relevance to find optimal wave

power parks.

II. METHOD

A. Hydrodynamics and WEC model

Consider a park of Nb wave energy converters (WECs)

labelled by i = 1, . . . , Nb. Each WEC consists of a float

connected to a direct-driven generator at the seabed. The floats

are truncated cylinders with individual radius Ri and draft di,
and the generator is characterized by individual power take-

off constants Γi, giving an instantaneous power of each WEC

as P i(t) = Γi
[

żi(t)
]2

, where zi(t) is the position of the

translator in the linear generator. The line connecting the float

with the translator is assumed to be stiff, implying that the

coupled equation of motion between the surface buoy and the

translator can be written as one equation as

mz̈i(t) = F i

exc(t) + F i

rad(t) + F i

PTO(t) + F i

stat(t) (1)

where m is the total mass of the float and the translator, F i
exc

and F i

rad are the hydrodynamic excitation and radiation forces,

respectively, F i

PTO(t) = −Γiżi(t) the power take-off force and

F i
stat(t) = ρgπRi2(di − zi(t)) the hydrostatic restoring force.

Only heave motion is taken into account, an approximation

which has been shown to agree well with a full-scale system

in offshore conditions [10]. In addition, unlimited stroke length
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is assumed, which is a reasonable assumption in operational

waves, but doesn’t hold in more energetic sea states. By

Fourier transformation, the problem can be considered in the

frequency domain, in which the equation of motion (1) takes

the form
[

−ω2(mi +mi

add)− iω(Bi + Γi)− ρgπRi2
]

zi = f i

excη
i

(2)

where the radiation force has been divided into added mass

and radiation damping as F i

rad(ω) = [ω2mi

add(ω)+iωBi(ω)]zi

and ηi(ω) is the frequency domain amplitude of the incident

waves. The hydrodynamic forces are computed as surface inte-

grals over the wetted surfaces of the buoys, F̄ = iωρ
s

S
φ dS̄.

To compute the fluid velocity potential, potential flow theory

is assumed, i.e. the fluid is assumed to be non-viscous, irrota-

tional and incompressible. In addition, the waves are assumed

to be non-steep, implying that the boundary conditions at the

free surface, sea bed and any rigid body can be linearized and

the first order approximation taken. The fluid velocity potential

is a superposition of incident, scattered and radiated waves,

φi = φi

I
+ φi

S
+ φi

R
, and satisfies the Laplace equation in the

fluid domain.

The fluid domain has a constant depth h = 25 m, which

corresponds to the wave energy test site at Lysekil, Sweden,

and water density ρ = 1025 kg/m3. Local coordinate systems

(r, θ, z) are chosen with the origin in each cylinder buoy. The

vertical coordinate is chosen such that z = 0 at the still water

surface, and z = −h at the seabed.

Based on the multiple scattering method, first presented in

[11] and further developed in [12], [13], an analytical method

has been developed, allowing for fast computation of the

hydrodynamical coupling with scattered and radiated waves

in the park [14]. The method has been further extended in [2]

to allow for floats of different dimensions and topologies. In

this paper, different buoy radius Ri and draft di are considered,

but we restrict to cylinder buoys.

The input to the model consists of 20 min time series of

irregular waves measured off-shore at the Lysekil research test

site at the west coast of Sweden. The 20 min time series,

characterized by a specific significant wave height Hs = 1.53
m and energy period Te = 5.01 s, is repeated twice to have

60 minutes of input waves into the model. In all simulations

waves propagate in the positive x direction.

The dynamics of the WECs is determined in the time

domain by inverse Fourier transform of the solution to the

equation of motion (2) and the instantaneous power absorption

of each WEC is computed. The power output of the full park

will be the sum of all Nb WECs,

Ptot(t) =

Nb
∑

i=1

P i(t). (3)

B. Genetic algorithm

The genetic algorithm (GA) is a metaheuristic optimization

method based on the theory of evolution which was developed

in [15]. The procedure can be applied to many different prob-

lems and subjects and is based on a “genetic evolution” over

(a) Sketch of the WEC concept and parameters of the optimization
in a fixed layout. Optimization only on the radii values of the
WECs. Values are shown in Table I.

(b) Sketch of the layout optimization of WECs of fixed different
topologies. Values are shown in Table I.

(c) Sketch of the multiple parameter optimization in a
fixed layout.

Fig. 1. Case study 1 (a), 2 (b) and 3 (c).

a set of solutions, until sufficiently good results are obtained.

In this case and in general for wave energy converters arrays

optimization problems, many different parameters affect the

performance of the park. In other words, a large parameter

space is involved; therefore parameter sweep is infeasible. GA

is a well suited method for these kind of problems, considering

that the shape of the cost function is not known and probably

multi-peaked [6].

This paper shows results from three different applications of

the tool to hybrid parks. In the first study the optimal geometry

is sought for a fixed gridded regular layout of 9 WECs

(Fig. 1(a)). The method allows simultaneous optimization of
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TABLE I
WECS BUOYS GEOMETRY AND PTO CONSTANTS.

Geometry Radius Draft Mass PTO Γ

#1 2.0 m 0.5 m 6440 kg 70 kNs/m

#2 3.5 m 0.6 m 23668 kg 200 kNs/m

radii, drafts and PTO constants of all the devices in the park,

but it has here been implemented only on two different radii

values of the WECs. A value of draft and Γ is assigned

according to Table I respectively. The second application

shows a layout optimization of 6 WECs of geometry #1 and

6 WECs of geometry #2 (Fig. 1(b)). The third application

is a multiple parameter optimization of an array of 4 WECs

(Fig. 1(c)). The radius, draft and PTO coefficient of each WEC

are free to take values within the ranges R ∈ [2 : 0.5 : 3.5]
m, d ∈ [0.3 : 0.05 : 0.6] m and Γ ∈ [15 : 1 : 250] kN. The

alternative cost function (5) is used for comparison with the

non-dimensional cost function in (4).

The first population is a set of a fixed number of chromo-

somes created randomly which contains a certain number of

genes, depending on the variables involved in the optimization.

For the case study 1 shown in Fig. 1(a), each chromosome

contains 9 different genes, i.e. one value of Ri for each of

the 9 WECs in the array. Case study 2 shown in Fig. 1(b)

contains 12 genes in each chromosome, so that every device

is represented by a couple of coordinates [xi, yi] (where i is

the i-th device in the park). The possible positions allowed

are placed on a 6 x 6 grid with a separating distance of 15 m.

Case study 3 shown in Fig. 1(c) has 12 genes as well, but this

time containing one value of Ri, di and Γi for each device.

As described in the introduction, an optimal wave energy

park should produce maximal power with minimized costs

(and possible other constraints, such as minimized power

fluctuations and used ocean area). Around 70 % of the capital

cost for a wave energy device can be attributed to costs

for structure and mechanical systems [16]. Hence, a crude

estimation for the installation cost of a wave device is its mass.

In the GA, a fitness or objective function is used to evaluate

the solutions of the optimization, and is here defined in two

ways. In the first case, where the individual buoy dimensions

of WECs in a park with fixed layout are to be optimized, the

fitness function is the non-dimensionalized ratio between the

total produced power of the park and the total mass of the

devices,

fcost = −
(Ptot − Psmall)/(Pbig − Psmall)

(mtot −msmall)/(mbig −msmall)
. (4)

Here, Ptot is the total mean power of the considered hybrid

array, Pbig is the total power of the park when all WECs are of

the largest allowed dimension, whereas Psmall is the total power

when all WECs are of the smallest dimension. Analogously,

mtot is the total mass of the WECs in the considered array,

mbig is the total mass of the park when all WECs are of the

largest allowed dimension and msmall of the smallest. Given

than the drafts are fixed, the masses are calculated according to

Archimedes’ principle. Values are reported in Table I. Both the

numerator and denominator of the fitness function in (4) range

from 0 to 1. In the second case, where the layout is optimized

of a park of 6 small and 6 big devices, the total mass of the

park will be equal for all cases, and the the fitness function is

taken simply as the negative value of the power production of

the park, as in equation (3).

The cost function in (4) is the range of two non-

dimensionalized values both running from 0 to 1, thus the

relative change in power output and total mass have an equal

impact on the cost function. However, this might not be the

obvious choice to optimize wave energy arrays. To study this

in more detail, an alternative dimensional cost function has

been used in case 3, defined as

f ′

cost = −
Ptot

mtot

. (5)

The alternative cost function is simply the ratio of the total

output power and the total mass of the devices in the array.

Since the two values have different ranges, the impact of the

relative changes in the output power or the total mass on

the cost function may be different, which possibly reflects an

optimization process in wave energy development in a more

realistic way.

To clarify; in Case study 1, the buoy radius is optimized

for 9 WECs, and the cost function being optimized is the

non-dimensionalised power-to-mass ratio. In Case study 2, the

layout is optimized for an array consisting of 6 large and 6

smaller WECs, and since the mass will be equal for all cases,

the cost function is simply the total power. In Case study

3, the layout is fix for 4 WECs, and the radius, draft and

PTO coefficient are free. A dimensionalised cost function in

equation (5) is optimized in this case.

The WECs are considered fully hydrodynamically coupled

and an analytical fast multiple scattering method is used to

compute the hydrodynamic parameters, as discussed in the

section II-A.

The convergence criteria implemented in the method, i.e. the

criteria needed to stop the search when an acceptable solution

is reached are:

I. a maximum number of iterations is reached;

II. all the chromosomes in the actual population are the

same;

III. the solution ceases to improve after a certain number of

iterations.

If one of this conditions is fulfilled, the algorithm stops and

the first chromosome of the ranked population is taken as final

optimal solution.

If convergence is not reached, reproduction is performed

and genetic material between two parents chromosomes is

exchanged so that potentially positive distinctive genes from

both individuals will be inherited by every child (offsprings).

This procedure is performed with a single crossover point for

case 1 and 2, whether for case 3 we have a crossover point
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Fig. 2. Case study 1: best (left) and worst (right) solution.

for each variable. The parents chromosomes are the first upper

50 % of the population.

To ensure that the algorithm does not get stuck in local

minima, 20 % of the variables (i.e. genes) in the population

are randomly changed by mutation. This ensures that other

regions in the solution space will be explored. However, the

best solution is preserved unaltered in the following generation

by elitism operator, so that it is not affected by potentially

negative mutations. The discussed parameters used in the GA

optimization have been chosen by trial-and-error to give fast

solution convergence.

Consequentially, a new population is built by the combi-

nation of the parents chromosomes and the newly generated

offsprings; the evaluation and reproduction processes are then

iterated for a certain number of generations.

For more details about the structure of the algorithm please

refer to [4].

III. RESULTS

A. Case study 1

Fig. 2 shows the results obtained in the first case study in

terms of best and worst layout, according to the value of fcost.

The optimal solution has the first two rows facing the incoming

waves of small buoys (i.e. x = 0 m and x = 15 m), while the

line at x = 30 m consists of bigger buoys.

Fig. 3 shows the values of the non-dimensionalized power

ratio (numerator of equation (4)) as a function of the non-

dimensionalized mass ratio (denominator of equation (4)).

Given a fixed value of the mass (i.e. costs), is it possible to get

different power production, according to the internal location

of big and small buoys. The highest ratio between the relative

produced power and the relative mass (with respect to a park

with all buoys of the smallest and largest geometry) is obtained

with an hybrid park of 6 small and 3 big devices.

B. Case study 2

Results of case study 2 have shown that the GA optimization

was able to find a layout that produce 7 % more than the

average configuration (Fig. 4 left), while the worst layout

(Fig. 4 right) produce around 12 % less than the average

configuration. The average configuration has here been taken

as the median value of all configurations ordered from worst

Fig. 3. Value of the non-dimensionalized power ratio (numerator of equa-
tion (4)) as a function of the non-dimensionalized mass ratio (denominator of
equation (4)).

Fig. 4. Case study 2: best (left) and worst (right) solution.

to best. The hybrid park best solution was obtained with 121

number of iterations, but a qualitative guess would suggest that

a higher number of iterations would result in a geometrical

layout represented in Fig. 5 instead. To verify this hypothesis,

the power of this park has been computed separately and has

been found just 0.6 % higher than the solution in Fig. 4. Hence,

the found optimal park configuration is not truly optimal, but

the difference is negligible.

As a comparison to the optimal configuration, we can

consider the deployment of two distinctive parks of big and

small WECs separately (located on two adjacent line facing

the wave front) (Fig. 6). The resulting output power would be

around 164.5 kW and 74.5 kW respectively. The sum of the

power production would then be 239 kW. The deployment of

two of hybrid parks would give a total power output of about

245.5 kW, which is around 2.7 % higher than having two

distinguished homogeneous parks of big and small devices. In

other words, for a given number of small and large devices, a

slightly larger power production is obtained if the devices are

deployed in hybrid arrays of mixed sizes.
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Fig. 5. Qualitative guess solution for case study 2.

Fig. 6. Representation of homogeneous park of 6 small devices (left) or 6
big devices (right).

C. Case study 3

In the third studied application, the parameters radius, draft

and PTO coefficients have been simultaneously optimized in

an array of 4 WECs. The coordinates of the WECs are fixed

on a grid with separation distance 15 m, see Fig. 7. To

compare different cost functions used for the optimization, the

alternative cost function (5) has been used here.

Unlike the results obtained in case study 1, here the optimal

solution after 5000 iterations is the one shown in Fig. 7,

with only the smallest WECs and drafts. The GA has been

able to match smallest possible radius with smallest draft and

corresponding optimal PTO coefficients.

IV. DISCUSSION AND CONCLUSION

The present paper describes a method to perform multiple

parameter optimization of wave energy parks, and compared

different cost functions for the optimization scheme.

From the comparisons of case studies 1 and 3, it can be

concluded that using the dimensional cost function (5), the

relative changes in the mass have a larger impact on the cost

function than the relative changes in the output power, since

the optimal configuration is the one with only smallest WECs

and small draft and corresponding PTO coefficients. In other

words, the improvement in output power when including larger

WECs is too small to make a difference, as compared to the

larger mass, or increased costs.

Hence, we see that the choice of cost function determines

the outcome of the optimization; with the non-dimensionalized

Fig. 7. Optimal solution obtained in case study 3.

cost function defined in equation (4), the worst solution is

similar to the best solution obtained with the dimensional cost

function in equation (5). Both these configurations consists of

small WECs, and in case study 3, the relative changes in the

mass – which is a crude estimate of the construction costs

– have a larger impact than the changes in total power, thus

resulting in an optimal solution.

An objective, non-biased comparison would require the

knowledge of an economical cost function defined as the ratio

between the total income of the produced electricity and the

capital (CAPEX) and operational (OPEX) costs. If the cost per

produced kWh is given by g(Pout) and the CAPEX and OPEX

could be written as a function of the total device masses as

h(mtot), such a cost function could be defined as

fcost = −
g(Pout)

h(mtot)
. (6)

The dimensional cost function in (5) can be seen as a first step

towards such a more refined cost function based on economical

assessment of the park.
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