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Abstract: Among the challenges generated by the global climate crisis, a significant concern is the
constant increase in energy demand. This leads to the need to ensure that any novel energy systems are
not only renewable but also reliable in their performance. A viable solution to increase the available
renewable energy mix involves tapping into the potential available in ocean waves and harvesting it
via so-called wave energy converters (WECs). In this context, a relevant engineering problem relates
to finding WEC design solutions that are not only optimal in terms of energy extraction but also
exhibit robust behavior in spite of the harsh marine environment. Indeed, the vast majority of design
optimization studies available in the state-of-the-art consider only perfect knowledge of nominal
(idealized) conditions, neglecting the impact of uncertainties. This study aims to investigate the
information that different robustness metrics can provide to designers regarding optimal WEC design
solutions under uncertainty. The applied methodology is based on stochastic uncertainty propagation
via a Monte Carlo simulation, exploiting a meta-model to reduce the computational burden. The
analysis is conducted over a dataset obtained with a genetic algorithm-based optimization process
for nominal WEC design. The results reveal a significant deviation in terms of robustness between
the nominal Pareto set and those generated by setting different thresholds for robustness metrics,
as well as between devices belonging to the same nominal Pareto frontier. This study elucidates the
intrinsic need for incorporating robust optimization processes in WEC design.

Keywords: wave energy converter; robustness quantification; uncertainty; surrogate model; Gaussian
process regression; robust design optimization

1. Introduction

In 2020, the United Nations emphasized the urgent need for every nation to address
a critical goal for the near future: achieving carbon neutrality by 2050 [1]. However,
the pursuit of this objective faces a significant obstacle due to the rising energy demand,
which is currently largely reliant on fossil fuels [2]. For many years, various renewable
energy sources have been under the scope of bridging this gap, with ocean wave energy
emerging as a large and almost untapped resource. The global wave energy resource is
estimated to lie in the range of 1 to 10 TW, but the exact extractable wave power remains
the subject of ongoing research. Theoretical calculations, as presented in [3], suggest that
this global resource totals around 32,000 TWh/y with a mean power output of 3.65 TW.
Using the same assessment methodology and data, the Oceanic Energy System and the
International Renewable Energy Agency report a value of 29,500 TWh/y [4,5]. These
numbers demonstrate that wave energy could play a pivotal role in the race towards
achieving carbon neutrality by 2050.

From a historical perspective, the origins of technology designed to harness wave
energy date back to 1799 in France.1 Today, wave energy is gaining attention due to its
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potential to become a competitive new player in the renewable energy market. One of
the primary reasons for this is the absence of marketable devices for energy production,
essential for establishing viable wave energy, mainly due to the lack of conversion concepts’
convergence. A broad overview of the topic can be found in [6].

Wave energy presents some advantages (therefore sparking interest) when its power
density is compared to that of other well-known renewable energy sources. Waves are
mainly generated via the interaction between wind and the sea surface, in which the con-
stant mechanical action of the wind, acting as a tangential effort, leads to the formation
of waves. On the other hand, the deployment of wave energy converter (WEC) technol-
ogy has yet not reached a competitive level compared to other clean energy industries.
Different key points have been mapped to proceed towards WEC’s successful develop-
ment and commercialization. Concerning the latter topic, various studies (see, e.g., [6,7])
underline that, for a WEC investment to be considered appealing to stakeholders and
investors, it should meet the following criteria: it should offer energy production costs
that are competitive on the market; it should present a secure and dependable investment
opportunity; it should demonstrate reliability in supporting grid operations; it should
contribute positively to society or have societal benefits; it should align with permitting
and certification requirements; it should prioritize operational safety; and it should have
the potential for global deployment. A general aspect that encompasses all the issues listed
immediately above is the common emphasis on the techno-economic reliability of WEC
technology. This, in fact, is consistent with the conclusions argued for in [6]: to reduce
investor risk, it is necessary to reduce both the levelized cost of energy (LCoE) and its
associated uncertainty. The highlighted challenges are classically addressed via robust
optimization (RO). RO frameworks aim to find solutions to optimization problems while
incorporating uncertainty in the evaluation of the fitness function. RO techniques’ purpose
is to achieve optimal solutions that are less prone to being affected by uncertainty.

To illustrate this, in Figure 1, it is possible to distinguish among different local optima,
i.e., the minima of the objective function f (x)obj. Each one is characterized by a different
behavior. Point B is referred to as a robust optimum since it remains locally optimal even
when a relatively large variation ∆x occurs. Conversely, despite the fact that A is a global
optimum, if the same variation ∆x perturbs point A, the objective function increases sharply,
losing optimality with respect to point B; i.e., it is effectively more sensitive to variations in
x. A conventional formulation of the associated RO problem is provided in Section 2.

Figure 1. Notional difference between a global optimum (A) and a robust optimum (B). Image
adapted from [8].

The developments presented within this study were effectively motivated by the
limited literature available on the analysis of the performance robustness of WECs from a
design perspective. In particular, and with respect to the classification of robustness metrics
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outlined in a previous paper [9], it can be asserted that there exists a lack of comprehen-
sive and systematic research in the field of WEC design addressing all four subcategories
that underlie the idea of robustness. The first subcategory is the so-called robustness of a
concept, and it relies on robustness metrics that assess the impact of design parameters or
independent noise factors on the investigated performance. Subsequently, when focusing
on the size of the feasible design space, the robustness of a design and its indicators are
defined. Another branch of robustness measures assesses the different expectations and
dispersion of the system’s output, i.e., the robustness of a function. Finally, the robustness of a
product classification exploits metrics that assess the likelihood of satisfactory performance
conformity under the influence of ongoing variations. To date, within the realm of wave
energy conversion, the literature on robust optimization has predominantly focused on the
development of robust control frameworks [10–17]. Furthermore, concerning the study of
wave energy and WEC uncertainties, the existing literature primarily covers environmen-
tal [18–22] and full/high-scale prototyping or experimental uncertainties and subsystems’
influence on performance [23–29]. The neighboring Reliability-Based Design Optimization
(RBDO) field of research directs its attention to WEC structural and maintenance cost
uncertainties [30] (in which the so-called Wavestar device is considered as a case study)
and the power take-off (PTO) reliability relationship with hull geometry [31]. A review of
RBDO studies and their application in the offshore renewable energy sector is presented
in [32].

Motivated by the necessity of WEC systems’ RO, the present study evaluates different
robustness indices (RIs) for WEC design solutions and assesses their impact on devices’
overall normalized power performance (Equation (18); i.e., it performs a stochastic Ro-
bustness Quantification (RQ) investigation for WEC systems. To achieve this objective,
the present study conducted an analysis to gather information regarding the robustness of
these devices generated in terms of a dataset processed during a multi-objective nominal
optimization process. First, nominal Pareto set devices RI were evaluated, and information
about their statistical behavior was obtained accordingly. This nominal classification is
discussed in accordance with the standard Pareto criterion. Threshold criteria were then
imposed on robustness indices and new Pareto research, highlighting the main differences
between obtained and nominal limit sets. Furthermore, due to the computational burden
associated with the uncertainty propagation, performed via a Monte Carlo simulation,
a surrogate-assisted RQ method is proposed. The reason for presenting the results and
devices’ data for the case study examined in normalized form is the confidential and indus-
trial nature of the analyzed technology. Despite this limitation, the results presented in this
non-dimensional form are sufficient to draw conclusions regarding robustness and, thus,
adequate for the purpose of this study.

The remainder of the paper is structured as follows. In Section 2, an overview of the
WEC robust optimization problem is provided, together with a description of different RQ
approaches and robustness indices. Sections 3.2 and 3.1, respectively, discuss and provide
details on the specific framework applied in this study and the applicative case of analysis,
i.e., the Inertial Sea Wave Energy Converter (ISWEC) device. Section 4 presents the main
results and discussion. Finally, in Section 5, key conclusions of this study are provided,
including future lines of research.

2. Robustness Quantification

In this section, a brief overview of robust optimization and its formulation is presented,
together with a brief review of different robust quantification metrics.

2.1. Robust Optimization Overview

In the literature, the robustness concept has been articulated in different ways, accord-
ing to different fields of study. One of the first definitions of robustness was provided by
Taguchi for the quality improvement of industrial processes: “a product whose performance is
minimally sensitive to factors causing variability (at the lowest possible cost)” [33]. The robust-
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ness concept also plays a central role in the already-mentioned robust control field, where
different applications can be found. In this specific case, the aim is to design and synthe-
size a control a strategy that is ideally insensitive to either parametric or non-parametric
uncertainty, able to guarantee both a prescribed set of performance specifications (e.g., max-
imizing energy harvesting) and the robust stability of the controlled system [34]. Regarding
WEC control, in [10], a hierarchical robust strategy was devised to mitigate the controller
susceptibility to modeling inaccuracies and potentially unmodeled nonlinear influences.
Model sensitivity issues for different WEC control system architectures are addressed
in [11], leveraging the inherent parametric uncertainty in standard device modeling. More-
over, a moment-based framework to design robust energy-maximizing optimal controllers
for WEC is presented in [12].

The pivotal role of robustness is also clear in the context of optimization problems,
in which the RO research field is relevant. As a historical note, consider that in 1973,
Soyster [35] formulated a linear programming (LP) optimization model, yielding feasible
solutions for all data belonging to a convex set. However, this approach leaned towards
excessive conservatism, compromising optimality for enhanced robustness. In subsequent
studies by Ben-Tal, Nemirovski, El-Ghaoui, and Lebert [34,36], spanning from 1997 to
2000, less conservative solutions were proposed. These strategies tackled uncertain linear
problems with ellipsoidal uncertainties, requiring the solution of robust counterparts in a
conic quadratic form. Despite offering reduced conservatism, this approach introduced
practical drawbacks, as it led to inherently nonlinear (yet convex) formulations with in-
creased computational demand compared to Soyster’s earlier linear framework. Expanding
on this historical note, Bertsimas and Sim [37] integrated the insights from Soyster and
Ben-Tal et al. into a fully controllable framework. This latter approach allowed for the
adjustment of conservatism levels with probabilistic guarantees. Notably, their proposed
robust counterparts were linear optimization problems, enabling a seamless generalization
to discrete optimization problems. A key novelty was the introduction of the so-called Γ
parameter, which refers to a protective threshold that plays a relevant role in fine-tuning
robustness against conservatism levels.

The second main methodology for solving RO problems is called “Robust Design Opti-
mization” (RDO) [38]. This method, complementary to RO, employs a stochastic approach
based on different robustness metrics, aiming to achieve a system design insensitive to uncer-
tainty, external noises, perturbations, potential model inaccuracies, and design tolerances [8].
The latter is of significant importance within the realm of simulation-based optimization,
particularly when addressing complex engineering challenges, such as the design of WECs.
Typically, the RDO framework is based on the RQ process, which is a stochastic approach to
uncertainty propagation that can be outlined in the following main steps.

1. Parameter uncertainty vectors’ (u⃗) and design (⃗x) parameter vectors’ definition:

• u⃗ = [u1...uN ]
⊺ ∈ RN ;

• x⃗ = [x1...xD]
⊺ ∈ RD,

where N is the number of system parameters affected by uncertainty, whose magni-
tude is described by the relative nth-element of the uncertainty vector u⃗, and D is the
dimension of the design parameter vector x⃗, i.e., the number of decision elements that
define each possible optimization problem solution.

2. Uncertainty propagation via sampling techniques.
3. Robustness metric quantification.

A description of the proposed RQ framework for the present study is provided in
Section 3.2. Therefore, it is common that, in the RDO field, the objective function is not
known exactly but is evaluated in a computationally expensive fashion, leveraging stochastic
logic. Consequently, efforts have been directed towards studies concerning evolutionary
algorithms [39,40], especially via multi-objective optimization, to find a robust Pareto fron-
tier [41,42].
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2.2. Problem Formulation and Robustness Indices

As discussed within Section 1, this paper is focused on the realm of RDO, and it
is primarily aimed at serving as a quantitative exploration of the challenges involved
when incorporating uncertainty in optimal WEC design, together with any consequent
implications. In particular, a stochastic approach was adopted, and the motivation behind
this choice lay in avoiding the adoption of assumptions potentially restrictive to the system
and exploring computer simulation-experiments’ viability. Therefore, a general RDO
problem formulation can be mathematically stated as follows:

min
x⃗∈X

f⃗ (x⃗, u⃗), (1)

which is subject to the following:

h(x⃗, u⃗) = 0, (2)

g(x⃗, u⃗) < 0,

where the following points apply:

• u⃗min < u⃗ < u⃗max are the upper and lower bounds of the uncertainty parameters’ vector.
The space resulting from limiting u⃗ can be referred to as the parameter uncertainty space
U .

• x⃗min < x⃗ < x⃗max are the upper and lower bounds of the design vector. The space
resulting from limiting x⃗ can be referred to as the parameter design space X .

• h(x⃗, u⃗) ∈ Rq represent q equality constraints.
• g(x⃗, u⃗) ∈ Rk represent k inequality constraints.
• f⃗ (x⃗, u⃗) = [ f1(x⃗, u⃗)... fm(x⃗, u⃗)]⊺ ∈ Rm is the vector containing the potentially different

m objective functions.

A comprehensive survey, centered on the methods for solving the RDO problem and
the associated robustness quantification metrics, is presented in [38]. In particular, RDO
problems are solved via single-objective robust design optimization or multi-objective ro-
bust design optimization. Single-objective RDO frameworks involve setting the robustness
metric as part of the optimization objective function. On the other hand, multi-objective
RDO processes incorporate the RI as an additional objective function [43]. Furthermore, an-
other option is to rely on supplementary constraints to enhance robustness, i.e., RBDO [44].
A well-chosen robustness measure offers a valuable means to discern a system’s responsive-
ness (or lack thereof) to factors that might result in sub-optimal performance. A glimpse of
some of the robustness metrics employed in the literature [43,45], and considered within the
present study, is provided in Table 1, together with their formulations. The notation used
in Table 1 refers to the so-called zero-uncertainty vector u⃗0 as the parameters uncertainty
vector with all elements equal to zero, i.e., u⃗0 = [0...0]⊺ ∈ RN . Therefore, the performance
evaluated for x⃗i and u⃗0 ( fm(x⃗i, u⃗0)) is named the mth-performance nominal expected value.

Definition I in Table 1 is consistent with the idea of optimizing the average mth-
performance of the analyzed system. This option could direct the final choice (as well as the
process of exploration of the optimization itself) towards individuals characterized by good
average performance but potentially highly dispersed around the nominal expected value.

Following Definition II in Table 1 means considering only the samples’ distribution
concerning the mean value of the PDF. Due to its limited possibility to describe a system’s
performance in terms of an absolute value, σ̂i is mainly adopted in multi-objective RDO
frameworks as part of the objective functions, together with other parameters, e.g., µ̂i,
or the performance nominal value f (x⃗i, u⃗p) directly.

The “k-sigma” approach establishes a range of performance deviations from the PDF’s
statistical average value by merging the approaches specified in Definitions I and II within
Table 1. This is accomplished by applying a multiplicative coefficient on σ̂i. The smaller
this deviation, the more robust the individual examined.
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Table 1. Robustness metrics and indices.

Definition Index

(I) Average value of the mth

-performance probability
density function (PDF).

µ̂i =
1

Nsample
∑

Nsample
p=1

fm(x⃗i ,u⃗p)

fm(x⃗i ,u⃗0)
= µi(x⃗i ,⃗u)

fm(x⃗i ,u⃗0)
, where Nsample is

the quantity of samples used in order to evaluate the
discrete PDF mean value. The same formulation results are
valid for all the other Definitions in the present table.

(II) Standard deviation of
the mth-performance PDF.

σ̂i =
1

fm(x⃗i ,u⃗0)

√
∑

Nsample
p=1 [ fm(x⃗i ,u⃗p)−µi(x⃗i ,⃗u)]2

Nsample−1 .

(III) The “k-sigma”
approach.

µ̂i + kσ̂i, where k is an integer number commonly set equal
to 3 or 62

(IV) Symmetric robustness
index.

Ri =
s fm(x⃗i ,u⃗p)+

∣∣∣µ fm(x⃗i ,u⃗p)− fm(x⃗i ,u⃗0)
∣∣∣

fm(x⃗i ,u⃗0)
, with:

s fm(x⃗i ,u⃗p) =

√
∑

Nsample
p=1 [ f (x⃗i ,u⃗p)− fm(x⃗i ,u⃗0)]2

Nsample−1 and

µ fm(x⃗i ,u⃗p) =
1

Nsample
∑

Nsample
p=1 fm(x⃗i, u⃗p).

(V) Asymmetric robustness
index. Qi =

Q0
fm(x⃗i ,u⃗0)

.

(VI) The upper limit of the
mth-performance PDF. sup f̂i = max

u⃗

fm(x⃗i ,u⃗p)

fm(x⃗i ,u⃗0)
∀p ∈ [1...Nsample].

In Definition IV (Table 1), Ri is defined as “symmetric” since its formulation weights
every possible deviation from the nominal expected value. In particular, a smaller value of
Ri indicates a higher level of robustness in the system being considered. The framework in
which Ri is usually used can involve its optimization, together with the robust performance
objective. Thanks to the influence of both the distance between the average value of the
distribution and its spread with respect to the expected nominal value fm(x⃗i, u⃗0), Definition
IV is well suited for metrics for which the purpose of the designer is to keep the performance
very close to a specific target.

On the other hand, the Qi “asymmetric” robustness index (Definition V in Table 1)
penalizes only the deviations from the nominal value that result in poorer performances
and, consequently, worse values of the objective function in question. In the case in which the
mth performance needs to be minimized, Q0 represents the objective function value below the
q% (typically greater than 90%) of observed occurrences. In this scenario, a smaller value of
Qi indicates a better risk measure. Conversely, if the mth performance needs to be maximized,
Q0 is the objective function value above the q% of observed occurrences. In this case, a larger
value of Qi indicates a better risk measure. To enable a comparison across different devices,
the nominal value fm(x⃗i, u⃗0) is used in the index for normalization purposes. The Qi index
offers insights into device quality concerning the mth objective function. Given this capability,
it can be used for systems belonging to various stages of product development and their
potential for exploitation. Nonetheless, this measurement does not inform the designer about
specific occurrences’ values; it reports only cumulative information.

To perform a robustness quantification that considers the upper limit in a minimization
problem (respectively, the lower limit in a maximization case), Definition VI in Table 1 can
be adopted, i.e., the Worst-Case Scenario (WCS). The WCS RI presents two main drawbacks:



J. Mar. Sci. Eng. 2024, 12, 482 7 of 26

over-conservative solutions are often reached, and an extensive exploration phase of the
uncertain parameter’s N-dimensional space (to evaluate the real WCS) is required, leading
to computationally expensive evaluations. The interested reader can find comprehensive
examinations of robustness metrics employed in RDO processes in the works of Beyer et al.
[38] and Moritz Göhler et al. [9]. Moreover, in [41,42], Deb et al. define two different robust
solution approaches to optimization, focusing on evolutionary algorithms.

When quantifying robustness, it is crucial to take into account the nature of uncer-
tainties. Typically, in the realm of RDO, the primary types of uncertainties under scrutiny
are epistemic and aleatory. The first type of uncertainty, i.e., epistemic uncertainty, stems
from a lack of knowledge that can be mitigated by acquiring more information about the
parameter. For instance, in the context of renewable energy systems, epistemic uncertainty
in the typical annual electricity demand may arise from unknown occupant behavior.
On the other hand, aleatory uncertainty is associated with the unpredictable variation
of parameter values and is, therefore, inherent and irreducible. For example, aleatory
uncertainty regarding wholesale electricity prices results from the unpredictable variations
of this parameter in the future. Both types of uncertainties can be characterized using
interval-valued statistical moments [47].

It is readily evident that adopting a stochastic approach to propagating uncertainties in
quantifying the robustness of the previously described system presents several challenges,
with the most prominent being elevated computational expenses. To address this challenge,
so-called surrogate-assisted RDO has been developed. These methods rely on the use
of mathematical models that approximate a time-demanding model to reduce the com-
putational cost of the objective function (i.e., a so-called surrogate model or metamodel),
making the computational expense required to solve the optimization problem tractably.
Various types of mathematical models are employed in the literature, with some of the most
common ones including Gaussian process regression (GPR), the Kriging Model, and poly-
nomial chaos expansion [48,49]. An additional avenue for reducing the computational cost
of RDO processes could involve a shift in the problem-solving approach, transitioning
from a stochastic framework to a deterministic framework. Assuming the system exhibits
behavior such that the WCS relies on the extremes of the uncertainty-affected parameter
range, the designer could choose to evaluate the objective function solely at the vertices
of the resulting N-dimensional polytope. For a single uncertain variable, there would be
two vertex points (the uncertain space will be described by a single line); for two variables,
there would be four evaluation points (forming a square); for three variables, eight points
(describing a cube), and so forth. This approach would result in a reduction in computa-
tional costs by diminishing the number of expensive evaluations required. The advantages
and disadvantages associated with the various approaches outlined earlier are condensed
in Table 2.

Table 2. Main advantages and disadvantages of different approaches to optimization in the presence
of uncertainty, inspired by [50].

Method Advantage Disadvantage

Stochastic RDO
Provide trade-off solutions and
detailed information on the output
under examination distribution.

Very computationally expensive.

Deterministic RDO Less computationally expensive.

Need the assumption of good
behavior in the N-dimensional
polytope.
Overly conservative.

3. Methodology

The ISWEC device and its model under analysis are described in more detail in
the present section, along with a technical introduction to the technology. Furthermore,
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the objectives of the analyses conducted, the framework, and the methodologies used
to achieve them are introduced. The main goal of this work was to compare different
stochastic robustness metrics and evaluate the information that each of them provides to
the designer. The robustness metrics used included the six previously introduced in Table 1,
namely µ̂i, σ̂i, sup( f̂i), µ̂i + kσ̂i, Ri and Qi.

3.1. Model

The ISWEC device (Figure 2) is a WEC characterized by a pitch-floating hull, featuring
a fully enclosed design. The device was designed to perform as well as the Pendulum Wave
Energy Converter device [51] in the demanding conditions of the Mediterranean Sea, and
its performance was optimized with this aim. A concise and general overview of ISWEC
and its operational principles is provided below.

The heart of this system lies within the floater, housing a PTO mechanism that lever-
ages the precession motion of a gyroscope system to capture the mechanical energy induced
via wave action. This precession motion is initiated through the dynamic coupling between
pitch motion and flywheel rotation. To prevent gyroscope stabilization, an eccentric mass
is integrated, serving the purpose of inducing elastic recoil. For the enhancement of energy
harvesting and resonance tuning, a well-tailored PTO control logic can be incorporated
[52]. In the scope of this study, the PTO control logic description is provided in subsequent
paragraphs. In the pursuit of investigating the role of uncertainty in the WEC design
process, it is imperative to conduct a series of numerical experiments through simulations.
Consequently, consideration must be given to the selection of an appropriate numerical
model. A state-of-the-art perspective on the topic of numerical modeling applied to the
WEC case is presented in [53].

In this section, the ISWEC modeling details are described. In Figure 3, the ISWEC
functional diagram is presented. The block chart provides a concise visual representation
of the device’s behavior, encompassing forces and reactions between the floater and the
gyroscope, as well as the control actions and signal flow of the PTO system [54]. In the
image, we can recognize the following elements:

• f⃗ f is the combined gravitational and fluid forces acting on the floater.
• Tε and f⃗g f represent the gyroscopic effects exchanged between the floater and the

gyroscope units.
• TPTO is used to represent the PTO reaction acting on the gyroscope shaft.
• X f , Xε, and XPTO describe the motion of the floater, gyroscope, and PTO, respectively.
• CPTO stands for the control signals generated via the ISWEC’s control system.

Figure 2. ISWEC device technology graphical representation.
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Figure 3. ISWEC block diagram, adapted from [54].

The mathematical equations that govern the ISWEC model were derived from the
coupling of the WEC hydrodynamic with the gyroscope and PTO dynamics. As suggested
in [54], a classic time domain representation is well suited for a more realistic and advanced
simulation phase of WEC development than the frequency domain approach; that is, via
the time domain, it is possible to consider non-linearities in the model [55]. Following the
formulation presented in [54], the time domain system was composed with the involvement
of the floater equation and the radiation forces’ approximation, together with the gyro-
pendulum model and the consideration of gyroscopic effects. Therefore, the non-linear
state-space Time Domain Model (TDM) equations can be written in the following form:

MTẌT(t) + BTẊT(t) + KTXT(t) + ΘT(ẌT(t), ẊT(t), XT(t)) = fT(t). (3)

For a system of dimension nT , the TDM model formulation of Equation (3) includes the
kinematic variable vector XT(t) ∈ RnT , the mass matrix MT ∈ RnT×nT , the damping matrix
BT ∈ RnT×nT , the stifness matrix KT ∈ RnT×nT , the non-linear function ΘT : RnT → RnT ,
and the external time-dependent excitation forces fT(t) ∈ RnT . Several non-linearities affect
the term ΘT , deriving from the floater, gyro-pendulum and PTO subsystems.

Alternatively, Frequency Domain Models (FDMs) offer a computationally efficient
solution via the boundary element method. To adopt an FDM means to accept some
assumptions related to the realistic non-linear system behavior. The two presupposition
characteristics of the ISWEC FDM regard the gyroscopic torques and pendulum elastic
recall and the exclusion of saturations from the PTO model. That is, the ISWEC system
is assumed to work only in the linear PTO model zone and the gyroscopic torques and
pendulum elastic recall are linearized around the equilibrium point of the precession axis.
After those assumptions, the model can be written in a matrix form concerning a harmonic
input at the intended angular frequency ω:

[−ω2MF(ω) + iωBF(ω) + KF]X̂F = HηF(ω)η̂, (4)

where MF(ω) ∈ RnF×nF is the frequency-dependent mass matrix (which includes the
floater mass matrix, the gyroscope inertia, and the added mass contribution), BF(ω) ∈
RnF×nF is the frequency-dependent damping matrix, KF ∈ RnF×nF is the stiffness matrix,
and HηF(ω) ∈ CnF is the complex transfer function between the wave profile η and the
resultant excitation forces F, while nF is the dimension of the frequency domain system.
The FDM presentation also allows us to fully describe the statistical properties of ISWEC
outputs in terms of the power spectral density (PSD) of WEC displacements SXFXF (ω) [54].
The latter statement is explained because, when a Gaussian stochastic input passes through
a linear transfer function, the output also follows a Gaussian distribution [53]. Furthermore,
the PDF of sea wave elevation η can be considered to be in accordance with the assumption
of a Gaussian-distribution sea [56]. Therefore, when adopting the FDM representation,
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Gaussian PDF properties can be assumed for both floater and gyroscope displacements
and evaluated, via the transfer function HηXF (ω), using Equation (6) [54]:

SXFXF (ω) = HηXF (ω)Sηη(ω)H∗
ηXF

(ω). (5)

In Equation (5), the notation ∗ stands for the complex conjugate operator. Moreover,
Sηη represents the wave elevation PSD.

HηXF (ω) =
HηF(ω)

−ω2MF(ω) + iωBF(ω) + KF
. (6)

In order to incorporate non-linear factors to enhance the model’s accuracy, the Spectral
Domain Model (SDM) representation can be considered. SDM’s purpose is to obtain
an approximate solution of a generic TDM while avoiding the extensive computational
overhead associated with it. SDM’s practical implementation is accomplished by describing
the system as probabilistic, considering its inputs as a stochastic ergodic process [53]. Hence,
as observed earlier in the context of an FDM, when the wave spectrum is subjected to a
suitable transfer function, it generates a probabilistic prediction of the WEC response [54].
Therefore, in terms of the PSD of WEC displacements, the following applies:

SXSXS(ω) = HηXS(ω)Sηη(ω)H∗
ηXS

(ω), (7)

where HηXS(ω) ∈ CnS is the SDM transfer function between WEC displacement and wave
elevation, nS is the dimension of the spectral domain system, and SXSXS(ω) is the ISWEC
outputs’ PSD. In SDM, the generic system equations can be written as follows:

MSẌT(t) + BSẊT(t) + KSXT(t) = fT(t), (8)

where the XT vector identifies the hull’s motion (X f ), and the matrix MS ∈ RnS×nS is the
equivalent mass matrix, BS ∈ RnS×nS , is the equivalent damping matrix, and KS ∈ RnS×nS

is the equivalent stiffness matrix.
Moreover, the following applies:

MS = MT + Meq, (9)

BS = BT + Beq, (10)

KS = KT + Keq. (11)

These matrices are composed of a first linear part related to the linear terms of
Equation (3) and a second part that represents the statistical time-varying behavior of
the time domain system’s non-linear terms. Therefore, this second part of each matrix is
defined using the gradient and the expected value ⟨.⟩ operator as follows:

Meq = ⟨∇ẌΘ⟩, (12)

Beq = ⟨∇ẊΘ⟩, (13)

Keq = ⟨∇XΘ⟩. (14)

where the ∇X operator defines the gradient with respect to X. The SDM approach involves
the minimization of the mathematical expectation of the discrepancy between the non-linear
system and its linearized counterpart, which is represented as eS:

eS = ΘT(XT(t), ẊT(t), ẌT(t))− MeqẌT(t)− BeqẊT(t)− KeqXT(t). (15)
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After the statistical linearization of the system is performed, it is possible to evaluate
the SDM transfer function:

HηXS(ω) =
HηS(ω)

−ω2MS(ω) + iωBS(ω) + KS
. (16)

This problem lacks an analytical solution, necessitating an iterative procedure, which
is presented in [54]. The use of the spectral model is justified as long as the assumption
of the system’s Gaussian behavior remains valid. If the previously described assumption
were to fail (e.g., in the presence of dominant non-linear forces), the system would exhibit
non-Gaussian behavior, making the spectral model inaccurate and erroneous.

While both spectral and frequency domain models may sacrifice some degree of
accuracy compared to time domain simulations, they are recommended for analyses
seeking to compare different WEC devices and design solutions, as suggested in previous
works [54] and the literature [53]. For the forthcoming analyses, we opted for the spectral
domain as our mathematical model of choice. Given the importance of the process of
converting wave energy into the electrical energy of the PTO, a brief description of its
model is provided below. The mechanical PTO consists of a one-stage gearbox connecting
the gyroscope shaft to the electrical generator. The control logic used in this work for the
PTO was founded on the principle of impedance matching, modeled as a spring-damping
system with a fixed saturation constraint to avoid the electro-mechanical generator nominal
work area. This kind of control logic allowed us to define the PTO torque in Equation (17):

TPTO =



kε + cε̇ if − Ts ≤ kε + cε̇ ≤ Ts and − Ps ≤ kεε̇ + cε̇2 ≤ Ps,

Ts if kε + cε̇ > Ts and − Ps

Ts
≤ ε̇ ≤ Ps

Ts
,

−Ts if kε + cε̇ < −Ts and − Ps

Ts
≤ ε̇ ≤ Ps

Ts
,

Ps
ε̇ if kεε̇ + cε̇2 > Ps and ε̇ ≥ Ps

Ts
or ε̇ ≤ −Ps

Ts
,

− Ps
ε̇ if kεε̇ + cε̇2 < −Ps and ε̇ ≥ Ps

Ts
or ε̇ ≤ −Ps

Ts
.

(17)

Parameters k and c represent stiffness and damping coefficients, respectively. Ts
corresponds to the saturation torque, and Ps the saturation power. The ISWEC system
employs a “slow-tuning” approach [54], adjusting control parameters such as the flywheel
rotational velocity ψ̇, c, and k in response to the spectral characteristics of the incoming sea
state to maximize the energy harvested. This method simplifies control compared to wave-
by-wave strategies, optimizing power production by adapting parameters for the entire
duration of a sea state determined through its PSD. The “slow-tuning” concept signifies
parameter adjustments based on evolving sea-state spectral properties while disregarding
instantaneous wave profiles.

3.2. Framework

A classic Monte Carlo process was adopted with the aim of propagating uncertainties
and avoiding assumptions inherent in the procedure. Two variables were defined as
being subject to uncertainty. The first parameter was the device’s pitch inertia M(5,5).
Previous analyses [45] highlight its impact on device performance. To propagate uncertainty
concerning this variable, it was necessary to define a probability distribution for the
associated uncertainties. A uniform distribution within the probability box defined by
the interval [−10%M(5,5),0, +10%M(5,5),0] was chosen for the uncertainty of M(5,5), where
M(5,5),0 is the nominal expected value for the parameter. The choice was made after
considering the effects on the pitch inertia of the device due to variations in the distribution
of masses of the stern and bow ballasts. Consistent with the considerations for the first
parameter described above, the second parameter subjected to real-world uncertainties
was the position along the z-axis of the device’s center of gravity CoGz. For this parameter,
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the uncertainty was modeled as an additive variation from the nominal value CoGz,0:
[CoGz,0 − ∆CoGz ,CoGz,0 + ∆CoGz ], describing again a uniform distributed probability-box.
Different values of ∆CoGz additive noise were set, and their relative impact in the robustness
quantification was observed. The output of the robustness analyses was the normalized
power (Pout,adim) generated through the device via harvesting wave energy, denoted as Pout,
normalized with respect to the maximum generated power in the whole dataset of the
analyzed device Pmax

out,adim:

Pout,adim =
Pout

Pmax
out

. (18)

While the literature includes studies on optimizing sampling in terms of quantity,
distribution, and parameter space geometry [49], the focus for this study was solely cali-
brating the number of samples. To determine the minimum number of samples necessary
to achieve a good system PDF representation, the focus was the convergence of standard
deviation, as illustrated in Figure 4; that is, a good convergence ratio was reached with
1000 samples. The notation symbol ˆ represents the normalization of the nominal expected
value of the output under examination, fm(x⃗i, u⃗0).

Figure 4. σ̂ convergence concerning the number of samples for the Monte Carlo stochastic simula-
tion approach.

Simultaneously, when observing that the trend of the standard deviation converged
with an increasing number of samples, a significant rise in computational costs could also
be noticed. This is visually reported in Figure 5: the computational burden follows a likely
linear trend, also highlighting the impracticality of investing such a substantial amount
of time (8 h) to conduct a complete robustness quantification process for a single device.
This drawback becomes even more relevant when considering the necessity of repeating
a high number of simulations, e.g., for an RDO framework, for which the evaluation of
the objective function might need to be performed thousands of times for the RQ phase.
To mitigate this challenge and maintain a stochastic RQ approach, the next step was to
develop a suitable surrogate model that was also able to reduce the computational costs for
the uncertainty propagation process. A surrogate model, also known as a metamodel, can
take the form of a mathematical relationship or an algorithm that captures the relationships
between input and output variables; i.e., the procedure typically involves studying the
output and input relationships and then fitting the right metamodels to represent that
behavior. That is, a surrogate model M̃ (⃗υ) approximates the computationally expensive
model M (⃗υ) [57].
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Figure 5. Computational time concerning the number of samples used for the Monte Carlo
stochastic simulation approach. The computational equipment used for the present study was
a 12thGenIntel(R)Core(TM)i7-12700H-2.30 GHz with 32.0 GB of installed RAM.

Highlighting the crucial aspects of achieving an efficient metamodel, it becomes
possible to list the characteristics of what we define as an ideal surrogate model (a gold
model, as referred to in [57]). The surrogate model we obtained is superior not only if it
is characterized by good accuracy but also if it has the ability to be trained with a limited
number of computationally expensive model samples, i.e., saving computational time.

The technique chosen was Gaussian process regression (GPR), which can be considered
an extension of the Kriging method [58] and was already used in [59], where a data-driven
and GPR-based approach was developed in order to address the optimization problem for
the PTO control strategy of the Pendulum Wave Energy Converter. Considering a dataset
containing Nsample joint observations of the extracted normalized power yp and uncertain
parameters υ⃗p ∈ Rb, the following equation was used:

D = {(⃗υp, yp) : p = 1 . . . Nsamples}. (19)

In the present study, b = 2 and each υ⃗p represents a pair of M(5,5) and CoGz. Our goal
was to develop a metamodel M̃ , assuming that the observed extracted normalized power
values followed a joint Gaussian distribution perturbed by an additional Gaussian noise ζ:

M (⃗υ) = M̃ (⃗υ) + ζ, ζ ∼ N (0, λ). (20)

Here, M (⃗υ) is the computational expensive model underlying the observations yi,
and M̃ (⃗υ) is a Gaussian process defined as follows:

M̃ (⃗υ) ∼ GP(E(⃗υ), Ω(⃗υ, υ⃗′)). (21)

This Gaussian process is characterized by the mean function E(⃗υ) and covariance
function Ω(⃗υ, υ⃗′). The fundamental concept behind GPR is that any set of observations
has a joint normal distribution with expected values provided via E(υ⃗p) and a covariance
matrix with entries represented by Ω(υ⃗p, υ⃗′j) for p, j = 1 . . . Nsample. In practical terms, it

is possible to designate fp (⃗υp) = M̃ (⃗υp) as the observed values of the Gaussian process
(distinct from yp due to noise subtraction) and M̃∗ (⃗υ∗) as a random variable associated
with the value of interest f∗ (⃗υ∗), signifying the prediction for υ⃗∗. Therefore, it is possible to
compute the model prediction as the mean value of M̃∗ (⃗υ∗). In [60], a formal demonstration
of the GPR mathematical aspects can be found.
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To test the GPR approach’s accuracy and efficiency, a comparison with an expensive
Monte Carlo simulation with 1000 samples was performed. Two different metamodels were
tested with different expensive observations (50 and 100), and Latin Hypercube Sampling
(LHS) was chosen as a sampling method. LHS enables the creation of an N-dimensional
grid, with its density varying based on the desired number of samples. In the present
case of study, N remained constant at 2. This grid was comprised of a set number of
cells, corresponding to the total number of desired samples, ensuring that each cell was
evaluated with a sample. This approach prevents the potential concentration of samples in
specific regions of the parameter space (oversampling) or the under-sampling of certain
areas, resulting in a uniform and well-distributed sampling pattern.

In Figure 6, the two obtained surfaces are represented, and in Table 3 the results
are summarized. For the procedure, the surrogate model training and test datasets were
different and without common samples. All the results were normalized with respect to
the nominal expected value due to a nondisclosure agreement about the technology.

Figure 6. Expensive model M (⃗υ) surface (in red) compared with the model surfaces obtained via
metamodels M̃50 (⃗υ) (in blue) and M̃100 (⃗υ) (in green). The Figure reports a third-model accuracy
comparison visualization after the one described in Figure 7. The surfaces were obtained by testing
the three different models for the same device when affected by the same uncertainty dataset.

The outcomes show a clear overlap among the three surfaces. This means that the GPR
potential is saturated; that is, increasing the number of observations resulted in a very similar
surface. On the other hand, the accuracy of the metamodel can be considered good enough
for statistical purposes. When looking at Figure 7, it is possible to reach the same conclusion.
The distributions on the right (Figure 7b) differ for some localized values, but the general
statistical behavior is similar among the two surrogates’ PDF and the expensive models.
Moreover, this is consistent with the left image (Figure 7a) of the same Figure 7: the majority of
data points align closely with the bisector of the plane defined by the real model’s normalized
power output (Pout,adim—True on the y-axis) and the normalized power values predicted via
surrogate models (Pout,adim—Pred on the x-axis). In the case of a perfectly accurate model,
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all data points would lie precisely on the bisector. Furthermore, there is evident minimal
dispersion among the data points. The most significant deviations from the bisector (which
describes the ideal prediction) are confined to a specific, limited region within the domain
populated by only a few data points (<1%). The lack of samples made it difficult for the
surrogate model to predict the output variable in those areas. When looking at Figure 7b, it
can be seen that the green (GPR100) and blue (GPR50) curves do not follow the course of the
red curve (MonteCarlo1000) with the same accuracy as with the other intervals.

Figure 7. Accuracy tests on M̃50 (⃗υ), M̃100 (⃗υ), and M (⃗υ) PDF and prediction. Subfigure (a) describes
the prediction accuracy by comparing the GPR prediction (Pout,adim—Pred) with the computationally
expensive mathematical model, both affected by the same uncertainties. Subfigure (b) reports the
statistical behavior in terms of PDF for the three different models.

Table 3. Comparison of an expensive Monte Carlo model M (⃗υ) simulation and a GPR surrogate
model M̃ (⃗υ) simulation built with 50 and 100 samples, with an associated relative error εrr,50 εrr,100.

Index M (⃗υ) M̃50(⃗υ) M̃100(⃗υ) εrr,50 εrr,100

NRMSE [/] — 0.03 0.02 — —
Time [min] 527.66 27.00 52.80 — —

µ̂ [/] 1.0811 1.0784 1.0821 0.25 [%] 0.09 [%]
σ̂ [/] 0.2760 0.2798 0.2743 1.38 [%] 0.62 [%]

sup f̂ [/] 0.6456 0.6216 0.6180 3.72 [%] 4.28 [%]
µ̂ + kσ̂ [/] 2.7369 2.7570 2.7279 0.73 [%] 0.33 [%]

R [/] 0.3687 0.3690 0.3684 0.08 [%] 0.08 [%]
Q [/] 0.7219 0.7230 0.7293 0.15 [%] 0.96 [%]

Another indicator of the good statistical approximation of the obtained surrogate
model is provided via the value of the normalized root mean squared error (NRMSE).
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As suggested in [49], an NRMSE < 0.1 is characterized by a reasonable predictive capacity.
Thus, the surrogate model M̃ (⃗υ) is suitable for analysis, which would capture the overall
system behavior, but accuracy in the prediction of specific points cannot be guaranteed. The
trade-off between the speed and accuracy of the model is significantly directed towards the
choice of M̃50 (⃗υ) due to the metamodel accuracy, which is very similar to the one obtained
via M̃100 (⃗υ) with savings in computational costs equal to 25.8 min. The conservation of
time resources is equal to 96% of the total amount of time requested for the RQ of a single
device exploiting the M̃50 (⃗υ) model: using 50 samples, it was possible perform the RQ for
about twice the number of devices as would have been processed in the same time frame
with M̃100 (⃗υ) and with comparable and acceptable accuracy.

4. Results

The previously delineated framework was applied to the results of a nominal opti-
mization process performed via a genetic algorithm; the selected site is near Pantelleria
Island. In Figure 8, the scatter diagram for both the normalized annual sea energy density
and occurrences is presented. Moreover, in the same Figure 8, the red dots represent the
sea state set of representative waves (modeled as irregular waves according to a Jonswap
spectrum) that were used in order to simulate the performances for each individual of the
optimization algorithm. The waves were chosen to cover the relevant regions in terms of
the energy and frequency of the scatter diagrams. The same representative sea states were
employed in the RQ framework.

Figure 8. Pantelleria Island scatter plot of occurrences and annual marine energy per meter. The
selection of representative waves (red dots) was performed to comprehensively cover significative
regions in terms of the energy and occurrence of the site scatter diagrams. Both the annual energy
and the occurrences were normalized with respect to their maximum values.

In Figure 9, the optimization results are reported in terms of Pout,adim and CapExadim
(Equation (22)) as objective functions:

CapExadim =
CapEx

CapExmax . (22)

The initial phase of this analysis centered on the examination of Pareto frontier devices
with a direct comparison of outcomes following the assessment of previously expounded
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robustness indices for each WEC. Three different values of ∆CoGz were used to compare the
responsiveness of the system robustness.

When examining Figure 10c, related to index µ̂ in Figure 10, the results show that
the majority of devices were located in the neighborhood of the normalized value of the
mean performance (µ̂) around 1, exhibiting good average behavior when subjected to the
disturbances imposed on uncertain parameters.

Figure 9. Devices obtained during the nominal optimization via GA. In black, the Pareto frontier devices
are depicted.

As anticipated in the preceding sections, it was crucial to consider additional robust-
ness metrics to obtain comprehensive information regarding the statistical trends of the
examined performance.

When analyzing the Qi measurements in Figure 10b, it becomes evident that devices
belonging to the nominal Pareto-set present PDF, in 90% of the occurrences, exceed values
even lower than 65% of their relative fm(x⃗i, u⃗0), highlighting a difference between the
claimed nominal performance and the performance achieved when taking into account un-
certainties.

The achieved outcomes could be helpful during the decision-making phase. When a
choice needs to be made in order to identify a singular device among the one belonging to
the nominal Pareto set, the designer can rely on the robustness classification performed via
the studied RIs.

The analysis now moves towards a broader pool of devices, which was selected from
those involved in the whole nominal optimization process. The selection criteria were based
on the normalized cost of energy (CoEadim), defined in Equations (23) and (24) as the ratio
between the device’s capital cost (CapEx in [MEuro]) and the associated device’s annual
energy production (AEP in [MWh

y ]), considering an average device life time (li f e25) of
25 years:

CoE =
CapEx

li f e25 AEP
, (23)

and normalized regarding the maximum dataset CoE:

CoEadim =
CoE

CoEmax . (24)
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Figure 10. Pareto frontier devices’ RI comparison for three different ∆CoGz values. Each cross
corresponds to one singular device, and the different colors refer to different ∆CoGz parameters. Each
subfigure (a–f) shows the Pareto set devices’ comparison for each of the robustness metrics described
in Table 1.

The capital expenditures for the device CapEx are composed of three primary factors:
hull materials and construction, unit materials and construction, and PTO costs. Mooring
system and operational and maintenance expenditures were excluded from the cost eval-
uation in this study due to their device-specific nature. The robustness of five thousand
devices was quantified.

Also, in this case, the same three different ∆CoGz perturbations used above were ap-
plied. In the context of uncertainty propagation and result acquisition, the delineation of
new Pareto frontiers occurred by establishing threshold values for each index. The limit val-
ues established above (for indices for which maximization indicated superior performance,
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Figure 11b,c,f) or below (for indices for which minimization indicated optimal performance,
Figure 11a,d,e), for which robustness values were referred to, an individual WEC system’s
performance can be considered acceptable. Therefore, these frontiers are not contingent
upon the normalized nominal power output (Pout,adim) but are associated with the intrinsic
robustness index pertinent to this parameter. From the results in Figure 11, it is evident that
the imposed uncertainties play a significant role in shaping the Pareto set, considering the
threshold set for the studied metrics. The most notable deviations were observed among
the Pareto sets related to indices Q, σ̂, and sup f̂ , respectively, in Figure 11b,e,f).

Figure 11. New Pareto frontiers for fixed RI thresholds. Each subfigure (a–f) illustrates the different
Pareto sets for each of the robustness metrics described in Table 1, with a fixed RI’s threshold and
three ∆CoGz values.
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The standard deviation threshold was set to constrain its value equal to 5% of the
nominal expected value of the ith device. Moreover, the WCS for the singular system was
bound to be equal to or greater than the 90% of fm(x⃗i, u⃗0). The Q threshold was imposed
to ensure that each perturbed WEC guaranteed a statistical trend with the 90% of the
occurrences defined by a Pout,adim greater than the 90% of the nominal expected values.
In these three cases, the new robust-optimal devices exhibited significantly lower power
levels compared to those belonging to the nominal Pareto set, revealing a trade-off between
robustness and optimal performances. In Figure 11e, nearly 21% of the performance
reduction could be achieved, and the Pout,adim could decrease from 0.94–0.78 to 0.74–0.56
for Q and sup f̂ , respectively, in Figure 11b,f. Moreover, imposing a threshold concerning
device robustness led not only to a degradation in performance but also to a reduction in
the Pareto set dimension itself, compelling the designer to make choices within a more
limited range of objective functions (Pout,adim and CapExadim). The mentioned Pareto size
reduction is pronounced in Figure 11b,e,f.

Then, the study’s focus was directed toward emphasizing how the thresholds’ strin-
gency magnitude impacts the robustness metric Q. Three distinct levels were investigated:
0.85 (the least stringent), 0.9 (medium-stringent), and 0.95 (the most rigorous). The out-
comes are represented in Figure 12. Also, in this case, a trade-off between performance and
robustness threshold severity was present.

Figure 12. New Pareto frontiers for different Q thresholds’ stringency. Each subfigure (a–c) illustrates
the different Pareto sets for each of the three fixed Q threshold and three ∆CoGz values.
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At last, two different devices were selected from the whole pool of systems, namely D1
and D2, and a robustness performance assessment for the technology with respect to the
site under analysis was carried out, i.e., Pantelleria Island (Figure 8). The case study was
investigated in order to compare the performance robustness of the two different systems
(D1 and D2), which both belong to the Pareto frontier and, therefore, are not dominant with
respect to each other; i.e., neither of the two is univocally optimal compared to the other in
relation to the performance examined (CapExadim, Pout,adim). The devices’ data are reported
in Table 4.

Table 4. D1 and D2 data.

Device CapExadim [/] Pout,adim [/] σ̂ [/]

D1 0.45 0.74 0.13

D2 0.27 0.39 0.31

The D1–D2 set of devices is characterized by a good trade-off between CapExadim
and performance for both systems: a medium-high normalized power for medium CapEx
for D1 and medium-low Pout,adim but a low cost for D2. Although the two WECs are
characterized by a large gap in terms of robustness, for those two devices, this value was
quantified via the σ̂ index, i.e., ∆σ = 0.18[/].

In Figure 13, the annual energy distribution over the normalized wave period and
height is compared between D1 and D2. Here, light colors illustrate the variability in
distribution when uncertainties were taken into account. On the x-axis, the wave period
and significant height were normalized relative to the site’s most energetic period and
wave height, denoted as the ratio between the relative sea state data and the site’s most
energetic period (TmaxEn

e,site ) and significant wave height (HmaxEn
s,site ):

Te,adim =
Te

TmaxEn
e,site

, (25)

Hs,adim =
Hs

HmaxEn
s,site

. (26)

The devices’ AEP was normalized relative to its respective distribution peak value
(AEPmax):

AEPadim =
AEP

AEPmax . (27)

The plot clearly shows the difference in terms of the standard deviation σ̂ for the
two systems. The shading representative of the distribution fluctuation was wider for D2
than for D1. On the contrary, D1 showed a smaller range of variability. In this scenario,
the decision-making process may favor the utilization of the D1 device due to its reduced
susceptibility to uncertainties and higher productivity despite an increase in CapExadim
amounting to 18% of the maximum device cost in the whole dataset CapExmax.

5. Conclusions and Future Works

The exploration of uncertain parameters’ impacts in real-world scenarios is in its
early stages within the context of WEC design optimization processes. In the current
literature addressing uncertainty treatment in WECs, the majority of attention is directed
toward modeling control logics that are insensitive to uncertainties (i.e., robust control) and
addressing uncertainties in the experimental phases of technology development.

When broadening the perspective to other research domains, it is observed that the
most commonly employed methodologies in optimization processes taking into account
perturbation are RO and RDO. Within the latter, particular emphasis is placed on robustness
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metrics aimed at quantifying the impact of parameter perturbations on the system’s perfor-
mance.

Figure 13. D1 (green) and D2 (violet) normalized annual energy distribution. The bold lines represent
the distributions’ mean value, excluding the 10th and 90th percentiles. Light colors describe the
distributions’ variability when uncertainties were taken into account.

The objective of this study was to investigate the information that various robustness
indices can provide regarding optimal devices obtained following a nominal optimization
process in the design of a WEC. For this purpose, a methodology based on stochastic
uncertainty propagation via the Monte Carlo method was employed, exploiting a surrogate
model (GPR) to reduce the computational cost of the RQ process.

The results highlight the necessity for attention to robustness evaluation in optimal
WEC designs’ optimization process. To support this thesis, the results of the present study
indicate that devices belonging to the nominal Pareto set are characterized by a Pout,adim
statistical trend that, in 90% of occurrences, was found to be higher than just 65% of
the expected nominal value. Robustness indices were then evaluated for all individuals
in a dataset obtained during the various generations of a design optimization process
conducted using GA. These additional results reveal a significant deviation between the
nominal Pareto set and the new one sought by setting differently stringent thresholds for
robustness metrics. Around a 20% robustness performance reduction was achieved in the
analyzed case when considering the standard deviation σ̂ index. Moreover, imposing a
threshold on the device’s robustness can decrease the Pout,adim from 0.94–0.78 to 0.74–0.56
for Q and sup f̂ , respectively. These findings represent novel information that was not
obtainable previously from the nominal optimization process, and it can constitute valuable
data in decision-making. Furthermore, outcomes justified the intention to proceed toward
the implementation of RO processes for WEC design.

Ultimately, a performance robustness assesment analysis was conducted for two
selected devices chosen from the nominal Pareto set, namely D1 and D2. The aim of the
case study was to delineate the annual productivity distribution over the sea Hs,adim and
Te,adim. D1 and D2 were distinguished by a favorable balance between performance metrics
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and different degrees of robustness; i.e., the distribution fluctuation was wider for D2 than
for D1. Therefore, the outcomes show that D1 WEC might be the better choice during a
decision-making phase due to its reduced sensitivity to uncertainties and improved AEP
despite a cost increase of around 18% of the maximum device CapEx in the whole dataset.

The main limitations of this study were the high computational costs resulting from
the necessary expensive numerical simulations to build the employed GPR model and the
restriction of uncertain parameters to only two. The confidentiality constraints present
in this study imposed restrictions concerning both the quantification of uncertainties’
impact on technology performance in absolute terms and the disclosure of devices’ design
data. Nonetheless, the results obtained from analyzing different metrics effectively convey
information to the designer about the robustness of different devices with respect to their
expected performance ratings, and they allow for comparisons between different devices,
providing insights into their PDF performance and robustness.

Moreover, the present research has revealed a certain trade-off between performance
and robustness, which is not a new topic in the WEC literature. This sort of balance has
been widely investigated in the robust control (e.g., WCS) and robust energy maximizing
approaches [12,17]. Similarly, the performance compromise was investigated in WECs’ array
field, e.g., with lower energy production costs, against the aggregate power performance
degradation and the system sensitivity with respect to the wave interaction effects [61] or
optimal array layout and efficiency [62].

Combining the obtained results and considering the limitations and trade-off high-
lighted in this study, future work, in addition to developing a WEC design RO framework,
could involve a study of the impact that different types of control logic might have on the
robustness of the conceptual design of a technology. Finally, the research should consider
evaluating uncertainties in environmental and economic parameters, thus shifting attention
towards the optimization of techno-economic indices such as the LCoE.
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Abbreviations
The following abbreviations are used in this manuscript:

WEC Wave energy converter
LCoE Levelized cost of energy
RO Robust optimization
RI Robustness index
RQ Robustness quantification
RDO Robust design optimization
RBDO Reliability-based design optimization
PDF Probability density function
GPR Gaussian process regression
LHS Latin hypercube sampling
WCS Worst-case scenario
PTO Power take-off
FDM Frequency domain model
TDM Time domain model
SDM Spectral domain model
PSD Power spectral density
CoG Center of gravity

Notes
1 A comprehensive overview of the historical and commercial efforts to develop these technologies can be found in [6].
2 For a normal distribution, approximately 68% of the data is within one standard deviation σ from the mean distribution value,

roughly 95% within two σ, around 99.7% within three, and so on, almost reaching 100% with a six σ distance. This method is
commonly used in the industrial product quality field [46].
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