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Abstract: Wave energy holds significant promise as a renewable energy source due to the consistent
and predictable nature of ocean waves. However, optimizing wave energy devices is essential
for achieving competitive viability in the energy market. This paper presents the application of a
nonlinear model predictive controller (MPC) to enhance the energy extraction of a heaving point
absorber. The wave energy converter (WEC) model accounts for the nonlinear dynamics and static
Froude–Krylov forces, which are essential in accurately representing the system’s behavior. The
nonlinear MPC is tested under irregular wave conditions within the power production region, where
constraints on displacement and the power take-off (PTO) force are enforced to ensure the WEC’s
safety while maximizing energy absorption. A comparison is made with a linear MPC, which uses
a linear approximation of the Froude–Krylov forces. The study comprehensively compares power
performance and computational costs between the linear and nonlinear MPC approaches. Both
MPC variants determine the optimal PTO force to maximize energy absorption, utilizing (1) a linear
WEC model (LMPC) for state predictions and (2) a nonlinear model (NLMPC) incorporating exact
Froude–Krylov forces. Additionally, the study analyzes four controller configurations, varying the
MPC prediction horizon and re-optimization time. The results indicate that, in general, the NLMPC
achieves higher energy absorption than the LMPC. The nonlinear model also better adheres to
system constraints, with the linear model showing some displacement violations. This paper further
discusses the computational load and power generation implications of adjusting the prediction
horizon and re-optimization time parameters in the NLMPC.

Keywords: wave energy converter; optimization; point absorber; marine energy; nonlinear control;
model predictive control; nonlinear model predictive control

1. Introduction

Water waves are predictable and carry a high content of energy; yet, they represent the
world’s largest underutilized renewable energy resource. Ocean waves have the potential
to meet the demand for energy with an estimated power of 2300 TWh/year in the United
States, equivalent to 57% of the electricity generated in 2019 [1]. Despite the resource
potential, marine energy technologies, especially wave energy converters (WECs), are still
in the early stage of development and will require further research to become economically
competitive in the energy market [2].

One of the main objectives in wave energy converters research nowadays is to find
ways of reducing their levelized cost of energy (LCOE), which is defined as the ratio of
the total capital expenditures (CAPEX) and operational expenditures (OPEX) to the total
energy produced over the system’s lifetime. Therefore, to reduce the LCOE is necessary to
(1) decrease the capital and operational expenditures and (2) increase the annual energy

Energies 2024, 17, 5112. https://doi.org/10.3390/en17205112 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17205112
https://doi.org/10.3390/en17205112
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-1403-620X
https://orcid.org/0000-0002-8860-8330
https://orcid.org/0000-0002-3143-0885
https://orcid.org/0000-0001-8503-6624
https://doi.org/10.3390/en17205112
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17205112?type=check_update&version=1


Energies 2024, 17, 5112 2 of 16

production (AEP) [3]. Advancing the control strategies to maximize the energy capture of
WECs has shown the potential to increase the WEC AEP by up to 197% [4] and, therefore,
lower their LCOE.

Many different wave energy converter devices can be found in the literature, but their
main working principle is the same: transform the energy of waves into useful forms of
energy through the Power Take-Off system (PTO). The authors in [5,6] present a review
and classification of wave energy converter technologies. Because of their simplicity, and
capabilities offshore, this paper focuses on spherical single-body heaving point absorber
(HPA) wave energy converters.

When designing model-based control strategies, it is crucial to have an accurate
mathematical model of the system. HPAs are most commonly modeled using a linear
approach based on the Cummins equation [7]. This model is simple and computationally
convenient when small motions are considered. However, when control strategies are
applied through the PTO system to maximize power absorption, the motion of the WEC
is exaggerated. As a result, the nonlinearities in the system become significant and must
be considered to obtain an accurate WEC model [8]. To address these nonlinearities, this
paper presents a nonlinear model predictive control (NLMPC) strategy and compares its
performance to the widely used linear model predictive control (LMPC).

Model predictive control is an optimal control algorithm that uses the WEC mathemat-
ical model to predict the future behavior of the states over a finite prediction horizon and
adjust the input to minimize the objective function [9]. An attractive feature of MPC is that
it can be used with nonlinear models, and the optimal control solution can be subjected to
constraints of the states and the input. In addition to MPC, various optimal control strate-
gies have been developed to enhance the performance of WECs. Ringwood et al. provides
a comprehensive review of these approaches in [10]. Similarly, extensive research has been
conducted on MPC for wave energy converters. However, most of the literature focuses on
LMPC, while only a few authors focus on NLMPC strategies. A comprehensive review of
MPC in WECs suggests that less than 15% of articles consider NLMPC algorithms [11].

MPC is an established control strategy in industrial processes [9], which suggests a
great potential for WEC applications. The authors in [12] were one of the first researchers to
propose using NLMPC to deal with nonlinearities in WECs. The WEC was a floating 2-body
HPA with nonlinear mooring forces. The results showed that using NLMPC yielded better
outcomes for certain wave conditions; however, for others, using NLMPC over LMPC was
not justifiable. A subsequent study [13] based on the same mooring configuration used an
extended Kalman filter to estimate the states of the WEC, resulting in a 53% improvement
in the computational effort. Both articles paved the way for the development of NLMPC
by incorporating nonlinear mooring forces. However, in this paper, a fixed spherical HPA
is considered, where the most significant nonlinear terms are given by the Froude–Krylov
(FK) forces [14].

Guang Li [15] proposed a NLMPC of a WEC based on differential flatness parameteri-
zation, which incorporates the nonlinear buoyancy force of a non-uniform cross-sectional
area buoy. The results showed an improvement in the computational effort when using
flatness parameterization with a NLMPC. These results are heavily focused on the com-
putational performance of the algorithm and not so much on the energy maximization
of the control law. A more recent study [16] presented a NLMPC strategy based on the
real-time iteration scheme. The nonlinear term is given by the incorporation of the PTO
system efficiency; however, the WEC model is a linearized system. The focus of this paper
is not on real-time applicability but rather on the energy maximization of a nonlinear WEC
model with significant nonlinear forces.

In the literature, different NLMPC strategies have been developed with an objective in
mind: reducing the LCOE by increasing energy production. Therefore, the structure of the
NLMPC algorithm is very similar in most of the articles. The common objective function,
which is also adopted in this study, is the energy maximization over a finite prediction
horizon while complying with constraints. The constraints are more commonly applied to
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the amplitude of the motion, the velocity of the floating device, and the maximum force of
the PTO system. The NLMPC algorithm optimizes the power generated by manipulating
the PTO force over the finite prediction horizon.

WEC control systems, contrary to traditional control systems that aim to reject distur-
bances, must exploit wave forces to maximize energy extraction. Thus, knowing the wave
forces, over the prediction horizon, helps with the implementation of a WEC MPC solution.
Methods such as Kalman filters, autoregressive models, and neural networks have been
employed to forecast these forces [17–19]. This study presumes perfect knowledge of future
wave elevations for the control horizon to focus on control strategy differences between
LMPC and NLMPC without the wave force prediction complication.

The literature has shown the potential of MPC algorithms to improve the performance
of WECs, and, therefore, it is crucial to keep investigating and improving the WEC mod-
els and control algorithms to advance the technology. This paper presents an NLMPC
algorithm employing a nonlinear Froude–Krylov force model with a fidelity of 0.91–0.97,
subjected to realistic force constraints, comparing its efficacy against a linearized model
over various prediction horizons and optimization times. This article is based on Chapter 6
of the author’s PhD thesis [20].

The content of the paper is organized as follows: Section 2 describes the linear
and nonlinear WEC mathematical models used in the analysis of the MPC performance.
Section 3 describes the MPC algorithm and the details of the optimization statement,
Section 4 shows the results and discussion on the performance of the control strategy, and
finally, Section 5 contains the conclusion.

2. Wave Energy Converter Modeling

Mathematical models for WECs are crucial for developing model-based control sys-
tems. Typically, these models are linear due to their lower computational demands, operat-
ing under the assumption of small displacements. However, there are scenarios where the
device experiences significant motion while still generating power, making the nonlinear
characteristics increasingly relevant. This work specifically addresses these scenarios.

As illustrated in Figure 1, a heaving buoy is connected to a PTO system anchored to
the seabed. The incoming waves η(t) produce vertical oscillations in the buoy, creating
a relative velocity between the floating body and the submerged plate. This interaction
enables the conversion of kinetic energy into electrical energy. Assuming an incident flow
that is inviscid, irrotational, and incompressible, the general hydrodynamic model for a
heaving WEC is described as follows:

mz̈(t) = FFKst + FFKdy + Fg + FD + FR + FPTO (1)

where m is the dry mass of the buoy, z(t) is the displacement of the buoy from equilibrium,
FFKst and FFKdy are the hydrostatic and hydrodynamic Froude–Krylov forces, respectively,
Fg is the gravitational force, FD is the diffraction force, FR is the radiation force, and FPTO is
the PTO force.

As the incoming wave field interacts with the buoy, the waves bend around the edges
of the structure, a phenomenon known as the diffraction force FD. When the diameter of
the buoy is much smaller than the length of the wave, the diffracted waves from the buoy
become insignificant and can, therefore, be safely disregarded [21].

The radiation force is exerted on the body as it oscillates in undisturbed water, and it
is expressed as

FR = −m∞ z̈(t)−
∫ ∞

−∞
KR(t − τ)ż(τ)dτ (2)

which contains the inertial term represented by the added mass at infinite frequency m∞
and the radiation convolution term where KR is the radiation impulse response function
kernel. Solving this convolution integral is computationally demanding; therefore, to
increase the computational speed and to facilitate the use of conventional control methods,
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the radiation convolution is approximated by a state-space model [8]. The linear system is
described as

ẊR(t) = ARXR(t) + BRu(t); XR(0) = 0∫ t

0
KR(t − τ)dτ ≈ CRXR(t) + DRu(t)

where AR and BR are the state space matrices, and the output state space matrices are
CR, DR. The input to the system represented by u is the velocity of the buoy, and XR is the
state vector describing the convolution kernel KR. Figure 2 shows the agreement between
the kernel and a 3rd-order state-space approximation. The frequency-dependent parameters
of the buoy as well as the radiation state space model values are listed in Table 1.

Figure 1. Illustration of a spherical heaving point absorber (HPA) wave energy converter.
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Table 1. Spherical buoy parameters.

Parameter Values

WEC radius R 2.5 m
WEC mass m 32,725 kg
WEC draft h0 2.5 m

Added mass A∞ 14,019 kg
Natural Frequency ωn 2 rad/s

Radiation damping Ar

−1.74 −2.39 −0.23
1 0 0
0 1 0


Radiation damping Br

[
1; 0; 0

]
Radiation damping Cr

[
−2.39 × 104 −2.1 × 103 0

]
Radiation damping Dr 0

2.1. Nonlinear Froude–Krylov Force

The heaving point absorber’s primary nonlinear hydrodynamic force component is
the Froude–Krylov force FFK [14,22]. This force is obtained from integrating the pressure
resulting from the incoming waves across the wetted surface. It combines two forces: the
hydrostatic force FFKst and the hydrodynamic force FFKdy . The FK hydrostatic force is the
net force resulting from the difference between the force due to gravity Fg and the buoyancy
force. In terms of pressure, FFKst is defined as the difference between Fg and the force
exerted by the hydrostatic pressure acting on the buoy’s wetted surface. In contrast, the FK
hydrodynamic force FFKdy is calculated by integrating the unsteady pressure field induced
by the incident waves over the buoy’s wetted surface. Combining the two components, the
FK force can be mathematically expressed as

FFK = Fg −
∫ 2π

0

∫ σ2

σ1

P(z, t) f ′(σ) f (σ)dσdθ (3)

where the integrals take into consideration the profile of revolution of the shape of the
device f (σ) and the total pressure experienced by the buoy P(z, t). Assuming that this is
an offshore WEC, the pressure exerted on the buoy by the waves can be obtained by Airy’s
wave theory [23] for deep water waves:

P(z, t) = ρg
n

∑
i=1

eχizηi − ρgz (4)

where
ηi = Ai sin(ϕi − ωit) (5)

such that Ai is the wave amplitude component, ϕi is the phase shift, χi is the wave number,
and ωi is the angular frequency. Using Equation (5), the time series irregular wave elevation
can, thus, be expressed as η(t) = ∑n

i=1 ηi.
In linear models, where small displacements are assumed, the Froude–Krylov (FK)

force is integrated over the mean wetted surface of the buoy. In contrast, the nonlin-
ear approach accounts for the instantaneous wetted surface, which typically demands
significantly more computational resources. However, Giorgi et al. [24] introduced a com-
putationally efficient algebraic solution that is derived by integrating the pressure over
the profile of revolution of the device considering the instantaneous wetted surface area.
This paper incorporates the nonlinear FK force model developed and validated in [20],
where the author built upon the methodology originally employed by Giorgi et al. to
derive closed-form expressions for the FK forces. This modified approach extends beyond
previous scopes by redefining the profile of revolution of the buoy shape and the limits of
integration to (1) accommodate for varying drafts of the buoy and (2) satisfy the dynamic
boundary condition in Airy’s theory.



Energies 2024, 17, 5112 6 of 16

To account for the instantaneous wetted surface area of the spherical buoy up to the
still water level, the profile of revolution f (σ) as well as the limits of integration σ1 and σ2
are redefined as [25]:

f (σ) =
√

R2 − (−R + h0 − z(t) + η(t) + σ)2 (6)

where R is the radius of the sphere, h0 is the draft of the buoy, and σ is the integral variable
that defines the limits of integration as{

σ1 = −h0 + z(t)− η(t)
σ2 = 0

(7)

Solving the integral term of the FK force in Equation (12) and separating the FK force
into the hydrostatic and hydrodynamic force, the resulting nonlinear forces are

FFKs = Fg − 2πρg
∫ 0

σ1

σ(R − h0 + z(t)− η(t)− σ)dσ (8)

FFKd = 2πρg
∫ 0

σ1

n

∑
i=1

(eχiz Aicos(ωit + ϕi))(R − h0 + z(t)− η(t)− σ)dσ (9)

When considering the fidelity of this model, this method classifies as partially nonlin-
ear, providing high accuracy at low computational costs.

2.2. Wave Spectrum

The wave characteristics used in this paper were chosen based on realistic wave
conditions across different wave energy test sites across the United States. The most
common ocean spectra used to model irregular waves are the Bretschneider, Pierson–
Moskowitz (PM), and JONSWAP spectra. In this study, the PM spectrum was used.

The two-parameter PM spectrum can be obtained from the significant wave height
Hm0 and the peak wave frequency fp. The range of Hm0 and energy periods Te are chosen
based on the occurrence of each sea state and its contribution to wave energy. For example,
at the U.S. Navy Wave Energy Test Site (WETS) in Hawaii, the most frequent sea states
occur within the range of 1 m < Hm0 < 2.5 m and 5 s < Te < 11 s [26]. However, these sea
states do not always contribute the most wave energy. In an average year, the total wave
energy in this location is 125,850 kWh/m, and the wave characteristics that contribute the
most energy are within the range of 1.5 m < Hm0 < 2 m and 7 s < Te < 8 s.

The PM spectrum was computed using the wecSim tool [27]. The spectral density of
the surface elevation defined by the PM spectrum [28] is defined by

S( f ) =
(Hm0)

2

4
(1.057 fp)

4 f−5exp(−5
4
(

fp

f
)−4) (10)

where A = 0.675 is a nondimensional constant and ωs = Tp/1.167 is the significant
frequency associated with the peak period. Figure 3 shows a PM spectrum and the time
series wave elevation generated using random phases ϕ, described as

η(t) =
n

∑
i=1

Ai cos (ωit + ϕi) (11)

where n is the number of wave components, ωi is each component’s wave frequency, and
the wave amplitudes are obtained from the wave spectrum as Ai =

√
2S(ωi) dωi.
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Figure 3. (a) Pierson–Moskowitz spectrum and (b) the wave elevation profile for a wave of Tp = 6 s
and Hm0 = 1 m described with n = 10 wave components.

3. Model Predictive Control

Model predictive control (MPC) leverages the WEC mathematical model to predict
the future behavior of the system over a finite prediction horizon. It optimizes performance
by fine-tuning the inputs to the system. This strategy is particularly advantageous as it can
manage constraints on system states and inputs while incorporating predictions of external
inputs. The main components of MPC include a precise prediction model, an objective
function to guide performance metrics, defined system constraints, and an optimization
algorithm to seek the best control actions.

For optimizing the performance of wave energy converters, two primary approaches
are typically employed. The first approach centers on minimizing the error between an
optimal velocity reference and the actual velocity of the WEC while complying with the
constraints. This approach requires having an optimal trajectory. In linear WEC models
subjected to regular waves, the optimal velocity trajectory can be defined by

|ż∗(ω)| =
|FFKd(ω)|

2B(ω)
(12)

where B(ω) is the radiation damping coefficient. However, this optimal trajectory requires
large motions and large forces, making the solution impractical. Moreover, for nonlinear
WEC models under irregular wave conditions, deriving an explicit optimal velocity refer-
ence becomes significantly more challenging. Given these complexities, this study explores
a second approach: maximizing the power output of the WEC while adhering to motion
and force constraints. This method offers a more direct and potentially more feasible way
to enhance WEC efficiency under varying operational conditions.

The MPC algorithm requires a discrete function of the model. Combining the equations
described in Section 2, the discrete WEC model can be represented in the general discrete
form of

xk+1 = f (xk, FPTOk , ηk)

yk+1 = g(xk)
(13)

where k represents the current time and xk are the states of the system [z; ż; XR] at time k,
and yk are the outputs of the system [z; ż; XR]. Using these discrete system dynamics, the
future behavior of the WEC can be predicted over a finite horizon of length Nh where the
prediction horizon time is Th = Nhdt. The predicted states of the system are as follows:

xk+1|k = f (xk+i−1|k, FPTOk+i−1 , ηk+i−1), i = 1, 2, ..., Nh (14)
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where xk+i−1|k denotes the predicted state of the system at time k + i based on samples up
to time k. The control objective is to find the optimal PTO force that optimizes the energy
absorbed:

Eabsorbed = −
k+Nh−1

∑
i=k+1

FPTOi|k żi|k (15)

Therefore, the cost function to be minimized can be formulated as

J =
Nh

∑
0

FPTOi|k żi|k (16)

By minimizing the negative of the absorbed energy, the total energy absorbed is
maximized. This optimization problem is subject to the following two constraints:

ηk − zmax < |zk| < ηk + zmax k = 1, 2, ..., Nh

|FPTOk | < FPTOmax k = 0, 2, ..., Nh − 1
(17)

where zmax is the maximum relative displacement of the WEC. The constraints implemented
in this work are listed in Table 2. Furthermore, previous research has shown that large
incoming waves can lead to solution infeasibility [29]. To mitigate these infeasibilities, a
penalty term is incorporated into the cost function:

J =
Nh

∑
0

FPTOi|k żi|k + q/∆zi|k (18)

where q > 0 is the weighting factor for the position penalty term, and ∆z represents the
difference between the max or min displacement constraints and the actual displacement.
This penalty term is only activated when the displacement is within 5% of the constraint
limit. Thus, if the displacement is outside this 5% region, the weighting factor q is set to zero.
The general form of the optimization problem can then be described mathematically as

min
FPTO

Nh

∑
0

FPTOi|k żi|k + q/∆zi|k (19)

subject to the constraints in Equation (17).
At time step k, the optimization problem is solved to find the optimal parameters

of the control input sequence F∗
PTO. Typically, this optimal control input is implemented

until the next measurement becomes available and the optimization problem is solved
again. However, this time difference between re-optimizations Topt can vary [30]. In this
study, different re-optimization times are used in the simulations to evaluate the control
performance vs. simulation time. The prediction horizons Th and re-optimization times Topt
used in the simulation are listed in Table 2. The obtained F∗

PTO sequence is implemented in
the system until the next optimization step.

Table 2. Nonlinear MPC simulation parameters.

Parameter Symbol Value Units

Displacement Limits [zmin, zmax] [−2, 2] m
PTO Amplitude Limit FPTOmax 300 kN

Simulation Time Step Ts 0.01 s
Controller Update Time Tc 0.04 s

Prediction Horizon Th 6 and 12 s
Optimization Update Time Topt 3 and 6 s
Position Weighting Factor q 100 -
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In the literature on MPC, it is common to define a control horizon Tc over which the
optimal control input is obtained using the predicted states of the system. In this paper,
Tc = Th; therefore, an optimal control input sequence is obtained for the entire prediction
horizon. The workflow of the MPC algorithm used in this study is described in Figure 4.

Figure 4. Model predictive control schedule where Thi
is the prediction horizon of the ith iteration,

and Topti is the optimization time horizon for the ith iteration.

It is important to clarify that the focus of this study is not on real-time implementation.
Instead, the emphasis is on assessing the qualitative performance of NLMPC in controlling a
nonlinear WEC model characterized by nonlinear Froude–Krylov forces. This study aimed
to determine whether the NLMPC offers advantages over the LMPC. Both controllers
were implemented in MATLAB and Simulink Version 2024a, where the LMPC utilized the
linearized model of Equations (8) and (9). For the NLMPC, the MATLAB solver “fmincon”
was employed, capable of handling nonlinear dynamics with nonlinear constraints. The
“sqp” method was chosen as the optimization algorithm for “fmincon” because of its strong
convergence properties, robustness in handling complex nonlinearities, and effectiveness
in managing inequality constraints. The linearized version of the FK forces was obtained
using Taylor series expansion evaluated at z = 0 and η = 0. This was performed using the
“taylor” command in MATLAB.

Figure 5 illustrates the model predictive controller schematic and how it incorporates
the WEC model. In the simulation, the MPC operates using both linear and nonlinear mod-
els for comparative analyses, while the true model uses the nonlinear Froude–Krylov force.

Figure 5. Model predictive controller schematic. Adapted from [31] licensed under CC BY-NC-ND 4.0.

4. Results and Discussion

In this study, the state prediction in the MPC was performed using both the actual
nonlinear model of the WEC and a linear approximation. Both models were tested for a
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range of irregular waves created using the PM spectrum in Equation (10) and constructing
the irregular wave elevation profile in Equation (11) with 10 frequency components to form
an 80-s duration wave elevation with random phases. In the simulation, different prediction
horizons and re-optimization times were used. To evaluate how these parameters affect the
performance of the WEC and the relevance of including the nonlinear forces, this section is
divided into the following segments.

4.1. Linear vs. Nonlinear Model Comparison

Figure 6 shows the comparison of energy absorbed by the WEC, the PTO force, and
the WEC displacement using the two models for a wave of Hs = 1.5 m and Tp = 6 s. From
this figure, it is clear that the nonlinear model improves the performance of the WEC when
compared to the linear model. Their respective power production was 37.3 kW with the
linear prediction model and 54.5 kW with the nonlinear model, improving the performance
by 46.1% over the linear model. This performance analysis was conducted for the range
of waves tested with different prediction horizons and optimization times. The tables in
Figure 7 show the percentage difference in power production between the nonlinear and
linear MPC, which is calculated by

% Power Difference =

(
−(PL − PNL)

PL

)
× 100% (20)

where PL is the power produced by the linear MPC model, and PNL by the nonlinear MPC
model. The percentage difference quantitatively measures the extent to which the nonlinear
model produces more or less power compared to the linear model. A negative percentage
indicates a better performance of the linear MPC, and it is shaded in blue.
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Figure 6. Energy absorbed and PTO force for a wave of Hs = 1.5 m and Tp = 6 s. The prediction
horizon and optimization times are 6 s and 3 s, respectively.

By observing the performance comparison between linear and nonlinear MPC across
several wave conditions in Figure 7, it is evident that the overall performance is improved
by incorporating the nonlinearities into the predictive model. This is particularly clear
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at lower wave periods for an optimization time Topt = 3 s as shown in Figure 7a,c. For
instance, at a wave energy period of 6 s, the NLMPC shows a performance improvement
of up to 46%. However, looking at the same optimization time of 3 s but at higher wave
periods, the performance difference reduces, and in the case of the wave at a 9 s period and
a height of 1.5 m in Figure 7a, the linear MPC is slightly better.
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Figure 7. Percentage power performance difference between linear and nonlinear MPC models for
different prediction horizons Th and optimization times Topt. (a) Th = 6 s and Topt = 3 s, (b) Th = 6 s
and Topt = 6 s, (c) Th = 12 s and Topt = 3 s, (d) Th = 12s and Topt = 6 s.

However, it is important to note that the linear MPC, while producing more power
at higher wave periods, often fails to comply with displacement constraints. Figure 8
illustrates this issue, showing the displacement of the WEC and the PTO force with their
respective constraints for a wave with an energy period Tp = 9 s and Hs = 1.5 m. In this
scenario, although the linear model is slightly better than the NLMPC in power output, the
WEC displacement frequently exceeds the constraint limits. This could potentially lead to
system damage if not adjusted for real-world conditions.

The greater improvement in energy capture with the NLMPC at lower-energy-period
waves is primarily due to the inherent inaccuracies of the linear predictive model. These
waves are steeper than higher-period waves and cause substantial variations in the wetted
surface area of the buoy. In contrast, at higher wave periods, the difference in power
production between the linear and nonlinear models becomes negligible due to the slower
nature of the waves. Additionally, at these high-period waves, the effectiveness of the MPC
may diminish as the wave period exceeds the prediction horizon.

In the cases where the optimization time is extended to Topt = 6 s, it can be observed
that the power generated by the NLMPC is improved across all of the wave conditions.
This improvement is more pronounced when the prediction horizon is set to Th = 6 s at
smaller wave heights and longer wave periods. The reduced performance difference at
higher wave heights can be attributed to the linear model exceeding the displacement
constraints, which leads to an increase in power generation.

A clear demonstration of the benefits of using the NLMPC is evident in the case of
a long prediction horizon with a long re-optimization time, as shown in Figure 7c. In
this scenario, the inaccuracies of the linear model become highly significant, justifying the
computational complexity of employing a nonlinear MPC. As observed from the table, the
nonlinear MPC enhances system performance substantially, with improvements ranging
from 6.5% to 67.5%. These differences can be attributed to the accumulation of error
over the extended prediction period of the linear model and the extended optimization
time required to re-evaluate the system’s states. Therefore, the nonlinear MPC’s ability
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to account for more complex system dynamics and provide more accurate predictions
becomes critically important in such conditions, leading to significant performance gains.
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Figure 8. Displacement and PTO force for a wave of Hs = 2 m and Tp = 9 s. The prediction horizon
and optimization time are 6 s and 3 s, respectively.

Furthermore, from Figure 7, it is shown that, overall, having a nonlinear model is
beneficial in cases where the prediction horizons are kept the same while extending the
optimization times. Being able to re-optimize less often increases the computational effi-
ciency of the controller as it needs fewer optimizations. This could potentially compensate
for having a more computationally demanding nonlinear model. However, this does not
guarantee the generation of the highest amount of power. The following sections cover the
differences in computation time and power generation across different controllers.

4.2. Computational Time

The plots in Figure 9 show the computational times for linear and nonlinear MPC to
simulate 80 s of data. From these plots, it can be observed that the nonlinear MPC consis-
tently exhibits higher computational times than the linear MPC across all conditions, which
is expected as the nonlinear optimizations are more computationally complex to solve.

Overall, the computational time for both models increases with the wave height, but
not significantly. Additionally, there is no consistent correlation between computational
time and increasing wave periods, as trends vary depending on the prediction horizon
and optimization time configuration. However, it is clear that increasing the prediction
horizon and maintaining the same optimization time, as shown in plots (a) and (c), as
well as (b) and (d), result in an average increase in computational time by factors of 2 and
3, respectively.

The comparison across different optimization times shows an increase in computa-
tional times on average of 2.4 times for the case of Th = 6 s shown in plots (a) and (b), and
2 times for the case of Th = 12 s as seen in plots (c) and (d). In addition, it can be observed
that the difference in computations between the linear and nonlinear models becomes
less pronounced as the optimization time increases, for instance, the case in the plot (b).
Moreover, when the optimization time is extended from 3 to 6 s, both models exhibit a
more flattened computational time profile, indicating stabilization in processing demands.
This suggests that longer optimization periods might mitigate some of the computational
inefficiencies of the nonlinear model, making it a more viable option under conditions
where slightly delayed responses are permissible.
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Although this paper does not focus on the real-time applicability of the controller, future
research could explore optimization methods to reduce computational load and enable real-
time applications. By implementing more efficient real-time MPC algorithms, the control
system could become suitable for hardware testing environments, such as a low-friction
testbed [32] or a WEC emulator [33]. Such setups would allow for an evaluation of the
computational demands and performance of the control law under real-world conditions,
potentially bridging the gap between theoretical models and practical, real-time applications.

Figure 9. Computational time for different prediction horizons and optimization times for the linear
and nonlinear MPC.

4.3. Power Generation

Utilizing the nonlinear MPC, the mean power absorbed for each control configuration
was calculated and is presented in Figure 10. These data illustrate a clear pattern where
shorter prediction horizons and optimization times are associated with higher power
absorption. This observation aligns with findings from other studies. Bertsekas [34] notes
that the prediction horizon Th of the MPC should be determined experimentally to ensure
the controller performs satisfactorily, but also points out that longer Th values do not always
correlate with higher efficiency. In the context of wave energy converters, the choice of
Th should consider the system’s natural period [35] or the incoming wave period [36].
Sergiienko et al. [37] observed that increasing Th from 1 to 5 s enhances power absorption;
however, extending Th from 6 to 16 s shows negligible impact on power generation. This
suggests that in this case, a Th of 6 s is optimal, balancing computational efficiency with
effective power output.

The analysis of the power matrices also indicates that changes in optimization time
(Topt) significantly influence power absorption. For instance, reducing Topt in the case of
Th = 6 increases the mean power absorbed by an average of 23%. While shorter optimization
times lead to higher energy production, they also require greater computational demands.
Similar to the impact of the prediction horizon on power production, decreasing Topt does
not necessarily result in higher power production, indicating the need to carefully consider
these settings to optimize both power output and computational resources effectively.
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(c) Prediction horizon = 12s
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(d) Prediction horizon = 12s
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Figure 10. Mean power absorbed in (kW) for different NLMPC control configurations across a range
of wave heights and wave periods.

5. Conclusions

The study effectively demonstrates the advantages of employing nonlinear model
predictive control (NLMPC) over linear models in wave energy converters (WECs), par-
ticularly in optimizing power generation under various sea conditions. The nonlinear
approach consistently outperforms its linear counterpart in power output, especially at
lower wave periods with short optimization times, achieving improvements up to 44%.
This increase in performance aligns with the objective of reducing the levelized cost of
energy (LCOE) by enhancing the annual energy production (AEP) without significantly
increasing operational or capital expenditures.

However, the findings also highlight a notable trade-off between computational ef-
ficiency and power optimization. While nonlinear models yield higher power outputs,
they require longer computational times, especially as the optimization period is extended.
This study shows that although extending the optimization time improves the power
output across various wave conditions, it also leads to increased computational demands.
Therefore, the choice between nonlinear and linear models and their respective settings
must consider the specific operational priorities of a WEC project—whether the focus is on
maximizing energy extraction or maintaining manageable computational loads.

In conclusion, advancing WEC technology with NLMPC offers a promising path to-
ward optimizing power generation, albeit with considerations for computational demands.
Future research should aim to refine these models by exploring optimization methods that
can mitigate the computational burden of NLMPC, thereby making it more feasible for
real-time applications. This balance between power efficiency and computational feasibility
is essential to unlocking the full potential of WECs in renewable energy. Additionally, ex-
tending this analysis to incorporate PTO dynamics, PTO efficiency, and even a wave-to-wire
framework could provide deeper insights into long-term system performance, including
reductions in maintenance costs, fatigue analysis, and system durability. Another valuable
avenue for exploration is evaluating optimal actuator sizing by analyzing the NLMPC’s
performance under varying saturation limits to ensure optimal energy absorption and
actuator efficiency.
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