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Motivation

How many Earths would we need
if everyone lived like U.S.A. residents?
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1. Introdurction

Skills for Offshore and Maritime research
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1. Introdurtion

Evaluate the techno-economic feasibility

aguaculture systems to satisfy with electricity, green hydrogen, and food resources and energize the blue economy

gsites in Latin America .
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Module

— Wave energy converters

— Offshore wind turbine

— Seaweed aquaculture
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2. Methodology
Wave power
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Field site. Ensenada [México] and La Serena [Chile]

Mean wave power availahility [KW/m]
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3. Results

Mean wave power availability and variahility
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3. Results

Energy balance. Electricity generation-consumption profiles
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Marine Hybrid Clusters profitability
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3. Results

Marine Hybrid Clusters profitability
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4. Conclusions

2025

The contribution per coupled unit to the Marine Hybrid Cluster profitability was evaluated.

The geolocation and proximity to the extratropical generation zones of the Pacific generate differences in the availahility of
annual and monthly mean wave power in the selected sites. More constant Wave Power resource and [ower mean intra-annual
variahility inLa Serena than Ensenada [lower inter-annual variahility].

The same individual classes of WECS generate different yields at the twno sites analyzed. The PEL device produces 120% maore
mean annual electricity in Ensenada. WD generates 2oo0% more in La Serena. The integration of OWT into the MHC allowed the WECs
to contribute significantly to cover the electricity demand. Hybridization of WEC and OWT systems was more critical in
Ensenada, where higher variahility in wave energy required greater integration.

Profitahbility benefits of a blue economy framework. The seaweed aguaculture module fosters profitability in all scenarios.
Regardless of the WEC nature used and the energy surplus. Higher returns than households, higher in La Serena than Ensenada.

It is necessary to continue with the innovation and development of new generations of cost-effective WEC s adapted to the
|local conditions. Optimization WEC, response/control strategies, Costs, and considering social environmental aspects,
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Future works

International Cooperation in Research
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Thank you for your attention!

Dr. Emiliano Gorr-Pozzi
[emiliano.gorrgpolito.it]




