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 A B S T R A C T

The replacement of fossil fuels by intermittent renewable energy sources is transforming energy systems 
world-wide. A significant part of the future electricity demand will be supplied by offshore renewable energy, 
especially wind, but emerging technologies such as wave and tidal energy also offer great potential. However, 
the ability of offshore renewable energy systems – and of power systems and the societies that dependent on 
them – to cope with hazards such as extreme weather and metocean events is not well known. Resilience 
has become an increasingly important concept in the study of energy systems, as it addresses not only 
vulnerability to hazards but also the ability to recover from disturbances. Weather extremes are responsible 
for a majority of electricity blackouts, and the resilience of power systems to extreme weather hazards has 
long been an established field of research. However, the topic has not been examined to the same extent 
for offshore renewable energy systems; for marine energy technologies in particular, resilience is a novel 
concept. In the present study, we review the research that has been published starting from a discussion on the 
general resilience concept and its applicability for power systems. By identifying knowledge gaps and outlining 
directions for future research needed to build resilient and renewable energy systems, the paper contributes to 
several of the Sustainable Development Goals (SDGs). In particular, the paper supports the goals of affordable 
and clean energy (SDG 7), climate action (SDG 13), and sustainable cities and communities (SDG 11).
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1. Introduction

The share of renewable energy in the electrical grid is increasing 
at breathtaking speed. The International Energy Agency (IEA) predicts 
that global renewable capacity will increase by almost 75% (2400 GW) 
in the next five years [1], equalling the total installed power of China. 
A significant part of this capacity will be installed offshore: mostly as 
fixed offshore wind turbines, but also in emerging technologies such 
as floating offshore wind, wave, and tidal devices. It is predicted that 
annual offshore wind installations will increase 50% to over 30 GW in 
2027, propelled by policy support in the European Union, the United 
States, and China [1].

A reliable supply of electricity is absolutely critical to the func-
tioning of all modern societies. Every aspect of critical infrastructures, 
water and food supply, communication and information, finance, and 
transportation, depend on the grid [2]. Thus, threats to power systems 
are also threats to social stability, national security, and economic 
development. This dependence is increasing rapidly due to the ongoing 
electrification and digitalization of sectors throughout society. This 
interconnectedness also poses the risk that disturbances will lead to 
cross-sectoral cascading events with unfolding societal consequences.

These uncertainties and attend risks are increasing due to the grow-
ing penetration of intermittent renewable energy systems (RES) in the 
grid, adding to the complexity and interdependencies of the energy 
system. The capacity installed in wind farms is growing dramatically; 
19 GW of new wind power capacity was installed in Europe in 2022, 
bringing the total to 225 GW, and 129 GW is expected to be installed 
in Europe between 2023 and 2027 [3]. A substantial part of new wind 
energy installations will be offshore [3]. The wind energy resource is 
more consistent and energetic in offshore regions than onshore, and the 
available land resources available for large onshore farms are becoming 
scarce. For instance, in its ambition to fully decarbonize electricity 
by 2030, the United Kingdom is expected to double onshore wind 
and quadruple offshore wind by 2030 [4]. In the United States, the 
goal is to install 20 GW of offshore wind by 2030 and 86 GW by 
2 
2050 [5], although recent changes in policy may put a halt to these 
ambitions. This increased penetration of intermittent energy sources 
is likely to reduce the resilience of the electric system to extreme 
events [6,7], by, for instance, reducing the balancing capacity of the 
grid to handle disturbances. The combination of the large expansion 
of offshore wind along the US Atlantic coast and the risk of hurricane 
conditions led Wiser et al. [8] to conclude that more research is needed 
to assess the risk posed by hurricane hazards to offshore wind.

In addition to these increasing complexities and dependencies, the 
threats posed to electricity systems are changing. Threats to energy and 
power systems have been categorized and compared in several com-
prehensive works [9–13]. Bompard et al. [9] divided them into natural 
(storms, earthquakes, lightning, space weather, etc.), accidental (equip-
ment failures or operational faults), malicious (for criminal, military, or 
political purposes), and emerging. For the last category they identified 
systemic threats due to the increased penetration of intermittent RES 
and smart grids and the increasing interdependencies between critical 
infrastructures. Among 133 major blackouts that occurred around the 
world between 1965 and 2011, 63% were caused by natural hazards, 
especially storm events (54%) [9]. The second most common cause 
was accidents, which caused 31% of those blackouts. Jasiūnas et al. 
[13] state that extreme weather events are responsible for most of the 
disruptions in the energy supply, while rare extreme space weather 
events may represent the most catastrophic risk. Abedi et al. [12] 
classified risks to power system as natural hazards, intentional attacks, 
and random failures. They reported that the annual costs of weather-
related blackouts in the United States ranges from 20 to 55 billion USD. 
The frequency of these events has increased over the last 30 years [14]. 
Since extreme weather is responsible for most of the disruption in the 
energy supply, and since their frequency, magnitude, and character are 
changing due to climate change [15], the risk to the future renewable 
energy system posed by extreme weather is significant if uncertain.

In light of ongoing changes in energy systems, societal interdepen-
dencies, and the threat landscape, traditional approaches to energy 
security or reliability are no longer sufficient. Emerging characteristics 
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Abbreviations  
 AC alternating current OWC oscillating water column  
 CFD computational fluid dynamics OWSC oscillating wave surge converter  
 DC direct current OWT offshore wind turbine  
 EENS expected energy not supplied PA point-absorber  
 EIU energy index of unreliability PV photovoltaics  
 EVT extreme value theory RANS Reynolds-averaged Navier–Stokes  
 FOWT floating offshore wind turbine RES renewable energy systems  
 HILP high-impact, low-probability SAIDI system average interruption duration  
 IEA International Energy Agency SAIFI system average interruption frequency index  
 IPCC International Panel on Climate Change SDG sustainable development goals  
 LES large eddy simulation WEC wave energy converter  
 NREL National Renewable Energy Lab WEO World Energy Outlook  
 O&M operation and maintenance  
are increasingly difficult to predict [16], and emerging vulnerabili-
ties and threats able to exploit existing vulnerabilities cannot always 
be foreseen. Instead of aiming to build failure-proof energy systems, 
many governments, utilities, and transmission system operators are 
aiming to build resilient energy systems that can cope with hazards 
and disturbances in a way that is safe for the society. Resilience to 
extreme weather hazards is an established concept in the context of 
energy systems in general and power systems in particular; it has been 
reviewed from various perspectives in a wide range of works [6,10,13,
17–21]. But few scholars have examined the resilience of the changing 
power system in the light of the increasing penetration of RES. More 
specifically, there is as yet no review focusing on offshore RES, includ-
ing established fixed offshore wind and emerging technologies such as 
floating offshore wind, wave, and tidal energy. Since the dependence 
on offshore RES is growing in power systems around the world, this 
poses an important knowledge gap.

The novelty of the present study is the contribution to close these 
knowledge gaps. The paper provides a thorough review of the existing 
literature, identifies knowledge gaps, and suggests directions for future 
research. Offshore RES have a potential of contributing to a sustainable 
and fossil-free energy system, needed to combat climate change. The 
paper aligns with the UN Sustainability Development Goals (SDGs) 
and Climate Change Framework in that it identifies needs for research 
needed to secure resilience of future energy systems with a larger 
dependence on offshore RES.

The remainder of the paper is structured as follows. In Section 2, 
the concept of resilience is reviewed. We discuss the term in relation 
to similar concepts, and offer our view on why resilience has enjoyed 
increased attention in the last decade. Section 3 deals with the hazard 
of focus in our study: extreme weather and metocean conditions, their 
quantification, and the expected impact of climate change on their 
frequency. A review of resilience in the context of power systems is 
provided in Section 4; this provides context and background for the 
review of resilience in offshore wind and marine energy systems in 
Sections 5 and 6, respectively. Based on the review and discussions in 
the earlier sections, knowledge gaps and directions for future research 
are identified in Section 7. The conclusions of the study are concisely 
summarized in Section 8.

2. The concept of resilience

2.1. Terminology

Definitions. The notion of resilience was first introduced in the context 
of ecology but has since been applied to areas as different as psychol-
ogy, risk management, climate change impact, economics, and digital 
systems [19,20,22]. Generally, resilience means the ability of a system 
to ‘‘bounce back’’ after a disturbance. Whereas no universally accepted 
definition of resilience exists, the definition given by the IEA is well 
established for energy systems [23]:
3 
The capacity of the energy system and its components to cope with 
a hazardous event or trend, to respond in ways that maintain its 
essential functions, identity and structure as well as its capacity 
for adaptation, learning and transformation. It encompasses the 
following concepts: robustness, resourcefulness, recovery.

This definition includes some key terms, many of which have also been 
discussed, for example, by Heinimann and Hatfield [24] and Gasser 
et al. [20]. Adaptation refers to a system or behaviour changing in 
response to new or modified surroundings. Hughes [25] distinguishes 
adaptation from resilience in that a resilient system returns to its 
normal state after a disturbance, whereas adaptation changes the sys-
tem into a new normal state. Other authors see adaptation as part 
of resilience, as in the definition by IEA, or do not even distinguish 
between the two concepts: Molyneaux et al. [17] identifies energy 
resilience as synonymous with adaptive capacity.

Transformation is the process of changing into something new. The 
energy system itself and the way that society uses the energy system are 
changing profoundly; the replacement of the vast majority of all energy 
sources by non-fossil, predominantly intermittent renewable energy 
sources, and the ongoing electrification of most sectors of society can 
be considered a transformation [26].

Robustness has been defined as the ability to withstand a given 
level of stress or demand without reducing system functionality, while
resourcefulness is the capacity to identify problems, establish priorities, 
and mobilize resources when there are conditions that threaten to 
disrupt system functionality [27]. Recovery describes the property of re-
establishing system functionality after it has been disrupted. It usually 
appears with the temporal measure rapidity, which indicates the pace 
at which recovery takes place. Rebuilding is a similar term that is often 
used synonymously with recovery. Reconfigure, or build back better, are 
related terms that describe the aim to make a system fault-tolerant or 
improved after it has been recovered [28]. The ability to reconfigure 
a system such that its future resilience increases is connected to the
learning ability of the system and is included in the IEA definition 
of resilience quoted above. Another property of resilient systems that 
is often mentioned (but is not in the IEA definition), is redundancy, 
which refers to the extent to which components of a system are sub-
stitutable without loss of functionality. This is sometimes expressed as 
the functional diversity or modularity of a system.

As introduced by Bruneau et al. [27], resilience is often described 
using the resilience curve (see Fig.  1), with a multitude of variations of 
this original conceptualization existing [22]. The resilience curve shows 
system performance as a function of time: before, during, and after a 
major disruption. Expressed differently, the four stages of resilience can 
be defined as planning, absorption/disruption, recovery/restoration, 
and adaptation. In a more general categorization, the resilience curve 
during an event can be divided into two main parts: the absorption 
(or disruption, or draw-down) phase and the recovery (draw-up) phase. 
The system functionality is described by the graph. In the context of en-
ergy systems, system functionality is usually related to the continuous 
supply of energy to the society.
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Fig. 1. Resilience is often described in terms of the resilience curve, showing the system functionality before, during, and after a disturbance as a function of time. The resilience 
curve during an event can be divided into the ‘‘draw-down’’, or absorption phase, and the ‘‘draw-up’’, or restoration phase.
Source: The figure is adapted from Gasser et al. [20] and shows where different resilience functions come into play in the resilience process.
Resilience metrics. The properties of the resilience curve in Fig.  1 can be 
used as indicators of the resilience of a system to a given disturbance, 
whether actual or simulated. Time-dependent functions can be defined 
for the system performance and evaluated in different scenarios; for 
examples, see [22,29,30]. The vertical reduction in system functionality 
following a disruption can be used as a measure for system vulnerability 
or system robustness. The integral of the resilience curve measures 
the amount of system functionality, represented by 𝐹 (𝑡), that was not 
provided over a certain period of time [𝑡0, 𝑡1] [27], 

𝑅 = ∫

𝑡1

𝑡0
(1 − 𝐹 (𝑡)) 𝑑𝑡, (1)

such as energy not supplied if the system functionality describes an 
energy supply. Many resilience metrics can also be connected to eco-
nomic dimensions [31], such as the cost of repair or redundancy 
functions. Roege et al. [32] provide a comprehensive list of energy 
resilience metrics and measures, separated over four stages of re-
silience: plan, absorb, recover and adapt, and over four dimensions of 
decision-making: physical, information, cognitive, and social.
Resilience measures. Measures to improve resilience aim to make a 
system meet all the criteria to be called resilient; that is, robustness, 
resourcefulness, ability to recover rapidly, functional diversity, and so 
on. Gasser et al. [20] have pointed out that resilience management 
always aim to minimize the potential consequences resulting from a 
disruptive event and to recover efficiently from a potential system 
performance loss. Resilience measures usually depend on context and 
time. For example, the recovery of a power system after a major storm 
may depend on reserve energy capabilities, power system topology, 
availability of personnel and spare parts, weather conditions, priori-
tization schemes, etc. Measures to increase resilience to some threats 
may actually reduce resilience to other threats [13], and no resilience 
measure will fit all situations [32]. For example, burying transmission 
cables underground will make a power system more robust to storms 
but might create new vulnerabilities to earthquakes or floods.
4 
2.2. Related concepts

Resilience is related to several other concepts describing the ability 
of a system to cope with stress or hazards, such as energy security, 
reliability, robustness, vulnerability, sustainability, and risk. The over-
laps and distinguishing features of these related concepts will now be 
discussed.

Energy security initially referred to maintaining an uninterrupted 
supply of oil in the United States and other developed countries at 
an affordable price. It has since been given a broader meaning, and 
a variety of definitions exist [33], but mostly boil down to an energy 
system’s ability to supply energy to meet demand at an affordable 
price [17]. The IEA defines energy security as ‘‘reliable, affordable 
access to all fuels and energy sources’’, thus focusing on the energy 
sources rather than the energy system at large. Jasiūnas et al. [13] 
argue that energy security encompasses resilience and that the two 
terms can be used interchangeably, except for explicit references to 
resilience contexts such as rebounding from extreme or unexpected im-
pacts. Jesse et al. [19], on the other hand, report that energy resilience 
can be seen as an extension of energy security, which is in line with the 
view in this paper. Energy security is often described as including the 
elements of availability, accessibility, acceptability, affordability, and 
diversification [17].

Energy reliability is distinguished from resilience in that the former 
concept considers the intended function under specified conditions with 
a focus on high-probability, low-impact risks (e.g., failures in power 
systems due to fatigue in components), whereas resilience focuses 
on high-impact, low-probability (HILP) risks, such as major blackouts 
following an earthquake [34]. Chi et al. [35] compared the assessment 
of reliability and resilience for power systems and concluded that 
conventionally used reliability indices (e.g., the system average inter-
ruption frequency index) are insufficient to describe the non-stationary 
faults and restoration processes entailed after a major disruption. They 
also point out that reliability analyses often have access to extensive 
historical data, whereas there is little data available for resilience 
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studies, due to the low-probability nature of these events. The time di-
mension of restoration in reliability assessments is generally restricted 
to known and manageable system failures while for resilience analyse 
relates to previously unprecedented modes of failures requiring explicit 
consideration of restoration processes.

Robustness is included as a component of resilience in the IEA defi-
nition. It is defined as the ability to withstand a given level of stress or 
demand without reducing system functionality. As such, it is connected 
to a system’s ability to absorb the impacts of a disruption. A concept 
that can be viewed as a synonym to robustness is resistance, which is 
defined as the ability of systems to remain within an acceptable range 
of functionality [24]. Robustness can be regarded as embedded in the 
system design, whereas resilience covers both system design and oper-
ational aspects. Stability refers to the ability of a system to withstand 
disturbances; a system is said to be stable if small perturbations result in 
a new solution that is close to the original one. Although this resembles 
the definition of robustness, Jen [36] argues that the two concepts 
differ in that robustness describes persistence in systems for which we 
do not have the mathematical tools to use the approaches of stability 
theory and that robustness requires studying the coupling of dynamics 
with organizational architecture and using implicit rather than explicit 
assumptions about the environment.

Vulnerability stems from the Latin word vulnare (to wound), and can 
be defined as the degree to which a system is sensitive to disruptions. 
As such, it can be regarded as the antonym of robustness [37]. A system 
that is vulnerable to a disruptive event loses (part of) its system func-
tionality. In the resilience curve, this amounts to the performance drop 
after the disruption. Reducing vulnerability thus reduces the impact of 
a disruption and increases resilience.

Sustainability is a broad term with several definitions, often related 
to environment. The review by Marchese et al. [38] shows that re-
silience is sometimes viewed as a component of sustainability, but 
sometimes the relationship is the other way around, or regarded as two 
separate concepts. One important difference between the two are their 
temporal scales: resilience covers the time immediately before, during, 
and after disturbances, whereas sustainability covers much longer time 
scales, often several generations [38].

Risk for engineering systems is often viewed as the probability 
of an undesired event and the related losses [39]. Risk assessments 
link identification of hazards and their consequences with the prob-
ability of occurrence, and usually result in measures to reduce the 
frequency or impact of hazardous events. They differ from resilience 
assessments, similar to reliability assessments, in that they tend to 
have a hazard driven focus rather than a vulnerability and recovery 
perspective of high-impact low-probability events [40]. The planning 
stage of resilience assessments often includes traditional risk analysis.

2.3. Why resilience

The energy system is undergoing major transformations, driven 
by the replacement of fossil fuels by intermittent renewable energy 
sources, and the electrification and digitalization of all sectors in so-
ciety. To foresee how this will affect its resilience to emerging threats 
is not a simple task. Even the most renowned experts in the energy 
sector have difficulties making accurate projections regarding its future. 
The World Energy Outlook (WEO), released annually by the IEA, has 
notoriously underestimated the future installations of renewable energy 
technologies [41]. The 180 PW installed solar PV projected by the 
2010 WEO to be reached in 2024, was achieved in January 2015, and 
the 2002 WEO projections for wind energy in 2030 were exceeded by 
2010. Even if these erroneous predictions can be partly explained from 
the conservative approach used by the IEA to assume implementation 
of future policies [42], they still highlight an obvious fact: the future 
is unknown, sometimes profoundly so. This is in particularly true 
when considering complex systems undergoing vast transformations, 
like electrification and digitalization of many societal sectors, and 
5 
climate change, where the uncertainties are on an epic scale. Since the 
threats and vulnerabilities are unknown and may be increasing, it is not 
feasible to plan for protection of energy systems to withstand any kind 
of disturbance. In addition, the complexities and interdependencies 
introduced by the ongoing transformations in the energy systems may 
make the societal impact of disturbances more severe, and increase the 
risk of cascading failures. It is reasonable to aim for resilient energy 
systems that are able to cope with and bounce back from (unknown) 
disturbances.

3. Extreme weather and metocean conditions

The majority of disruptions in the power system are caused by 
extreme weather, mostly storms [10], thus we here focus on the re-
silience of energy system to extreme weather hazards. A large part of 
the costs in offshore renewable energy project can be associated with 
operations and maintenance activities [43], which to a high degree are 
weather dependent [44]. In this section, extreme weather and metocean 
scenarios of relevance for energy systems are reviewed.

3.1. Extreme weather as a direct and indirect threat to energy systems

The impact of blackouts caused by weather extremes in the United 
States cost 20–55 billion USD every year [45], and the frequency of 
blackouts appears to be increasing [46]. Harsh weather conditions were 
reported to cause 33% of the blackouts in Canada [47] and around 
45% of the line failures in Turkey [48]. A long list of power outages 
caused by extreme weather were listed by Wang et al. [21]. Due to their 
higher occurrence and larger number of affected people, wind storms, 
ice storms, and thunderstorms are viewed as posing more severe risks 
to power systems than wildfire and high temperatures [21].

Even if storms are the main cause of failures in power systems, 
other extreme weather conditions may put direct or indirect pressure 
on energy systems. Excessive snowfall can cause failures of overhead 
power lines, icing can be destructive to wind turbine blades, severe 
ice conditions can damage infrastructures of various kinds, and cold 
waves can cause indirect pressure through increased energy demand; 
for example during the 2001 Texas cold wave, the temperature was 
10 ◦C below average, and demand increased to an extreme peak of 
69 GW [21]. Heat waves also cause increased energy demand due 
to air condition usage (a temperature increase of 1 ◦C may cause a 
3%–7% increase in demand [49]) and thus affect transmission and 
distribution transfer capability. Heat waves can also affect the cooling 
capabilities of power plants: there have been occasions when nuclear 
power plants in Europe have had to close down due to the increase in 
temperature in river water [12]. Droughts affect river run-off, leading 
to reduced hydropower capacity. Rain and floods may be hazardous for 
substations, switchgear, or other facilities on the ground.

Several of these conditions are particularly hazardous in power 
systems with a large penetration of offshore RES. In many countries, 
hydropower is used as a regulating capacity. Combinations of heat 
waves and droughts can overwhelm these regulating capabilities, es-
pecially if nuclear power plants have reduced capacity at the same 
time. In addition, most renewable energy technologies are by definition 
dependent on the weather. A grid largely dependent on wind energy is 
vulnerable to extensive periods without wind, know as wind droughts, 
or of wind above the cut-off threshold at which the wind turbines are 
shut down.

In offshore conditions, several types of environmental extremes 
challenge the operation of wind turbines and wave generators. These 
include extreme wind and wave conditions, icing on blades, precipita-
tion at relatively strong winds, and ice in the water. Fast or floating ice 
should be considered at higher latitudes because it can cause severe 
damage to infrastructures [50,51]. Icing of wind turbines has mainly 
been investigated in mountain regions and at high latitudes [52–54]. 
Due to the fact that very few offshore wind farm projects exist in cold 
climate, the role of icing on blades is not fully understood, and it is 
probable that sea spray exacerbates icing [55].
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3.2. Quantification and prediction of extreme metocean conditions

The ‘‘extreme’’ in extreme weather conditions can relate either to 
the weather characteristics being extreme in terms of their probability 
of occurring at the specific site, or to the impact on a given system 
being extreme. The latter can be quantified in terms of reduced per-
formance, such as the number of affected customers or disconnected 
load, or in terms of the severity of the failures. Offshore wind turbines 
(OWTs) subjected to hurricane conditions are exposed simultaneously 
to turbulent wind loads and irregular wave loads. According to the IEC 
Standard 61400-3, the peak period of the sea state should be assumed 
as normally distributed and conditioned on the wave intensity [56]. 
Beyond the magnitude of extremes, other relevant aspects from an 
impact perspective include the duration, the spatial area affected, 
timing, frequency, onset date, and continuity (that is, whether there 
are ‘‘breaks’’ within a given spell).

The main challenge in quantifying extreme weather parameters is 
scarcity of data. At most measurement stations, recorded data exist for 
between 20 to 50 years though some stations have records that date 
back up to 150 years. Extrapolating the recorded data to return periods 
of 1’000 or 10’000 brings with it large uncertainties. As a comple-
ment, stochastic catalogues of 100’000-return period events have been 
simulated [57,58] and can be combined with wave and wind models 
to obtain weather hazard parameters [59]. To reduce complexity and 
computational cost, a simpler approach using a parametric model was 
introduced by Hallowell et al. [60]. With the objective of reducing 
uncertainty in hazard prediction for OWT reliability, Qiao et al. [61] 
compared three metocean models and validated one of them with data 
measured from 23 storms and with hindcast data from WaveWatch 
III. They found that a metocean model that considers the Holland 
model within the hurricane and wind–free conditions surrounding the 
hurricane for its meteorological forcing, can be effective in assessing 
hurricane risk.

Indices describing extremes often reflect relatively moderate ex-
tremes, such as events occurring 5% or 10% of the time. For rarer 
extremes, extreme value theory (EVT) is used. EVT aims at deriving a 
probability distribution of events from the upper or lower tail of a prob-
ability distribution (typically occurring less frequently than once per 
period of interest) [62]. Other approaches used for evaluating charac-
teristics of extremes or changes in extremes include analysing trends in 
recorded events and investigating whether records in observed time se-
ries are being set more or less frequently than would be expected in an 
unperturbed climate [63–67]. To predict combined extreme metocean 
conditions, e.g., characterized by both wave height and wind speed, 
joint probabilistic distributions of the involved parameters are needed. 
These are often defined in terms of an environmental contour, as 
displayed in Fig.  2. The traditional approach for creating environmental 
contours uses the inverse first-order reliability method (I-FORM) [68]. 
However, due to the scarcity of data in the tails of the probability 
distributions and unknown dependencies between the environmental 
variables, establishing environmental contours is equipped with large 
uncertainties [69,70], and environmental contours created by different 
methods often predict significantly different scenarios [71–73].

The uncertainty of reliable statistics and representation of extreme 
metocean scenarios is further amplified by changes in weather patterns 
caused by climate change. Generally, it is not expected that climate 
change will lead to increases in extreme wind speeds, but changes in 
wind patterns might trigger increased or decreased extreme wind con-
ditions in specific regions [51,74,75]. One of the most severe weather 
phenomena for offshore conditions are tropical cyclones. The total 
energy of tropical cyclones is not expected to increase due to the 
warming climate, but the most intense tropical cyclones and also mid-
latitude storms could be slightly more extreme in a changing climate, as 
assessed with a medium level of confidence by the International Panel 
on Climate Change [74]. An example of how climate change can affect 
the European electricity system is the likely increased frequency of heat 
6 
waves and droughts, which will reduce the cooling capacity of nuclear 
and fossil fuel plants [76]. In recent decades, many nuclear power 
plants in Europe have been obliged to reduce their production because 
of limited access to cooling water during hot summers [77]. Van Vliet 
et al. [78] demonstrated that changes in water resources due to climate 
change could imply reductions in useable capacity for 61%–74% of 
the hydropower plants and 81%–86% of thermoelectric power plants 
worldwide between 2040 and 2069. It is not unlikely that reduced 
balancing capabilities in the grid would occur simultaneously as low 
wind production capacity due to poor wind conditions and high de-
mand due to extensive use of air-conditioning; the combination will 
put extraordinary stress on the electricity system [76,79] and may 
thereby implicitly affect the offshore renewable energy systems. The 
combination of processes (climate drivers and hazards) leading to a 
significant impact is referred to as a compound event [80], and need 
to be carefully evaluated to understand the changes to stresses on the 
energy system in a changing climate. For Nordic conditions, it is likely 
that a warmer climate increases the accessibility for operation and 
maintenance (O&M) as well as some stress on offshore installations 
will be reduced due to reduced ice conditions [44]. One consequence 
of climate change is a tendency of increased persistence in weather 
patterns [81], which will have implications for various aspects of the 
compound events and extreme conditions of relevance for offshore 
systems.

4. Resilience of power systems to weather extremes

Weather extremes are responsible for a majority of the blackouts. 
As examples, the Hurricane Sandy caused power outages for millions 
of people in the USA in 2012, and the snow storm in southern China 
in 2008 led to blackouts for 15 million households [82]. The resilience 
of power systems to extreme weather events has been studied exten-
sively [21]. The brief review that is provided in this section serves as 
a context and introduction of established methods that will then be 
studied for offshore renewable energy systems in Sections 5–6.

4.1. Power system transformations

A continuous supply of electricity is critical to the functioning of 
all modern societies. All critical infrastructures, the industry, and our 
everyday lives are heavily dependent on the reliability and resilience 
of the electric grid. This dependency is currently increasing immensely 
due to the ongoing electrification throughout society, in particular the 
transport and industrialization sectors. The role of electrification on 
energy resilience is disputed. As discussed above, redundancy and 
functional diversity are general traits of resilient systems. In the case 
of the energy system this can mean, for instance, dependency on not 
a single energy source or energy transmission and distribution path, 
but a range of sources and paths, such as natural gas and redundant 
transmission and distribution lines. However, if this functional diversity 
is also dependent on the electric grid, such as the pumping of natural 
gas, the diversity is lost during blackouts. Alongside with the ongoing 
electrification, digitalization is implemented in all critical infrastruc-
tures. The implementation of smart grid functionalities in the power 
system enables increased monitoring and control capabilities, which 
can be used as measures to increase the resilience to extreme weather 
threats, but can also introduce new threats [83]. To cover the increasing 
electricity needs while not jeopardizing climate and environmental 
goals, renewable energy technologies, mostly of intermittent nature, are 
installed at a rapid speed.

These three ongoing transformations of the power system – electri-
fication, digitalization, and increasing penetration of intermittent re-
newable energy sources – add complexity and uncertainties to the 
system. These changes are important to understand and accommodate 
for when studying the resilience of the power system to existing and 
emerging threats.
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Fig. 2. Resilience assessment includes assessing the threat characterization, vulnerability of the system to the threat, the system response, and the system restoration. The threat 
characterization is illustrated by an environmental contour and shows the expected 50-year combination of extreme wind speed and wave height, for instance. The system 
vulnerability is illustrated by a fragility curve which designates the probability of failure as function of the environmental load. The system response and system restoration show 
how the system functionality is reduced and restored during the absorption and restoration phases following the disturbance.
4.2. Power system resilience metrics and assessments

Panteli and Mancarella [34] described resilience of power sys-
tems as the ability to ‘‘anticipate extraordinary and high-impact, low-
probability events, rapidly recover from these disruptive events, and 
absorbing lessons for adapting its operation and structure for pre-
venting or mitigating the impact of similar events in the future’’. 
Other organizations worldwide, such as the IEEE Task Force on Re-
silience [84], attempted to define, quantify and enhance the concept 
recently. The electric grid is designed based on the 𝑁 − 𝑘 security 
principle, stating that if 𝑘 components should fail, the network should 
remain operational. In recent years, several extreme or unexpected 
events have caused large disturbances in electric grids around the 
world, showing that the 𝑁 − 𝑘 principle is not sufficient to guarantee 
a secure energy supply [82]. This extended security perspective can 
be viewed as a systematic vulnerability assessment of the inability 
of a system to withstand strains and the effects of failures [40]. As 
both the power system and the societal dependencies on electricity 
are undergoing transformations, new vulnerabilities are emerging that 
can be exploited by existing or emerging natural or man-made threats. 
Disruptions can be expected in the future, and their impact could be 
catastrophic. Resilience has therefore gained increasing attention in the 
context of power and other key systems; Jesse et al. [19] report that the 
number of publications on resilience have increased by roughly 1600% 
over a 15 year period.

Comprehensive frameworks and methodologies for assessing the 
resilience has been presented by many authors and both qualitative 
and quantitative methods are utilized. Bie et al. [82] categorize the 
quantitative assessment methods as simulation based, analytical, and 
statistical based on historical data, among which simulation based 
models are dominating. Different methods may be needed to evaluate 
resilience during different phases of resilience; the vulnerability, for 
instance, must to be assessed for the absorption phase and the rapidity 
of repair operations for the restoration phase. Espinoza et al. [31] 
structured the analysis into four phases: threat characterization, vul-
nerability assessment of the system’s components, system reaction, and 
system restoration, illustrated in Fig.  2. The method was applied to a 
test case of the UK grid, subject to storms and floods. The vulnerability 
assessment was based on fragility curves of power lines and towers 
to the two weather hazards, and assumptions for mean time to repair 
were made for lines and towers to model the power system restoration. 
A review of different approaches to assess the vulnerability of electric 
grids was provided by Abedi et al. [12]. The available methods were 
categorized into topological, logical, functional, and flow methods. The 
different approaches emphasize different aspects of the grid, and the 
appropriate model depends on the type of event and specific case under 
consideration. Sperstad et al. [85] suggested a ‘‘bow tie model’’ for 
assessing the vulnerability of power systems, and connected it to the 
general resilience engineering terminology as shown in Fig.  3. Dunn 
et al. [86] computed fragility curves for electrical overhead lines as 
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function of wind speed based on data on 12’000 failures in the UK 
power system, and concluded that a precise spatial information is 
required to avoid underestimating the fragility of the infrastructure 
components. A similar approach was taken by Kiel and Kjølle [87,88], 
who developed a spatio-temporal model for failure probability of trans-
mission lines as function of wind speed, based on historical failure 
data for the Norwegian power system. By utilizing the method, they 
found that the expected annual energy not supplied was found to be 
significantly larger than estimated using traditional reliability analysis.

A majority of works on power system resilience has been focused 
on the vulnerability to hazards, or the disruption phase of events. 
Landegren et al. [89] focused on the restoration phase, and studied 
the sensitivity of electricity networks as a function of repair system re-
sources. The three resilience metrics robustness, rapidity and resilience 
loss were quantified in a Swedish electricity network in [90]. Using a 
hybrid model composed of a graph theory model for representing the 
grid and a queueing model for the repair operations, extreme scenarios 
could be identified where the robustness and rapidity were poor.

If the system performance level in the resilience curve in Fig.  1 
describes the supplied load in a power system, the area above the 
curve gives the expected energy not supplied (EENS), measured in 
MWh. A related quantity is the energy index of unreliability (EIU), 
defined as the ratio between the EENS and the total energy demand 
in the system. The drop in system performance is determined by the 
fragility, or vulnerability, of the system, the time after the disruption. 
In addition to those, economical aspects (restoration cost, cost implica-
tions of energy not supplied), time aspects (blackout duration, time to 
restoration), operational aspects (available reserves, trained personnel), 
and societal aspects can be used as metrics to evaluate the resilience 
of power systems. There are hence overlaps between the engineering 
conceptualization of resilience and reliability, but where the former 
focus on the vulnerability and recovery of the power system towards 
unexpected or extraordinary events and systemic aspects [34,40].

Traditionally, cost optimization has been an integrated part of reli-
ability assessments of power systems; in particular asset management 
has aimed to maximize the long-term profits of electricity market actors 
while continuously delivering a high service to the costumers [91]. Sev-
eral risk assessment and maintenance strategies have been developed 
to reduce capital and operational costs while ensuring high reliability.

Resilience metrics (expected energy not supplied, conditional value 
at risk) as well as standard reliability indices (system average in-
terruption duration/frequency index (SAIDI/SAIFI)) were studied and 
compared by Li et al. [92] for two island off-grid power systems 
with energy supplied by solar PV and heat power plants, subject to 
storms. They showed that the PV system had lower costs and higher 
reliability under normal conditions, but that the heat power plant 
system showed lower risk during the extreme event. There is also a 
trend in using and applying risk-based metrics, such as (conditional) 
value at risk, in resilience quantification and enhancement to better 
reflect and explicitly consider tail risks to power systems [93,94].
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Fig. 3. (a) System performance (power supplied) of a power system as a function of time during a disruptive event. (b) Relationship between vulnerability, robustness and resilience 
for power systems as function of the interruption duration in the power supply.
Source: Figure adapted from Sperstad et al. [85].
Large blackouts are often caused by cascading failures in power 
systems. An initial disturbance can trigger the sequential failure of 
other subsystems [95]. An analysis of the chain of events in 31 his-
torical large blackouts was carried out by Huang et al. [96], who 
found that generators and transmission lines were the most vulner-
able entities in the studied cases. Cascading failures in power grids 
have been studied using a range of methods [97], including agent 
based models [98], complex network models [99–103], DC power 
flow models [104,105], AC power flow models [106], or combinations 
of models [107]. Multi-layered complex network models combined 
with deep learning tools can be particularly useful for modelling the 
operational resilience of modern grids, including interdependencies 
with communication or other systems [6]. Further, different cascading 
analysis models have been developed specifically designed for power 
systems resilience quantification, including [108–111].

4.3. Measures to improve resilience of power systems

To improve resilience of power systems, the different approaches 
can be categorized as increasing robustness, reducing impact, and 
improving recovery [112]. Panteli and Mancarella [14,34] reviewed 
the current literature and concepts, and compared measures to increase 
the resilience. They distinguished between ‘‘hard’’ measures, intended 
to reduce the vulnerability of the grid to severe events , and ‘‘soft’’ 
measures, intended to increase the operational capabilities of the grid 
to more efficiently adapt to disturbances. This also falls within the 
resilience trilemma, that is making the infrastructure stronger (more 
robust), bigger (more redundant) or flexible (more responsive) to the 
event. Hard measures is the more traditional approach to increase the 
robustness of power systems, and include strategies such as under-
grounding transmission or distribution lines, rerouting grid to areas 
less prone to hazards, upgrading poles to more robust materials, ele-
vating substations, and managing vegetation around overhead power 
lines. Soft measures, such as increased monitoring and control, can 
also provide means of increasing the robustness, by fast detection of 
potential hazards and advanced demand side management and protec-
tion schemes to prevent power outages and cascading failures. Panteli 
and Mancarella [34] argued that reinforcing the network is always 
equipped with large costs, but may not always have the desired effect, 
and that a hybrid network with synergies between hard and soft 
measures was optimal to achieve a good trade-off between resilience 
and cost efficiency. Arghandeh et al. [18] pointed out that a 90% 
of customer outages in the USA are related to distribution network 
failures, but that the majority of studies have focused on resilience in 
transmission systems.
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The impact of disturbances can be reduced by improving the re-
sourcefulness and redundancy of the power system. This includes dis-
tributed power generation or storage facilities (back-up generators and 
batteries), improved demand response management, load shedding, 
and islanding to prevent cascading events. Microgrids can be used to 
provide electricity to critical services during power outages, and were 
proven useful during the Hurricane Sandy as well as during the Great 
East Japan Earthquake [82]. Smart grid technologies can also be used 
to improve monitoring and control to enable fast localization of power 
outages and load balancing or rerouting.

Rapid restoration following disruptions is part of the definition for 
resilient systems. This has been studied in the context of power systems 
in a number of works [113–119]. To improve the recovery after a 
disturbance, reconfiguration has traditionally been the main means to 
restore supply immediate after a disturbance [82].

5. Resilience of offshore wind systems to extreme weather

As reviewed in Section 4, power system resilience to extreme 
weather is an established research topic since at least the last decade. 
Some of the methods and approaches have been applied to offshore 
wind energy systems, which will be reviewed in this section. After a 
background on the status of offshore wind technologies in Section 5.1, 
the resilience concept applied for offshore wind energy systems and the 
dependent electric grid will be discussed in Sections 5.2–5.3.

5.1. Offshore wind technologies and installations

Since the first offshore wind farm was installed in Denmark in 
1991, OWTs have reached a widespread commercialization, and are 
being installed at a rapid speed around the world today. In 2020, there 
were 112 offshore wind farms in operation, with a total capacity of 
18.9 GW [120]. Only the year after, the total capacity exceeded 50 
GW [121]. China was responsible for most of the installations in 2021 
(13.8 GW), followed by the UK (1.9 GW), Vietnam (643 MW), and 
Denmark (604 MW) [121].

Not only the number of offshore wind farms have increased; also the 
size of the turbines are increasing. In Europe, the average wind turbine 
size was 3.2 MW in 2010, while it was almost doubled reaching at 5.9 
MW in 2017 [122], 7.6 MW in 2020 [121], and current OWTs having a 
capacity of 10 MW, projected to reach 15 MW by 2027 [121]. To share 
infrastructure and operational costs, the OWT are installed in farms, 
with trends to increase the total farm capacity. Of the installed capacity 
in Europe in 2019, 89% corresponded to farms with rated power above 
150 MW [123].



M. Göteman et al. Renewable and Sustainable Energy Reviews 216 (2025) 115649 
Fig. 4. Different offshore wind technologies. (a–c) monopile, gravity-based, and jacket foundations are common technologies for bottom-fixed OWT. (d–f) Floating spar platforms, 
semi-submersible platforms, and tension leg platforms are examples of floating OWT technologies.
Source: Figures from Jiang [124].
The vast majority of offshore wind installations are bottom-fixed 
and based on established onshore wind technologies. Common ones 
include monopile foundations, gravity-based, and jacket foundations, 
shown in Fig.  4. Monopiles are designed for water depths up to 
40 m and is the most commonly used technology. 63% of the oper-
ative offshore wind farms in 2018 adopted a monopile foundation; in 
America in 100% of the cases, whereas 70% in Europe and 43% in 
Asia [120]. Jacket foundations allow installations at somewhat larger 
depths, around 50–70 m, and make out 7% of the installations. Gravity 
based foundations are usually constructed out of concrete and have 
been adopted mainly in offshore wind farms in Asia. Other bottom-
fixed foundations include tripods, suction buckets, and high rise pile 
cap foundations [120].

For installations in deep water, the bottom-fixed structures are 
not feasible, and floating wind energy technologies are emerging, but 
have not yet reached the same technical maturity as fixed turbines. 
Three examples are shown in Fig.  4 and include floating spar, semi-
submersible, and tension leg platforms. The first floating wind farm 
was the Hywind Scotland, installed in 2017 as a pilot park of 30 MW 
by Equinor in Scotland [120]. As of 2021, the total capacity of floating 
offshore wind reached 123.4 MW [121].

5.2. Resilience of offshore wind systems to metocean conditions

As discussed previously, the resilience time frame can broadly be di-
vided into the absorption and restoration phases. These will be studied 
separately in Sections 5.2.1 and 5.2.2, after which resilience of offshore 
wind systems will be discussed more comprehensively in Section 5.2.3.

5.2.1. Absorption phase
The ability of a system to absorb a hazardous event without losing 

its system functionality is determined by its robustness to the hazard. 
Much work to assess the robustness or vulnerability of wind energy 
systems to weather hazards has been carried out. The vulnerability can 
be separated into explicit vulnerability due to failures of wind turbine 
components during extreme weather loads, and implicit vulnerability 
due to ramp-down of the wind turbines at wind speeds above the cut-
off threshold. Implicit vulnerabilities also include hazards inherent in 
the power system, such as overloads failures. The implicit vulnerability 
will be handled separately in Section 5.3, and here the focus is on the 
explicit vulnerability.

In general, the external loading on a structure can be separated into 
two classes that need to be treated differently: fatigue, and ultimate 
loads. Fatigue failures are results of wear due to repeated cycles of long-
term operation in normal conditions, whereas ultimate conditions are 
single loads above the design criteria of the structure, often occurring 
due to extreme weather scenarios.
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Even if offshore wind technology is based on established onshore 
technology, its vulnerability to extreme weather conditions is expected 
to be higher than onshore wind [125,126]. Several authors have 
pointed out the risk related to hurricane impact on wind turbines. Rose 
et al. [127] studied wind farms in Texas, USA under hurricane risk 
and concluded that 10% of the offshore wind power could be offline 
because of hurricane damage with a 100-year return period, and 6% 
for a 10-year return period. Simulations carried out by Worsnop et al. 
[128] revealed that wind turbines subject to a category 5 hurricane 
would encounter conditions outside of the design standards, with 
expected structural damage as a result. Kim and Manuel [129] showed 
that hurricane-induced loads could cause the bending moment of the 
tower to increase by a factor of three. A difference between onshore 
and offshore wind turbines, is the obvious fact that OWT are subject 
to simultaneous loads arising from wind, waves, and currents, and 
responses to multivariate extreme conditions such as described by 
the environmental contours in Section 3 must be analysed. Fragility 
curves of OWT structures have been derived as functions of combi-
nation of extreme wind speed and wave height conditions by several 
authors [130–134]. An example by Pokhrel and Seo [132] can be 
seen in Fig.  5; the fragility curve shows the exceeding probability of 
the overturning bending moment of the OWT tower at mudline as a 
function of wave height. The same 5 MW OWT monopile, developed 
by NREL, was studied using the FAST/OpenFAST software by several 
groups, see [134,135]. By developing statistical regression models to 
connect the critical responses of the OWT to the input wave- and wind 
parameters, it was shown that the wind-sensitive blade tip deflection 
resulted in the fragility of 99% at critical wind speed of 75 m/s and 
a wave height of 20 m [134]. Another approach was taken by Kim 
and Lee [136]. Under the assumption that the dynamical response 
of the OWT jacket support structure is proportional to the statical, 
they computed the reliability index of the horizontal displacement of 
the structure subject to wind and wave loading. Hashemi et al. [135] 
concluded that variations in the input wind and wave data give rise to 
large differences in the structural response, resulting in a high degree 
of uncertainty in the results. Resonances or complex dynamics of OWTs 
in certain conditions may imply extreme loads or damages also during 
operational wind speeds [137], or during unforeseen combinations 
of wind, wave, current, and geotechnical conditions [138,139]. This 
complicates the prediction of the systems’ robustness in the offshore 
environment. Several approaches to addressing this issue exist, such 
as evaluating responses in a larger set of conditions than along the 
environmental contour (including accurate coupling of wind-wave–
current-geotechnical loads), defining extended environmental contours 
that include more variables [138], or evaluating more modes of oper-
ation outside of parked conditions [133,140]. Haselsteiner et al. [141] 
pointed out that short-term variability in the response constitutes an 
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Fig. 5. Left: Schematic of the NREL offshore 5 MW baseline wind turbine, developed by NREL [142] under distributed wind and wave loads. Right: Fragility curve of the overturning 
bending moment of the monopile tower at the mudline, as function of the wave height and using different numerical approaches.
Source: Both figures from Pokhrel and Seo [132].
even larger source of uncertainty than the contour itself, indicating 
the need for comprehensive analyses of system responses using reliable 
models.

The complex problem of predicting the OWT performance in the 
offshore environment thus requires analysis in both oceanography, 
meteorology and climatology (understanding the patterns and prob-
ability of weather hazards), of aerodynamics, hydrodynamics, and 
geotechnical aspects, of structural, material, control, and electrical 
engineering (to model and quantify the system response and fragility), 
and of extreme value analysis to capture correctly the conclusions 
resulting from analysing data in the tails of the probability density 
functions. Although many works cover several of these areas, there 
are no publications covering all areas in all detail. The extensive 
work by Hallowell et al. [60] included several of the above topics, 
and investigated the probability of life-time failure at nine wind farm 
sites along the US Atlantic coast. Using simulated wind and wave 
data from 100’000 hurricanes and computing the structural response 
(yielding and buckling) using the software FAST, they concluded that 
the probability for failure is 9.6 ⋅ 10−6 when the yaw control is working 
properly, and 2.9 ⋅ 10−4 without yaw control. However, despite being 
one of the most comprehensive studies in the area, simplifications in 
each area were required: only one structural failure mode is included, 
whereas in reality failure could also be expected in blades, turbines, 
seabed mooring, sea cables, substations and other electrical subsystems. 
Also, the study by Hallowell et al. [60] was restricted to hurricanes 
and neglect potential hazards such as winter storms, and considers 
only a 5 MW monopile OWT. Furthermore, the aerodynamic and 
hydrodynamic evaluation was carried out by simplified methods, and 
neglect non-linear effects, which would require computationally costly 
computational fluid dynamics (CFD) software.

The vulnerability assessment of the offshore structures is further 
complicated by the complex interdependencies between the different 
components and subsystems, and by the inability of state-of-the-art 
methods to capture all subsystems at high fidelity in integrated mod-
els. Kang et al. [143] presented a qualitative and quantitative fault-tree 
analysis for a floating OWT (FOWT). Failure rates for subsystems 
(support structures, pitch and hydraulic system, generator, gearbox) 
were collected from databases and published literature. The study 
concluded that extreme sea conditions, strong winds and waves, are 
the main cause of structural malfunction. Leakage and over pressure 
was another large cause of failure in the pitch and hydraulic systems, 
whereas corrosion and wear was the main cause of gearbox failures. 
For the entire FOWT, the results showed that the system would fail 
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on average 7.31 times per year, about four times higher than on-
shore analogues. Using aero-elastic simulations of monopiles exposed 
to extreme weather conditions, Wilkie and Galasso [144] presented 
fragility functions displaying the probability for structural failure of 
different components (tower, monopile, blades, and transition piece) 
due to the wind and wave loads. Zuo et al. [133] investigated tower 
and blades fragilities of a 5 MW NREL OWT under different operational 
conditions using a finite element model and including uncertainties in 
material and damping. Kapoor et al. [145] modelled the hurricane wind 
loading using a computationally extensive large eddy simulation, and 
showed that including wind direction change and veer in the wind 
field can lead to substantially increased loads. Recently, the methods 
used to study the vulnerability of offshore wind turbines has been 
extended to surrogate models and digital twins [146–148], artificial 
neural networks and machine learning approaches [149–153].

Control systems couple subsystems and affect the dynamics of the 
OWTs. This can be used both to enhance power output but also to 
reduce detrimental loads and the vulnerability to hazards. Pustina 
et al. [154] introduced a fully coupled aero/hydro/servo-mechanical 
model for the NREL 5 MW OWT and demonstrated its effectiveness 
in alleviating power fluctuations and vibratory loads. Different blade-
pitch and mass–spring control methods for FOWTs were examined 
and classified by Shah et al. [155], and model prediction was seen 
to significantly enhance the control systems’ ability to handle load 
mitigation. A promising approach to enable real-time predictions is by 
machine learning in combination by condition monitoring. However, as 
pointed out by Hallowell et al. [60], control systems have often been 
the cause of failures in reported events of failed OWTs; introducing new 
complexities come at a risk that need to be considered.

From the above review, we can conclude that there are still signifi-
cant knowledge gaps in assessing the vulnerability of OWT to offshore 
environmental loads. These originate from both uncertainties in charac-
terizing the extreme environmental conditions (including determining 
what can be considered extreme or not, and coupling multiple environ-
mental hazards), in predicting the short- as well as long-time responses 
of all coupled subsystems to a high accuracy, and in deriving the result-
ing robustness of the system, considering also material uncertainties 
and degradation over time. However, only few historical incidents of 
damages during hurricane-type events have been reported. In China, 
the Typhoon Dujuan in 2003, the Typhoon Jangmi in 2008, and the 
Typhoon Yagi in 2024 resulted in the damage and collapse of several 
wind turbines [156,157]. In Japan, The Typhoon Maemi in 2003 and 
Typhoon Saomai in 2006 caused the collapse of three and five wind 
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turbines, respectively [157–159]. The reason that only relatively few 
failures have been reported could be the short history of installations, 
and the fact that most wind turbines have been installed in shallow 
waters using fixed monopile foundations. Uncertainties will increase 
with installations in deeper water and with emerging technologies.

5.2.2. Restoration phase
The recovery after a disruption in an energy system is a complex 

process, whose outcome, costs, and rapidness depends on a range of 
factors [14]. The nature and magnitude of the disruption and the 
system, the availability of spare parts, transportation and personnel, 
the weather conditions and accessibility allowing for repair or adapta-
tion operations all influence the recovery process. For offshore wind, 
maintenance or recovery processes make up a critical element in the 
levelized cost of energy, and have been studied using a range of 
methods and approaches [160]. With a focus on human and orga-
nizational factors, Mentes and Turan [161] implemented resilience 
engineering principles to maintenance strategies. Using a Monte-Carlo 
approach, Dalgic et al. [162] evaluated O&M strategies for an offshore 
wind farm of different transport systems (helicopter, crew transfer 
vessels, offshore access vessels, and jack-up vessels) under different 
environmental conditions (wind speed, wave height, and wave period). 
They concluded, among other findings, that the second half of the year 
can be too late to start preventive maintenance tasks, and highlighted 
how the O&M fleets can be operated in a cost-effective manner. Irawan 
et al. [163] developed a mathematical model to minimize maintenance 
costs for offshore wind farms, and were able to reduce costs by 12% on 
average. Costs for vessels, technicians, and penalty costs for delayed 
maintenance were included, and the results were validated against the 
work of Dai et al. [164]. Skobiej et al. [165] analysed the relation 
between the system response of offshore wind farms to severe weather 
conditions and the redundancy of operating vessels, and found, not 
surprisingly, that the redundancy had a considerable impact during 
the recovery phase. In general, offshore operations are limited by the 
available weather windows, for instance defined by significant wave 
heights below 1.5 m and mean wind speed below 10 m/s [160]. Xie and 
Johanning [166] proposed a hierarchical met-ocean selection model, 
which identifies the most representative data from each month, and 
were able to reduce the computational cost associated with stochastical 
simulations of O&M of offshore RES by 98%. Recent works on reliability 
and O&M strategies for offshore wind farms have also incorporated 
machine learning and digital twin methods [146,167–170].

5.2.3. Resilience of offshore wind technologies
Whereas the above subsections detailed work on resilience com-

ponents such as vulnerability and recovery processes, several authors 
have also addressed a wider scope of the resilience concept for offshore 
wind systems. Feng et al. [30] presented a design-oriented resilience 
assessment method, and applied it to an offshore wind farm consisting 
of ten 3.5 MW OWTs. Using time-dependent functions and sorting the 
units into different layers (‘‘meta-structures’’), different designs were 
compared for their expected resilience. To bridge the gap between 
classical risk assessment and resilience management of offshore wind 
systems, Köpke et al. [171] proposed an approach where the risk as-
sessment, usually based on expert knowledge and qualitative methods, 
is evaluated using quantitative measures. Liu et al. [172] studied re-
silience of offshore wind farms from a decision-making and economical 
reserves perspective, as shown in Fig.  6. Failures of the OWT were 
derived in two ways; structural failure of the tower and blades as 
a result of extreme wind- and wave loads were modelled using the 
FAST software, and failures for mechanical and electrical components 
were assessed using constant failure rates. The consequences of the 
OWT failures were assigned economical values as cost of repair and 
loss of income. The resilience was finally quantified as the economical 
capacity of the project. Fig.  6 shows a case when the resilience fails, due 
to a large disturbance using up the economic capacity. Not surprisingly, 
the study concluded that preparedness, including continuously accumu-
lating an economic buffer from the benefits, is a key factor affecting the 
resilience of the system.
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5.3. Grid resilience as function of wind power dependency

Vulnerability from the perspective of delivering the required power 
to the grid includes also capacity loss due to wind speed being either 
below or above the threshold where the OWT produce electricity. The 
cut-out wind speed is usually around 25 m/s, which is exceeded in 
hurricane conditions.

The way a system responds to a disturbance can have a significant 
impact on its overall functionality. As wind turbines are designed to 
ramp down during extreme wind speeds to reduce the risk of failures, 
curtailment strategies will affect the resilience of the wind turbines 
and the dependent electric grid during storm events. Wang et al. 
[173] proposed an ordered curtailment strategy, to not only guarantee 
robustness, but also reduce the operating costs of the grid. The method 
was applied for an IEEE-RTS 24 node grid, with hydropower, thermal, 
and nuclear power as residual loads. Compared to a simple strategy in 
which wind power plants stop operating when they reach the cut-off 
speed or a fixed time before that, the improved strategy resulted in 
lower operational costs and no load losses.

Mattu et al. [174] studied the risk posed by tropical cyclones on four 
potential wind farms in Mexico; two in the Pacific Ocean and two in 
the Atlantic Ocean. They found that Category 4 and 5 hurricanes have 
potential to cause periods of low power generation due to wind speed 
cut-out at all four sites, but that the probability of cut-out conditions 
occurring simultaneously at the four sites was low.

The mere presence of intermittent renewables in the grid may give 
rise to vulnerabilities that extreme weather hazards may exploit. Smith 
et al. [175] showed that an increased installation of distributed renew-
able generation and household storage can lead to a lack of robustness, 
and that household batteries available on the market would not miti-
gate these vulnerabilities. Using Sweden as a case study and 29 years 
of weather data, Höltinger et al. [176] studied the impact of climatic 
extreme events on the feasibility of fully renewable power systems. 
They found that an increased share of intermittent renewables would 
put the system under large stress during severe weather events, and 
that the thermal and hydropower balancing capabilities were exceeded 
during those events.

The resilience of the electric grid under hurricane conditions was 
addressed by Watson and Etemadi [177]. They studied how repair costs 
and capacity loss would change under increased solar and wind power 
generation, from present day of 20% to 50% or 80%. Using fragility 
curves for transmission lines, substations, and electricity generation 
facilities (coal, gas, nuclear, solar PV, and wind power), they concluded 
that the capacity loss increased significantly with increased penetration 
of intermittent renewables. In a similar approach, Satkauskas et al. 
[178] studied the impact of Hurricane Dolly in a Texas electric grid 
using fragility curves for the wind turbines and transmission towers. 
All their 1’000 Monte-Carlo simulations resulted in a disconnected grid 
network, and the loss of load following the event was computed. Fors-
berg et al. [179] studied the resilience of the IEEE39-bus New England 
grid to storm conditions in different scenarios for increasing penetration 
of offshore wind. They concluded that a penetration level of 30% or less 
resulted in a power system resilient to hurricane events, whereas a pen-
etration of 50% offshore wind resulted in a disconnected load ranging 
from 1/3 of the total load demand, to a total power system blackout. 
The more interconnected UK grid, on the other hand, was seen to be 
robust under the same weather hazards and wind penetration [180]. 
This highlights that conclusions made for one system cannot be readily 
translated to other systems.

Increased penetration of wind energy in the grid does not neces-
sarily only affect the resilience of the grid negatively; some research 
indicate that renewable energy technologies can be used to improve 
recovery of the electric grid following disruptions [181]. Several au-
thors have pointed out how functionalities in the new energy facilities 
can be used to enhance the grid resilience. In a case study of an IEEE 
18-bus grid, Su et al. [181] showed that a penetration of 13% wind 
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Fig. 6. Resilience of a wind farm, in terms of the economic capacity of the system [172]. The figure shows a case when the resilience fails, i.e. when the economic capacity 
reduces to zero, due to a large disturbance requiring all the economic reserves.
power (corresponding to 3 farms of total 600 MW) could be used to 
enhance system restoration following a large blackout. The wind farm 
technologies were considered as non-black-start units, which enabled 
them to supply electricity faster than the traditional power generation 
units.

6. Resilience of marine energy systems to extreme weather

As reviewed in Sections 4 and 5, the resilience concept has been 
applied to power systems and offshore wind energy systems in a multi-
tude of approaches and contexts. For other offshore renewable systems, 
including wave and tidal energy, resilience has not been studied to the 
same extent.

6.1. Marine energy technologies and installations

Marine energy has potential to contribute to a large part of the 
world’s energy needs. Kilcher et al. [182], reported that the technical 
resource, i.e. the proportion of the theoretical resource that can be 
captured using existing technology options, only in the USA is 2300 
TWh/yr, equivalent to 57% of the country’s current electricity pro-
duction. Marine energy includes wave energy, tidal energy, ocean and 
river currents, and ocean thermal energy. Here, the focus is on wave 
energy and tidal energy, since they are closest to large-scale com-
mercialization. Whereas wave energy technology aims at converting 
the energy in ocean surface waves (usually into electricity, but direct 
use to desalinate water or power navigation systems also exist), tidal 
power converts the energy in tidal ranges or currents. Neither wave 
nor tidal energy has reached a maturity comparable to offshore wind 
energy; some promising demonstration plants exist, but the resources 
are largely untapped. The status of these technologies and installations 
will here be reviewed.

6.1.1. Wave energy
Even if wind energy technologies differ somewhat, in particular 

between the fixed and floating concepts, the diversity in wave en-
ergy technologies is much greater. Attempts to classify existing wave 
energy concepts have been provided by a large number of authors; 
comprehensive reviews can be found in the recent publications [183,
184].

In their pioneering work, Budal and Falnes [185] classified wave 
energy concepts according to their orientation with the incident waves: 
perpendicular to wave direction (terminators), along with wave direc-
tion (attenuators), and independent of wave direction (point-absorbers).
Falcão [186] classified the concepts according to dynamical working 
principle as oscillating water columns, overtopping devices, and os-
cillating bodies. A database of capture width ratios for wave energy 
12 
converters (WECs) was provided by Babarit [187], who also used 
the dynamical principle as basis for the classification. Each of the 
WEC categories can further be classified into submerged or floating 
structures, as well as according to their location of installation: onshore, 
nearshore, or offshore. López et al. [188] did an attempt to classify 
WECs according to three dimensions of working principle, location, 
and orientation. Mofor et al. [189] added yet another dimension of the 
power take-off (hydraulic, direct-drive, hydro, pneumatic). Examples 
of the main classes of WECs are shown in Fig.  7. The classifications 
are somewhat ambiguous; some WECs fit in several classes, whereas 
other fit in none of the above. In each of the mentioned classes of 
WECs, there is also a multitude of different WEC concepts at varying 
stages of technology readiness level, ranging from conceptual ideas 
to full-scale deployed devices. This lack of convergence towards one 
or a few technologies could be one of the reasons explaining why 
wave energy has not yet reached a maturity level comparable with 
offshore wind (together with the fact that fixed offshore wind builds 
on a combination of already established onshore wind and traditional 
offshore structures).

Due to the massive amounts of WEC concepts, it is not feasible to 
review all. Here, some major WEC technologies that have been tested 
at a large scale in an offshore environment are reviewed. Oscillating 
water columns (OWC) consist of a hallow chamber partially submerged 
below the ocean surface, with opening below the minimum wave level. 
The column of air that is trapped above the water surface is forced 
through an air turbine when the water level is rising or falling due to 
the incident waves. A direction-independent turbine such as the Wells 
turbine is used, so that energy can be extracted during both inhale 
and exhale phase. Examples of OWC installations are the Toftestallen, 
PICO, LIMPET, and Mutriku wave power plants. Examples of floating 
OWCs include the OE Buoy, Oceanlinx, Mighty Whale, and the Spar-
buoy. Overtopping devices build on an operating principle similar to 
hydropower. Incident waves are overtopping into a reservoir, thus con-
verting the wave energy into potential energy. Similar to a hydropower 
plant, the collected water passes a turbine at the reservoir outflow 
when leaving the basin. The Wave Dragon, OBREC, and TAPCHAN are 
three examples of overtopping WECs that have undergone sea testing.
Attenuators are oriented parallel to the wave direction, and have a long 
structure compared to the wave length. The WECs usually comprise sev-
eral cylindrical sections linked by hinged joints, and energy is extracted 
from relative motion between sections. The most famous attenuator 
is Pelamis, but other examples include Blue X and the McCabe wave 
pump. Oscillating wave surge converters (OWSC) are oriented perpendic-
ular to the wave direction. They consist of one or several paddles, fixed 
to the seabed or a floating reference, that are forced into pitch motion 
by the surging motion of the waves. The paddle motion can then be 
converted, e.g. using hydraulic pistons. Examples include the Oyster, 
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Fig. 7. Examples of wave energy converters. (a) OPT PowerBuoy, a point-absorber; (b) OBREC, an overtopping device [190]; (c) Pelamis, an attenuator [191]; (d) WaveRoller, 
an oscillating wave surge converter; (e) Mutriku wave power plant, oscillating water columns [192].
Source: All figures reprinted under the CC-BY licence.
Wave Roller, Exowave, and Pendulor WECs. Probably the largest class 
of WECs are the point-absorbers (PAs). They differ significantly in their 
operational principles, but share the common feature that they are 
independent of the wave direction and that their horizontal dimensions 
are small in relation to the wave length. Most PAs are oscillating 
bodies that are comprised of a floating or submerged buoy connected to 
another fixed or floating structure. The buoy is forced into oscillation 
by the waves, primarily in heave, and the relative motion to the 
second body is used to extract energy. Examples that have undergone 
sea testing include CorPower, WaveStar, Eco Wave Power, Zhoushan, 
Changshan, CETO, OPT PowerBuoy, Waves4Power, Archimedes Wave 
Swing, Wavebob, Ocean Harvesting, and the Uppsala University WEC.

Examples of these five WEC categories are shown in Fig.  7. Some 
promising WEC concepts do not fit in any of the listed categories, 
for instance WEPTOS (arrays of multiple pitching buoys) or Penguin 
(rotating mass pendulum). Out of the listed WEC technologies, many 
have been discontinued. Mutriku, installed at a breakwater structure 
in Spain, is one of the few examples demonstrating continuous opera-
tion since its installation in 2011. Several others, such as CorPower, 
Changshan, Blue X, and Penguin, have been tested in the offshore 
environment during limited periods of time, and have reported re-
cent design improvements and plans for further offshore experimental 
campaigns.

6.1.2. Tidal energy
Tidal power plants convert the energy from tides into electricity. 

Compared to wave energy, tidal energy has reached a higher technolog-
ical maturity; tidal stream energy had accumulated around 1.4 million 
operating hours in 2021 [193]. Following time cycles with origins in 
the Earth–Moon–Sun systems, tidal energy is more predictable than 
wind and wave energy. The dominant tidal constituent is the principal 
lunar semi-diurnal cycle of 12.42 h. Together with the principal solar 
semi-diurnal cycle of 12 h, it leads to the spring-neap cycle, with 
enhanced tidal range during full moon or new moon [194]. The global 
potential of tidal energy is larger than for wind and wave [195]; the 
tidal dissipation in shelf sea environments is around 1.7 TW [194]. 
However, there are only few areas in the world suitable for tidal 
energy extraction. These are characterized by large tidal ranges, i.e. the 
difference in height between high and low tide. Neap and spring 
tides with a tidal range of 4–12 m have a power production poten-
tial of 1–10 MW/km [196]. The largest tidal range is found in the 
funnel-shaped Bay of Fundy, Canada, and measures up to 16 m.

There are two main approaches to capture the energy in tides. 
Tidal range power plants convert the potential energy in tides, and 
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tidal stream power plants capture the kinetic energy. The tidal range 
technologies can further be classified into tidal barrages and lagoons. 
The different categories are discussed below, and examples are shown 
in Fig.  8.

Tidal barrages collect incident tides in large dams and thereby store 
their potential energy. The dams are constructed across the full width 
of a tidal estuary. The potential energy is converted into mechanical 
energy as the water is released through large turbines, similar to 
hydropower. The La Rance tidal barrage power station was constructed 
in France already in 1966. It comprises a 720 m long barrage, spans an 
area of 22 km2 and has an installed capacity of impressive 240 MW. 
It has only been surpassed in rated power by the 254 MW Lake Sihwa 
barrage that was constructed in 1994 and finalized in 2011 in South 
Korea. Other operating tidal barrages include the Jingxia Tidal Power 
Station in China (3.2 MW), the Uldolmok Tidal Power Station in South 
Korea (1.5 MW), and the Eastern Scheldt Barrier Tidal Power Plant 
in the Netherlands (1.25 MW) [195]. The Annapolis Royal Generating 
Station tidal power plant was installed in the Bay of Fundy in Canada, 
with a rated peak power of 20 MW. It operated for 34 years since 1984, 
but was shut down in 2019 due to substantial fish mortality caused by 
the turbine.

Whereas tidal barrages span the entire tidal estuary, a tidal lagoon
encloses an area of coastline with a high tidal range behind a retaining 
walls. By not blocking the entire flow of water into and out of a 
tidal estuary, tidal lagoons are envisioned to have less environmental 
impact than tidal barrages. The tidal lagoon Swansea Bay in the Bristol 
Channel, UK, is a tidal lagoon power plant proposed to be located at a 
site with spring tidal range of 10.5 m and with a nameplate capacity of 
320 MW [194]. Development consent has been granted by the UK and 
Welsh governments, but since the UK government withdrew its support 
in 2018, the future of the installation is unclear.

Unlike tidal barrages or lagoons, tidal stream technologies utilize 
the kinetic energy of tidal currents. Due to the much higher energy 
density in water as compared to air, even slow water speeds can be 
used to extract much energy. Most tidal stream concepts are based on 
a technology similar to wind power, with vertical or horizontal axis 
turbines. Other approaches also exist, such as underwater kites and 
oscillating hydrofoils [197]. The Race Rocks Tidal Current Generator 
was a 65 kW demonstration tidal stream turbine installed 2006–2011 
in Victoria, Canada [198]. The SeaGen tidal stream generator had a 
capacity of 1.2 MW and was installed on the east coast of Northern 
Ireland in 2008–2019. The MeyGen tidal energy project consists of four 
1.5 MW turbines with 16 m rotor diameter. They were installed in 2017 
on the seabed close to the castle of Mey in Scotland, and plans exist on 
expanding the site to a total of 400 MW.
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Fig. 8. Examples of tidal energy technologies. (a) The La Rance tidal barrage, France; (b) The planned Swansea Bay tidal lagoon, UK; (c) The Seaflow tidal stream turbine, a 
300 kW predecessor of the SeaGen turbine, UK.
6.2. Resilience of wave energy systems to metocean conditions

Clark and DuPont [199] concluded that, apart from fixed offshore 
wind, little work has been published on reliability-based design of 
offshore renewable energy systems. For wave and tidal energy, this 
could be understood from the fact that these systems are still in their 
demonstration phase, and also that there is a considerable divergence 
in the technologies, as reviewed in Section 6.1. Even if methodologies 
can be adopted from more established energy technologies to assess 
the resilience of emerging wave energy technologies, there are several 
fundamental differences that make translations of conclusions difficult. 
One major difference is that wave energy converters often are much 
smaller than offshore wind turbines, and that they are designed to 
operate in resonance with the incident waves.

6.2.1. Absorption phase
As discussed in Section 5.2.1, vulnerability to the external environ-

ment has been identified as one of the main challenges for offshore 
wind systems [200–202], and it is reasonable to expect that less mature 
and more dynamic wave energy systems will be even more exposed to 
these vulnerabilities.

There is an extensive literature on the vulnerability of wave energy 
systems to extreme environmental conditions. Most analyses have been 
numerical simulations of WECs (or subsystems thereof) in severe or 
extreme wave conditions [203,204]. As pointed out by Jonathan and 
Ewans [205], it is not a trivial task to determine which wave conditions 
that should be considered ‘‘extreme’’. This was the case also for OWTs 
as discussed in Section 5.2.1; for WECs this issue is even more challeng-
ing due to most the small scale and dynamical design of wave energy 
systems. The impact will depend on many factors, including the device’s 
working principle, dynamics and dimensions, and control strategies. 
Typically, the impact of a range of wave parameters on or within an 
environmental contour with return period of 50–100 years is used, as 
exemplified in Fig.  9. The dynamics in these wave conditions typically 
involve highly non-linear effects such as overtopping on the floating 
structure or snatch loads in mooring lines. CFD simulations of WECs 
in extreme waves have been conducted using both mesh-based [206–
211] and particle-based software [212–214]. High-fidelity CFD models 
have also been compared to models of lower fidelity in a range of 
works [215–218]. To invoke trust in the numerical simulations, blind-
comparative studies have been carried out, where participants carry 
out simulations for a given system and submit the results without prior 
access to the physical data [219–221].

A significant knowledge gap relates to the scarcity of data needed 
for validation and prediction. Experimental studies of WEC dynamics 
and survivability in extreme wave conditions come with many chal-
lenges; in particular from the physical constraints of the wave tank 
and experimental set-up. Nonetheless, there exists a body of literature 
on wave energy systems in severe metocean conditions carried out in 
wave tanks [224–228] The experimental data has also been used for 
the important task to validate numerical models [229–235]. Data from 
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Fig. 9. Environmental 50-year contour, defining extreme sea states in terms of 
significant wave height and energy period [222].

Fig. 10. Economical assessment of O&M costs for a wave farm with a failure rate of 
3/year, at seven offshore sites, compared to the average power production [223].

offshore operations exist [236,237] but is very rare due to the very 
short accumulated installation time of WECs.

Based on results of numerical and experimental studies of WEC 
survivability and established knowledge from traditional offshore en-
gineering, there have been various attempts in developing general 
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guidelines and practices for reliable wave energy design [222,238–
247], to derive failure rates for wave energy systems in various con-
ditions [248–257], and to optimize wave energy system based on 
reliability objectives [258], but the large diversity in technologies 
complicates drawing general conclusions.

6.2.2. Restoration phase
Similar to offshore wind systems, maintenance and repair opera-

tions at offshore sites can only be conducted during calm weather 
conditions. Due to these constraints, several authors have identified 
that downtime related to failures constitute major costs for wave energy 
systems [199,259,260].

Accessible weather windows open for maintenance and repair op-
erations of offshore renewable installations have been analysed for 
different locations and vessel options in [43,202,223,255,261–266]. 
In several of these works, the accessibility analysis was connected to 
probabilities of operation failures of the wave energy systems. There 
have also been approaches of connecting the offshore operations to 
the financial returns [223,257,260,267]. For instance, Guanche et al. 
[223] mapped O&M costs for wave farms at different offshore sites and 
for different annual failure rates, as shown in Fig.  10. In the European 
Commission report [268], procedures for assessing accessibility of ma-
rine energy sites were outlined, in which the time-series approach was 
recommended over the simpler stochastic method.

Mérigaud and Ringwood [269] discussed the accessibility chal-
lenges associated with offshore marine energy, and analysed how 
condition-based maintenance and prognostics can help to optimize 
maintenance activities and forewarn of impending maintenance re-
quirements. A reliability-based computational tool was presented by Ri-
naldi et al. [263]. By varying strategies for vessels, maintenance
regimes, failure rates and component redundancy, the tool aimed to 
reduce costs and increase productivity of a wave farm. A review 
of O&M planning of offshore renewable energy farms was provided 
by Rinaldi et al. [270], who foresaw that advances in robotics, artificial 
intelligence and data processing lead the way to more automated 
offshore operations.

6.2.3. Resilience of wave energy systems
As reviewed in Sections 6.2.1–6.2.2, numerous works have ad-

dressed elements of resilience for wave energy systems, in particular 
the vulnerability to environmental conditions, and repair operations as 
functions of weather windows. However, even if several of the works 
reviewed in Section 6.2.2 have included both failures and repair oper-
ations in their analyses, very few have explicitly applied the concept 
of resilience to wave energy systems [257,271], and assessed both the 
absorption and restoration phases coherently. Assuming that WECs are 
designed to survive rough seas, Korde [271] used resilience as a means 
to power early recovery operations and to support power-grid black-
start. Göteman et al. [257] derived a metocean-dependent failure rate 
of WECs, and used it to analyse the resilience of large wave farms 
during weather conditions measured over one year. Different repair 
strategies were evaluated based on their ability of restoring the system 
following disruptions, and their costs.

Resilience from the perspective of maintaining electricity supply 
during grid outages has been studied with a focus on wave energy 
by Newman et al. [272]. By adding wave energy to the Hawaii grid, 
their work demonstrated how wave energy resources, with energy 
source profiles that are not coincident with PV and wind profiles, 
can offer microgrids a higher level of reliability and resilience. Simi-
larly, with the aim to provide an enhanced grid resilience, Men et al. 
[273] implemented multiple networked microgrids surrounding marine 
energy resources as well as energy storage units.

In summary, we can conclude that the knowledge gaps on resilience 
of wave energy systems are significant. Whereas some methods to 
assess the restoration phase can be adopted from offshore wind, the 
absorption phase differs fundamentally due to the scale, dynamics, and 
diversity in wave energy technologies. Above all, data from fullscale 
devices and offshore operation are almost non-existing in the literature, 
making validation as well as prediction difficult.
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6.3. Resilience of tidal energy systems to metocean conditions

Although tidal energy has reached a higher commercial scale than 
wave energy, there are only a handful of tidal energy installations in 
the world. Similar as to wave energy, there is very little available field 
data relevant for reliability or resilience studies [274–276], including 
economical parameters [277].

6.3.1. Absorption phase
Reliability and vulnerability assessments of tidal energy systems 

as function of environmental loads have been assessed in several 
works [278]. Due to the limited accumulated operational time of 
tidal turbines, standard reliability predictions based on a statistical 
assessment of historical failure data are rare, and most works are 
based on numerical simulations or small-scale experiments. Walker and 
Thies [193] reviewed tidal energy technologies from the perspective of 
reliability and failures, and concluded that the most common failure 
cause reported in literature was blade failure, followed by generator 
and monitoring failures. They argued that most blade failures were at-
tributed to an underestimation of loads during design, which highlights 
that numerical and experimental work to quantifying environmental 
loads on turbines is of highest relevance in obtaining reliable systems.

To quantify the environmental loads and their impact on turbine 
components, many authors have carried out CFD simulations [279–
283] as well as physical experiments [284–291] of turbines in dif-
ferent flow scenarios. A recent review on structural testing of tidal 
turbine blades was provided by Munaweera Thanthirige et al. [292]. 
Operational fatigue loads induced on tidal turbine blades were studied 
using the CFD software ANSYS CFX by Finnegan et al. [282], who 
concluded that the loads could vary by up to 43% of the maximum total 
thrust force. Ahmed et al. [279] used both Reynolds-averaged Navier–
Stokes (RANS) and large eddy simulations (LES) to study the fluctuating 
loads on a 1 MW tidal turbine, and compared with experimental data 
obtained at the offshore EMEC site, see Fig.  11. They found that both 
RANS and LES were able to predict similar phase-averaged loads and 
blade pressures in low-turbulence scenarios, and thus that a RANS 
approach would be sufficient to determine mean loads near operating 
conditions. Ouro et al. [293] used validated LES simulations to show 
that turbulence increased the range of the structural loads on the 
blades. An experimental methodology to generate turbulent flows of 
different characteristics within a flume was presented by Blackmore 
et al. [285], and used to measure rotor thrust, torque, and blade 
root bending moments. Milne et al. [284] investigated the streamwise 
turbulence intensities on the blades in small-scale experiments, and a 
morphing blade concept designed to reduce fluctuations in the root-
bending moment, thrust and torque was experimentally demonstrated 
by Gambuzza et al. [291]. Martinez et al. [288] investigated exper-
imentally the impact of combined oblique waves and currents on a 
horizontal axis turbine, and found that the rotor torque and thrust stan-
dard deviations are higher in the presence of waves and almost twice 
as high when the wave crest is parallel to the rotor plan. Translating 
small-scale experimental results to full-scale conclusions is, however, 
not trivial [285].

The commonly used assumption of constant failure rates was chal-
lenged by Ewing et al. [275], who concluded that pitch systems, 
generators and frequency converters cannot be considered to have con-
stant failure rates. Based on historical reliability data from comparable 
wind turbines and other relevant marine databases, Delorm et al. [274] 
derived reliability models for four 1–2 MW horizontal-axis tidal stream 
devices. The harsh conclusion of the work stated that the reliability 
could be expected to be lower than wind turbines, and that few devices 
could be expected to survive more than a year in the water. An contra-
dicting conclusion was presented by Ewing et al. [276], who derived 
a failure rate model for a tidal turbine pitch system using empirical 
physics of failure equations. The resulting failure rate was found to be 
50% lower than a comparable wind turbine, however, high reliability 
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Fig. 11. Examples of LES simulations compared with experimental data. Left: Wind velocity field modelled using LES; in the upper figure with no inlet turbulence, in the lower 
with synthetic turbulence with increased stresses and reduced length scales. Right: The spectrum of flapwise bending moment normalized by total variance; experimental data 
(black), LES with no inflow turbulence (green), and LES with turbulent inflow (purple).
Source: Figure adapted from [279].
requirements had been assumed for the tidal power plant. Fatigue 
loading on a DEEP-gen 1 MW horizontal axis turbine installed at the 
EMEC site was modelled by Mullings and Stallard [294]. Reliability and 
failures of tidal systems based on dependencies of subsystems has been 
assessed in several works, both on a single turbine level [295], and 
for cascading failures in a farm [296]. Target reliability levels for tidal 
stream devices were explored by Khalid et al. [297], and the influences 
of metocean parameters on subassembly failure rates was assessed. 
Probabilistic models for reliability assessments of tidal power plants 
have been developed and applied in a range of works, and applied 
to various components and environmental conditions [256,298–300]. 
Advanced statistical tools such as Bayesian network techniques can 
reduce the unavailability associated with limited real data [256] and 
aid developers with optimal design strategies [301].

6.3.2. Restoration phase
Many of the works discussed in Section 6.2.2 on the restoration 

phase of wave energy systems are relevant for tidal energy as well. In 
particular, the accessibility analyses for various vessels and installation 
sites given in [43,200,202,261,266,268], were not restricted to wave 
energy, but are relevant for offshore renewable energy installations in 
general. The same holds for evaluation of reliability metrics [199,243,
248] and maintenance strategies [166,269,270]. Rinaldi et al. [302] 
applied a reliability based simulation tool for management of offshore 
renewable energy systems to a conceptual tidal energy farm installed 
off the north coast of Scotland.

A cost model including O&M for a tidal energy farm was presented 
by López et al. [277]. Failure rates were obtained from a reliability data 
base, and the costs for repair of each failure was estimated, including 
spare parts and vessel costs. In their report on best practices for O&M 
of marine energy systems, Weller et al. [303] provided guidelines on 
how to reduce O&M costs for wave and tidal energy arrays. These 
included strategies to reduce risks of failure (e.g. component testing 
to improve reliability predictions), reduce costs of offshore operations 
(e.g. improved remotely operated vehicles to reduce reliance on expen-
sive dive teams) and intelligent maintenance scheduling (e.g. predictive 
maintenance scheduling based on reliability data).

6.3.3. Resilience of tidal energy systems
There is an abundance of published works for tidal energy systems 

on the absorption phase, i.e. the vulnerability to different environ-
mental loads. Most studies have focused on reliability in operational 
conditions and less on high-impact, low-probability event. Similarly 
as for wave energy, comprehensive assessments of resilience of tidal 
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energy systems to severe metocean conditions have not yet been con-
ducted. However, as the subsea environment is less exposed to the 
atmosphere than at or above the sea surface, tidal energy systems are 
expected to be less exposed to extreme weather and metocean hazards 
than wave or offshore wind. Some of the offshore strategies discussed 
in Section 6.3.2 have incorporated elements along the full resilience 
curve, even if the concept of resilience was not stated explicitly.

The approaches of improving the resilience of the electric grid by 
diversifying the energy portfolio is relevant for tidal as well as for wave 
and wind energy. Explicitly, this was discussed by Men et al. [273], 
who analysed the coastal community resiliency enhancement obtained 
by integrating marine energy sources in the grid. Likewise, in the recent 
work by Coles et al. [304], it was found that the inclusion of tidal 
stream energy alongside solar and wind has the potential to enhance 
energy system security and resilience.

7. Knowledge gaps and future directions

Based on the review presented in the earlier sections, it can be con-
cluded that the state-of-the-art of offshore energy system resilience is 
rapidly evolving. However, several important knowledge gaps remain. 
The recent work by Wang et al. [21] points out that investigations on 
energy resilience, such as evaluation indicators and resilience enhance-
ments, are still in their infancy. This is particularly true where emerging 
offshore RES are involved.

7.1. Threat assessment

To assess the resilience of energy systems with offshore RES to 
extreme metocean conditions, accurate models of the environmental 
hazards is required. During storm conditions, wind and wave loadings 
are typically non-linear and turbulent, and the dynamics needs to be 
resolved by high-fidelity CFD software. While this has been partly done 
for aerodynamics and partly for hydrodynamics, a complete assessment 
including high-fidelity simulations of all involved environmental loads 
connected to the structural and dynamical modelling of the RES is still 
missing. With advances in high-performance computing, this is an issue 
that can be assessed in the near future.

There are still significant uncertainties concerning the impact of 
global warming on large-scale dynamics, which imposes uncertainties 
on local and regional changes in extreme events, including changes 
in extreme wind, wave, and icing conditions. With possible expansion 
towards Arctic areas additional extreme conditions might increase in 
importance, this includes polar lows [305], cold air outbreaks, and 
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snow canons [306]. The uncertainty in the hazard prediction is con-
nected to the lack of measured weather data to be used as input or 
as validation of numerical codes and the resulting uncertainty in the 
extreme value distributions. Typically, one can find several decades of 
data at a specific location, but the number of data points in the tail of 
the distribution remains low. Only a scant among of research has been 
presented on how climate change may affect energy resources, such as 
tidal resources [194]. Pelling and Green [307] studied the Bay of Fundy 
tidal energy site, and found that a 1 m rise in mean sea level would lead 
to an increase of 0.1 m in tidal range amplitude. Pickering et al. [308] 
assessed the effects on tidal ranges of changing sea levels at a global 
scale and found both increases and decreases at different sites. Due to 
significant uncertainties and lack of data, it is difficult to draw general 
conclusions on the impact of climate change on metocean conditions 
and wind, wave, and tidal resources, hence constituting a knowledge 
gap in need of further research.

7.2. Absorption phase

The energy system is undergoing a vast transformation due to 
the widespread installation of renewable energy technologies, elec-
trification, and digitalization. To assess the resilience of the future 
energy system – to possibly new unfolding threats – is inevitably 
associated with many unknowns. At the system level, different energy 
sources operate at different temporal and spatial scales; the modelling 
of multiple energy systems is a challenge [309], and the responses of 
different energy systems to disturbances vary greatly [21]. In addition, 
demand response in future energy systems is dependent on many 
unknown factors, making load modelling uncertain. A high penetra-
tion of intermittent renewable energy sources will impact the stability 
and regulatory properties of the grid, affecting its ability to handle 
disturbances.

In grid scenarios with high penetration of offshore RES, vulnera-
bilities in terms of low power generation due to metocean parameters 
like wind speed below or above the threshold for electricity generation 
must be fully understood. The risks will depend on the farm distri-
bution scenario; thus each site, technology, and installation scenario 
must be assessed in its own context. In addition, vulnerability will 
largely depend on the mitigation methods at hand; curtailment, reserve 
capacities, and control strategies will affect the vulnerability and need 
to be optimized to reduce the risks. During hazardous events, there 
may be many disruptions in different parts of the grid—hundreds of 
components both in the offshore RES and in transmission systems 
onshore can be damaged. The correlation between multiple failures 
and cascading events can lead to large blackouts and must be better 
understood.

Due to the limited accumulated time of offshore RES operating and 
delivering electricity to the grid, there is almost no data or empirical 
knowledge of the vulnerability of these energy systems – or the power 
systems largely depending on them – to extreme metocean hazards. 
There has been ample work to assess the vulnerability using numerical 
models or small-scale tests, but these are by definition always subject 
to simplifications, and contradictory conclusions exist in the literature. 
Most work has been focused on fixed monopile offshore wind turbines 
in parked conditions. Due to the abundance of emerging RES tech-
nologies that differ fundamentally in their dimensions, dynamics, and 
operational principles, conclusions drawn for one system cannot neces-
sarily be translated to another. Which conditions that are considered 
extreme may differ for different technologies based on the device’s 
working principle. Much more work is needed on different offshore 
RES, especially emerging technologies such as floating wind.

Vulnerability assessments must also become more comprehensive 
and address more realistic loadings and scenarios. Even if a great 
deal of work has been done to assess fragility in separate failure 
modes of various offshore RES technologies (such as bending modes 
in monopile offshore wind structures), little work has been done on 
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assessing ultimate load failures in several – possibly interacting – 
components and failure modes, due to external environmental hazards. 
As discussed in Sections 5.2.1 and 6.2.1, there have been recent ad-
vances in assessing the long-term device response and vulnerability 
of offshore RES to different metocean conditions, but uncertainties 
related to both threat assessment and their impact on the offshore 
RES are still significant [139]. Addressing these knowledge gaps is 
critical for understanding and mitigating the risks of the increasing 
dependency on offshore RES, in particular for emerging technologies 
such as FOWTs and WECs. To increase the accuracy of predictions and 
the effectiveness of risk mitigation strategies, efforts should be made to 
improve the resolution for environmental loads (e.g., wind turbulence 
intensity or coupling between wind, waves and currents [138,139]), the 
device response (e.g., coupling between components, material degra-
dation, and nonlinear effects [139,310,311]), and developed strategies 
for monitoring and control [154,155]. The rapidly developing field 
of CFD models and access to high-performing computer clusters also 
enable studies including more realistic aerodynamic and hydrodynamic 
models and loads.

7.3. Restoration phase

Most research on energy resilience has focused on the draw-down 
phase of the resilience curve, including vulnerability, robustness, and 
redundancy [20]. The rebuild received much less attention, which cre-
ates a knowledge gap. Restoration processes pose a particular challenge 
for offshore RES, and several authors have concluded that offshore 
maintenance and repair operations are extremely complex, weather 
dependent, and costly [160,199,260].

As reviewed in Sections 5.2.2, 6.2.2, and 6.3.2, there have been 
many recent efforts to assess the strategies and costs of maintenance 
and repair operations for offshore RES. However, due to the scale of 
the complexities and uncertainties involved and significant differences 
between offshore RES technologies, all studies are heavily dependent 
on context, and it is difficult to draw any general conclusions. For 
power systems, although emergency planning and restoration following 
large disruptions has been discussed in many works, only a limited 
number of studies provide a comprehensive and generic approach to 
emergency operation and resource allocation during extreme distur-
bances [312]. For offshore RES, such comprehensive studies are even 
rarer. Systemic models are needed with which different repair and 
restoration operations can be prioritized.

Chester et al. [313] argue that the conventional administrative 
infrastructure governance must be replaced by agile leadership struc-
tures to navigate the increasingly uncertain and complex conditions of 
tomorrow’s energy systems. In the approach by Arab et al. [312], a 
proactive recovery strategy was proposed in which, for instance, repair 
crew can be mobilized prior to the event if damage is expected from 
modelling scenarios, similar to work relating to response planning of 
electricity distribution systems during hurricanes [314]. In addition, 
in the decision process during a blackout scenario, knowledge of the 
societal impact of the disturbance (e.g., the electricity shortage) is 
needed; there is thus a knowledge gap in developing more holistic 
tools embracing both technical aspects and societal values, which is 
discussed in greater detail below.

7.4. Resilience of offshore RES and socio-technical interdependencies

With an increased understanding on the vulnerability of energy sys-
tems with higher penetration of offshore RES to extreme metocean con-
ditions and their ability to recover from disturbances, more complete 
resilience aspects of these systems can be addressed, along the lines 
of what has been done for the power systems reviewed in Section 4. 
As societal functioning is heavily dependent on electricity supply, and 
all critical infrastructures are interconnected, energy resilience is as 
much a socio-economic as technical question, and the societal losses 



M. Göteman et al. Renewable and Sustainable Energy Reviews 216 (2025) 115649 
Fig. 12. Framework for linking disruptions in power systems with socio-economic aspects, as illustrated by Jasiūnas et al. [322].
could significantly exceed utility infrastructure losses [315]. Panteli 
and Mancarella [14] argue that human response must be included 
as a key dimension when assessing the resilience of power systems. 
Social stability, national security, economic development, and even 
human lives are at stake if the electricity supply cannot be guaran-
teed [316,317], as illustrated in Fig.  12. Various models are often 
used to model interdependencies in energy system, and involve supply–
demand models [318], energy-economy-environment models [319], 
water-energy-food nexus models [320], and the like. Each focuses on 
different social, economic, and political aspects [321], but in general 
incorporating social metrics into the models is far from standard. 
As Jasiūnas et al. [322] point out, existing research connecting techni-
cal and socio-economic aspects in modelled scenarios of energy system 
disturbances is limited.

Socioeconomic aspects can be studied by both qualitative and quan-
titative methods. The qualitative studies are often empirical, and in-
clude approaches such as surveys or interviews with experts, key 
personnel, and witnesses, workshops with stakeholder representatives, 
and field studies. Quantitative approaches include coupling models of 
the energy systems with models of other critical infrastructures and/or 
societal metrics. Jasiūnas et al. [322] connected a model of the Finish 
electric grid with GIS maps of social and economic values, such as 
population, economic activity and critical services. When modelling the 
system during a two week storm disturbance, they found that the cost 
of the power outages could be significantly reduced by controlling their 
location but also that prioritization of one socio-economic value may 
increase the costs in another. Similar conclusions have been reached 
in several studies, which also emphasize that the vulnerability of the 
population to power outages is not even; the elderly, children, linguistic 
minorities, and low-income households are often at greater risk [323].

In the context of offshore RES, no studies have as yet incorporated 
societal aspects into their resilience assessments, even if a few have 
assigned economic values to resilience metrics. A recent example of a 
resilience assessment of offshore RES that includes decision-making and 
economic perspectives was provided by Liu et al. [172], who connected 
decisions on putting away certain amounts of the economical benefits 
to the economic resilience of the OWT project.

Related to socio-economic resilience are the interdependencies be-
tween infrastructures and societal actors. Many disruptions in energy 
systems are cascading events, such as the 2003 blackout in Canada 
and USA and the Venezuelan blackout in 2009 [21]. The increasing 
interdependencies between the electric grid and other infrastructures 
and societal functions create complexities for which most existing 
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studies of energy system simply do not account [82]. Interdependencies 
within or between energy systems and other critical infrastructures 
have been studied by a range of methods for power systems in general, 
as reviewed in Section 4, but this has not yet been carried out with a 
specific focus on energy systems with offshore RES. The authors stress 
the need for such more comprehensive research studies.

8. Conclusions

This paper provides a review of the research efforts that have 
been dedicated to assessing and improving the resilience of offshore 
renewable energy systems (RES) to weather and metocean conditions. 
Due to the increasing dependence on the electricity delivered by these 
systems, this is a concern that must be addressed to guarantee the 
resilience of the society of tomorrow. By identifying knowledge gaps 
in building resilient renewable energy systems, the paper aligns with 
the UN SDGs and Climate Change Framework related to ambitions to 
build affordable and clean energy systems, sustainable societies, and 
battling climate change.

To set the context, the concept of resilience was presented and then 
compared to related terms. We discussed the effect of hazards – extreme 
weather and metocean conditions – on vulnerability and resilience of 
offshore RES. In power systems research, resilience to extreme weather 
events has been a well-established topic for at least a decade. This body 
of work was reviewed, as some of the approaches and methods are 
applicable to offshore RES, though others are not.

Resilience, from an engineering and natural hazards perspective, 
is often described in terms of the resilience curve, the temporal de-
pendence of which can be roughly divided into the absorption and 
restoration phases. The former describes the loss of system functionality 
following a disturbance and is related to the vulnerability of a given 
system to a hazard. The restoration phase describes the ability and 
rapidity of the system to recover after a disturbance. Despite the vast 
literature that has been presented on assessing these two phases for 
offshore RES as well as the grid during hazardous events, there are still 
large unknowns that need to be addressed. Extreme weather impact 
under climate change, comprehensive vulnerability assessments in re-
alistic conditions, and response planning in the offshore environment 
are examples of areas in dire need of further attention.

More complete resilience assessments of offshore RES to extreme 
conditions, incorporating the system capabilities before, during, and 
after disruptions, are rare. For offshore wind, some recent work has 
presented a resilience assessment and connected vulnerability to system 
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restoration, and there is also a body of research assessing the resilience 
of the electrical grid with a large penetration of offshore wind. For 
wave and tidal energy systems, these issues have not been addressed 
to the same extent. This knowledge gap can be understood as partly 
due to low technical maturity of emerging offshore RES and partly to 
the great diversity in technical approaches, especially for wave energy. 
Due to the limited accumulated operating hours, there is very little 
real-world data on vulnerability and other elements of resilience for 
these systems. In combination with unknowns arising from climate 
change and transformations in the power system, the uncertainties are 
extensive and the need for new knowledge immense.
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