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A B S T R A C T

Wave energy converters’ mooring systems are subjected to highly dynamic motions responsible for complex
loading mechanisms. Snap loads differ from other dynamic load types by the propagation of tension
discontinuities along the cable, which can lead to premature mooring failures if not correctly predicted.
Accurate prediction of these loads requires numerical models that can resolve non-smooth solutions. This
work developed a (conservative) finite-volume formulation for solving the hyperbolic cable dynamics equation
by applying the high-order non-oscillatory central-upwind scheme to calculate the numerical fluxes at the cell
interfaces. The central-upwind scheme is a variant of the Godunov-type central finite-volume method and does
not need a Riemann solver. This new numerical formulation was tested against analytical and experimental
data for a single catenary model under snap-loading conditions. It is shown the method’s ability to simulate
snap loads correctly, predicting motions and tensions. Furthermore, it exhibits second-order accuracy in space
for smooth solutions. This approach is highly robust (with a numerical dissipation independent of the time
step) and simpler to implement compared to other codes in the literature.
1. Introduction

Marine cables are prevalent elements in the offshore industry, typi-
cally linking a floating device to a submerged device or fixed anchoring
system. Examples include towing, instrumentation deployment, tension
leg platforms and moorings. For a wave energy converter (WEC) ex-
posed to environmental forces from the ocean, wind and tides, the
mooring system acts as a restoring force mechanism while controlling
the position and stability of the device. More often than not, mooring
cables are the only connecting element, and thus, the technological
reliability of a WEC is bounded by the mooring system’s mechanical
performance (Qiao et al., 2020a).

Most WECs are motion-dependent devices intended to resonate with
the incoming waves for increased power generation. This operational
mode places complex and nonlinear dynamic loading on the lines.
Additionally, because they usually operate in shallow waters with
relatively low pre-tensions (Johanning et al., 2006), the cable might
become slack and produce transient snap loads during tensioning (Liu,
1973). Snap loads are responsible for sudden large peak dynamic loads,
considerably higher than static ones (Niedzwecki and Thampi, 1991).
They can be the reason for premature mooring line failure, either by
fatigue or overload (Kvitrud, 2014). In this regard, experience from
the past shows that cable accidents are not uncommon (Ma et al.,
2013) and have strong associations with inaccurate knowledge of actual
loading characteristics on the moorings.
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The most common dynamic process that leads to snap loading re-
lates to slack conditions on the cable. Slacking is distinguished by local
segments where the resultant tension is comparable to the distributed
drag force, i.e., a total tension null (Huang and Vassalos, 1993). When
the line is slack, the motion at the top induces large hydrodynamic drag
forces in the middle of the cable, limiting the velocity while, at the
same time, the floating device continues moving at the top (Aranha and
Pinto, 2001). Hence, an abrupt retightening occurs and, consequently,
a significant increase in the dynamic load. For applications such as
floating offshore wind turbines (FOWT) or low-tension tethers, periods
of slacking are ordinary since static forces are designed to be small,
increasing the risk of snap loads (Hsu et al., 2017; Chen et al., 2018;
Koh et al., 1999; Hover, 1997).

Generally, dynamic conditions which can evolve to snap loads
involve the sudden application of tensile forces and motions of high
excitation frequency or amplitude (Vassalos and Huang, 1996; Qiao
et al., 2020b), not necessarily at resonance frequencies (Goeller and
Laura, 1971). A mooring line withstands environmental loads with
variations of geometry and tension. Tension changes are propagated
along the cable through elastic longitudinal waves, and a snap load
is a discontinuous (shock) propagation in tension and strain (Palm
et al., 2017). Besides cable slacking, a non-smooth tension variation
can also appear due to interactions at the touchdown point for catenary
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Nomenclature

Romans

𝑎 Strain-hardening exponent [-]
𝐴 Area [m2]
𝑑 Diameter [m]
𝑐 Wave speed [m/s]
𝐶 Coefficient [-]
‖𝐞‖ Absolute error, Eq. (35)
𝐸 Young’s modulus [Pa]
𝐟 Force [N]
𝐅 Flux, Eq. (9)
𝐅∗ Numerical flux, Eq. (28)
𝐼 Cell interval
𝐾0 Strength coefficient [N]
𝑘𝑔 Ground stiffness [Pa/m]
𝐿 Cable length [m]
𝑚 Mass [kg]
𝐧̂ Unitary normal vector [-]
𝑁 Number of cells [-]
𝐫 Position [m]
𝑠 Unstretched cable coordinate [m]
𝐒 Source terms vector, Eq. (10)
𝑡 Time [s]
𝐓 Tensile force vector [N]
𝐭̂ Unitary tangential vector [-]
𝐔 Conservative variables vector, Eq. (8)
𝐯 Absolute velocity [m/s]
𝐰 Relative velocity [m/s]
𝐖 Intermediate solution
𝑧 Vertical coordinate [m]

Greek symbols

Δ Variation, interval
λ Eigenvalue [-]
𝚲 Eigenvalues vector [-]
μ Dynamic friction coefficient [-]
ε Strain [-]
ξ Damping ratio [-]
ρ Density [kg/m3]
τ Period [s]

Superscripts

− Average quantity
∼ Reconstructed quantity
̇ Time derivative
num Numerical value
exact Analytical solution value

Subscripts

0 Initial conditions
a Added mass
b Buoyancy
c Cable
d Drag
f Final
g Ground
max Maximum
n Normal
ref Reflected
sh Shock
t Tangential
w Water
𝑧 Vertical projection

Acronyms

CFL Courant–Friedrichs–Lewy
FOWT Floating Offshore Wind Turbines
FVM Finite-Volume Method
IVP Initial-Value Problem
MWL Mean Wave Line
ODE Ordinary Differential Equations
PDE Partial Differential Equations
TVD Total Variation Diminishing
WEC Wave Energy Converter
moorings (Gobat and Grosenbaugh, 2001), and nonlinear constitutive
laws of synthetic materials (Tjavaras, 1996). Gobat and Grosenbaugh
(2001) define a criterion for snap events based on the ratio between
the velocity at the touchdown point and the transverse wave velocity.
Derivations of similar criteria are also presented in (Niedzwecki and
Thampi, 1991), (Suhara et al., 1981) and (Hann, 1995).

Over the years, an adequate effort has been devoted to investigating
snap loading in mooring cables from both the numerical and experi-
mental sides. Relevant experimental studies on mooring cables used in
FOWT (Hsu et al., 2017; Masciola et al., 2013; Azcona et al., 2017) and
WECs (Savin et al., 2012; Hennessey et al., 2005) are reported in the
literature, along with other situational applications. A generic overview
can be found in (Hsu et al., 2014). However, difficulties in obtaining
accurate experimental measurements were identified (Harnois, 2014).
Additionally, model testing is often unfeasible due to dynamic dissimi-
larities and cost (Bergdahl et al., 2016). This issue raises the importance
of accurate numerical models that capture dynamic behaviour and snap
loads.
2

Many numerical modelling tools exist for mooring lines, but only
a few are targeted to handle snap loading and slacking regimes. An
extensive review of these numerical tools applied in WEC moorings can
be found in (Davidson and Ringwood, 2017). Vassalos and Kourouklis
(1998) compare experimental results for different model tests with
a lumped mass method that allows bilinear axial stiffness materials.
When the cable is slack, non-compressive springs are used to simulate
the loss of axial stiffness. Their numerical model presents a good agree-
ment for smooth motions but substantially underpredicts the maximum
tension at large amplitudes and frequencies during slack-taut states.

Despite these efforts, numerical methods suitable to capture discon-
tinuities in tension are needed. Appropriate techniques should resolve
the longitudinal and transverse waves accurately. On this matter, a
high-order Local Discontinuous Galerkin method was developed for
the hyperbolic numerical cable equation formulated in conservative
form (Palm et al., 2017). The solutions are allowed to be discontinuous
over the element boundaries with a Lax–Friedrichs type of flux to solve
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Fig. 1. Coordinate system for the mooring cable on a inertial frame of reference (fixed
t the anchor point).

he local Riemann problem. Good agreement was obtained by com-
aring with model testing results for a catenary chain from (Bergdahl
t al., 2016). Their formulation can include bending stiffness by adding
shear force vector term to the moment balance equation (Palm and

skilsson, 2020). The key feature of their work relies on the use of high-
esolution shock-capturing techniques borrowed from the finite-volume
ramework, which can handle solution discontinuities. Additionally, by
sing the conservative formulation for the hyperbolic cable dynamics
artial differential equations (PDE), physically correct wave speeds of
ropagation and weak form solutions are obtained (LeVeque, 1990; Lax
nd Wendroff, 1960; Hou and Floch, 1994).

This paper presents a new approach, based on a Finite Volume
ethod (FVM), for solving the hyperbolic system of PDEs governing the

ynamic cable equations. The method solves the flux term of the equa-
ions through a Godunov-type central-upwind scheme (Kurganov et al.,
001). Discontinuities are permitted in the solution while preserving
he best features of a Godunov finite-volume framework, namely sim-
licity and avoidance of Riemann solvers. This scheme’s numerical
issipation is independent of the time resolution and is of the order
f [Δ𝑠2], even in the semi-discrete version (𝑠 denotes the spatial
oordinate). The semi-discrete version can be directly evolved in time
y stable integration schemes such as the Runge–Kutta.

From the present work, the most relevant contributions can be
ummarized in the following topics:

• Development of a new numerical scheme for simulating the dy-
namics of perfectly flexible mooring cables based on a finite-
volume framework (central-upwind scheme). The scheme is es-
pecially suited to handle discontinuities in the solution, thus
adapted for snap load and slacking regimes.

• Comparison of the numerical scheme results against suitable an-
alytical and experimental case tests.

The paper’s structure is as follows. Section 2 presents the governing
quations for the cable dynamics problem written in the conservative
orm and the necessary assumptions required for their calculation.
ext, the numerical formulation for the system of hyperbolic PDEs is
eveloped based on the central-upwind scheme. Numerical results of
he newly developed scheme in selected validation cases are presented
n Section 3, while conclusions appear in Section 4.

. Numerical modelling

.1. Cable equations

For practical wave energy applications, the mooring line is slender
ince its length is several orders of magnitude greater than the diam-
ter. Consequently, the three-dimensional motion is approximated by
he motion of the mooring centreline. Let us define the local centreline
oordinate 𝑠 ∈ [0, 𝐿] as the unstretched length along the cable of length
and denote 𝐫(𝑠, 𝑡) ∈ R3 as the position vector at time 𝑡, in accordance
ith Fig. 1. Moreover, at each point, the cable orientation is given by

he unit tangential vector 𝐭̂:

̂ = 𝜕𝐫 ‖

‖

𝜕𝐫 ‖
‖

−1
. (1)
3

𝜕𝑠 ‖

‖
𝜕𝑠 ‖

‖

𝐟

Here, ‖ ⋅ ‖ denotes the Euclidean norm. Following a derivation in an
inertial frame of reference, the dynamics of a single mooring cable is
dictated by the following equation of motion (Aamo and Fossen, 2000,
2001)

𝑚c
𝜕2𝐫
𝜕𝑡2

= 𝜕𝐓
𝜕𝑠

+ (1 + ε) 𝐟 , (2)

which considers the balance of forces on a cable segment. In Eq. (1), 𝑚c
is the mass of cable per unit of unstretched length, 𝐓 is the tensile force
vector, ε is the strain and 𝐟 is the external force vector. The tensile force
vector 𝐓 acting on the cable segment can be divided into a tangential
𝐓t component and a normal 𝐓n component:

𝐓 = 𝐓t + 𝐓n, (3)

where 𝐓t = 𝑇 𝐭̂. The magnitude of the tangential force 𝑇 depends on
the constitutive law of the material and is a functional relation of the
strain (and strain rate), meaning: 𝑇 = 𝑇 (ε, ε̇). The strain on the cable
centreline is measured according to:

ε =
‖

‖

‖

‖

𝜕𝐫
𝜕𝑠

‖

‖

‖

‖

− 1. (4)

On the other hand, the normal component 𝐓n represents the shear
forces acting on the cable and can be computed with some simplifying
assumptions (see Triantafyllou, 1999; Palm and Eskilsson, 2020). In the
absence of bending stiffness and torsional stiffness, the internal moment
vector is zero and, thus, 𝐓n = 0. This is a common approach for solving
the equations and is suitable for most cable materials, such as chains,
under normal sea conditions. However, one needs to be attentive when
the tension is close to zero since there is no restoring mechanism apart
from axial stiffness, and the problem becomes ill-posed (Triantafyllou
and Howell, 1994).

A stress–strain relation is needed to evaluate the tension magnitude
𝑇 at each cable point and close the system of equations. Here, a linear
elastic response was applied by using Hooke’s law

𝑇 = 𝐸𝐴c max(ε, 0), (5)

where 𝐸 is the Young’s modulus of the material and 𝐴c is the un-
stretched area of the cable. The stress–strain equation is, therefore, only
dependent on the strain ε at each cell and does not depend on the strain
rate ε̇. Note that negative strain values are not allowed since it would
mean the cable segment is under compression.

The equation of motion can be written as a system of first-order
partial differential equations if we notice that 𝐯 = 𝜕𝐫∕𝜕𝑡 and by defining
the variable 𝐪 = 𝜕𝐫∕𝜕𝑠. It is then possible to solve the assembled system
as a conservation law with a source term when the original form of
Eq. (2) is retained. Additionally, the position of the cable 𝐫(𝑠, 𝑡) is a
continuous and differentiable function. Hence,
𝜕𝐪
𝜕𝑡

= 𝜕𝐯
𝜕𝑠

. (6)

With the compatibility relation (Eq. (6)), the final form of the system
of equations governing the cable dynamics is
𝜕𝐔
𝜕𝑡

= 𝜕𝐅
𝜕𝑠

+ 𝐒, (7)

and the conserved variables 𝐔, fluxes 𝐅 and source terms 𝐒 are defined
as

𝐔 =
(

𝑚c𝐯
𝐪

)

, (8)

𝐅(𝐔) =
(

𝐓
𝐯

)

, (9)

and

𝐒(𝐔) =
(

(1 + ε) 𝐟
𝟎

)

. (10)

he vector 𝐟 contains all external loads per unit length exerted on the
able by the environment, namely:

= 𝐟 + 𝐟 + 𝐟 + 𝐟 . (11)
b a D g
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Here, 𝐟b are the buoyancy and weight forces, 𝐟a are the added mass
and Froude–Krylov forces, 𝐟D are the drag forces and 𝐟g are the ground
forces (when the cable is in contact with the sea bottom).

The net result of the weight and buoyancy forces acting at each node
can be combined into what is called the submerged weight 𝐟b and is
given by

𝐟b =
𝑚c
1 + ε

(

1 −
ρw
ρc

)

𝐠, (12)

where ρw and ρc are the densities of water and cable material, respec-
tively, and 𝐠 is the gravity acceleration. This force always acts vertically
on the cable (considering a global frame of reference), and its direction
depends on the ratio of the density terms.

Hydrodynamic loads exerted on the cable are due to the relative
motion between the cable and the surrounding fluid and are estimated
using the Morison equation. These loads are typically decomposed into
the hydrodynamic added mass force 𝐟a and the hydrodynamic drag
force 𝐟D, calculated from

𝐟a =
1
4
ρw

𝜋𝑑2c
(1 + ε)

(

𝐶at 𝐰̇ ⋅ 𝐭̂ + 𝐶an 𝐰̇ ⋅ 𝐧̂ + 𝐯̇w

)

, (13)

where 𝐶at and 𝐶an are the non-dimensional coefficients of added mass
in the tangential and normal directions, respectively, and 𝑑c is the
unstretched diameter of the cable. Note that this force is dependent
on the surrounding water velocity 𝐯w (if current exists), either directly
or indirectly through the relative velocity of the cable 𝐰 = 𝐯w − 𝐯. The
drag force 𝐟D is calculated through

𝐟D = 1
2

ρw𝑑c
√

1 + ε

(

𝐶D𝑡
𝐰 ⋅ 𝐭̂ ‖𝐰 ⋅ 𝐭̂‖ + 𝐶D𝑛

𝐰 ⋅ 𝐧̂ ‖𝐰 ⋅ 𝐧̂‖
)

. (14)

The interactions between the sea bottom and the cable are ac-
ounted for by using a linear stiffness spring–damper model for the
ertical force 𝐟gn, while a tangential friction model 𝐟gn is applied when

horizontal velocities are present,

𝐟gn = 𝑘g𝑑c
(

𝑧g − 𝑟𝑧
)

− 2ξg
√

𝑘g𝑚c𝑑c min (𝐯 ⋅ 𝐧̂, 0) , (15)

𝐟gt = sgn
(

𝐯 ⋅ 𝐭̂
)

μg tanh
(

𝜋
𝑣μ

𝐯 ⋅ 𝐭̂
)

𝐟b, (16)

where 𝑘g is the spring stiffness, ξg is the damping ratio, μg is the dy-
namic friction coefficient corresponding to a maximum friction velocity
𝑣𝜇 , and sgn is the signum function. The model is applied whenever the
vertical coordinate of a node 𝑟𝑧 is in contact or below the sea bottom
vertical coordinate 𝑧g (𝑧g ≥ 𝑟𝑧). Moreover, the damping force part is
ctivated if and only if the velocity of a ground node is negative (i.e., it
s moving towards the sea bottom).

.2. Numerical formulation

Let us consider the system of nonlinear hyperbolic partial differen-
ial equations written in a canonical conservative form:
𝜕𝐔
𝜕𝑡

+ 𝜕𝐅
𝜕𝑠

= 𝟎, (17)

here 𝐔(𝑠, 𝑡) is a vector of conserved quantities and 𝐅(𝐔) is a non-
inear flux, subjected to a given initial condition 𝐔(𝑠, 0) = 𝐔0(𝑠) and
ppropriate boundary conditions. Initial value problems (IVPs) of the
eneral form of Eq. (17) are prone to develop discontinuities such as
hocks even if the initial data is smooth. Hence, high-resolution and
on-oscillatory numerical schemes are needed.

The system of Eqs. (17) is hyperbolic if the Jacobian 𝜕𝐅∕𝜕𝐔 has
eal eigenvalues. Applying a similarity transformation to 𝜕𝐅∕𝜕𝐔 the
ollowing eigenvalue matrix is obtained

( )
4

= diag −𝑐n −𝑐n 𝑐n 𝑐n −𝑐t 𝑐t , (18) d
here

t =

√

1
𝑚c

𝜕𝑇
𝜕ε

,

n =
√

𝑇
𝑚c ‖𝐪‖

,

(19)

are the normal and tangential wave velocities propagating in the cable.
Consequently, the system is hyperbolic if the tension (or its derivative)
is always positive and different than zero (Cristescu, 2007).

Explicit numerical schemes are used to capture such discontinuities
in this type of hyperbolic equation, including mooring cable equa-
tions. Tjavaras (1996) studied shock formation in mooring lines by
using the well-known Lax–Friedrichs scheme (Tjavaras, 1996; Lax,
1954). However, this scheme lacks resolution, and it is required to
satisfy the CFL condition with significant restrictions in terms of time
step. Moreover, the amount of numerical dissipation accumulated is of
order 

[

(Δ𝑠)2𝑟∕Δ𝑡
]

, with 𝑟 as the formal order of the scheme, making
it prohibitive for long simulations. Finally, it is not formulated in the
conservative form. Hence, if a shock occurs, the numerical solution may
be incorrect.

2.3. Central-upwind scheme

A short description of the fundamentals of finite-volume methods
and, particularly, central-upwind schemes, is provided in this section.
The complete derivation is sourced to (Kurganov et al., 2001).

Consider the one-dimensional hyperbolic system of Eqs. (17) to
be solved on a computational domain divided by uniform and non-
overlapping finite-volume cells defined by the intervals 𝐼𝑖 =

[

𝑠𝑖−½, 𝑠𝑖+½
]

,
with 𝑖 = 1,… , 𝑁 . Here 𝑁 is the number of cells. The discrete cell
solution 𝐔𝑖 can be approximated by averaging the exact solution 𝐔𝑖
over 𝐼𝑖

𝐔𝑖(𝑡) =
1
Δ𝑠 ∫𝐼𝑖

𝐔(𝑠, 𝑡) d𝑠, (20)

here Δ𝑠 = 𝑠𝑖+½ − 𝑠𝑖−½. The idea of the FV method is to obtain an
lgebraic equation for all 𝐔𝑖 by simply writing the conservation law
n each cell 𝐼𝑖. For a one-dimensional space, integrating Eq. (17) in all
ells and integrating the flux by parts we get

𝜕
𝜕𝑡 ∫𝐼𝑖

𝐔(𝑠, 𝑡)d𝑠 +
(

𝐅(𝐔(𝑠, 𝑡))
)

|

|

|

|

𝑠𝑖+½

𝑠𝑖−½
= 0. (21)

ince FV schemes are developed under the integral (also called weak)
ormulation, Eq. (21), they preserve their validity even for piecewise
mooth solutions and are, therefore, appropriate to simulate discontin-
ous solutions of the nonlinear hyperbolic system of equations. Note
hat Eq. (20) can be exactly substituted into Eq. (21), yielding
d
d𝑡
𝐔𝑖(𝑡) = − 1

Δ𝑠

(

𝐅∗
𝑖+½(𝑡) − 𝐅∗

𝑖−½(𝑡)
)

, (22)

where 𝐅∗ is a consistent numerical flux at the cell interfaces 𝑠𝑖±½.
Typically, this flux is evaluated approximately, by solving a local
Riemann problem. Consequently, the approximation results from the
flux discretization. Moreover, since only cell averages are known, a
solution reconstruction at the cell interface is needed to compute the
numerical fluxes. This reconstruction makes use of the cell averages of
neighbouring cells.

Assuming the cell average values 𝐔𝑖 are available at a certain time
𝑡𝑛, a conservative piecewise linear interpolant 𝐔̃𝑖 can be reconstructed
for all 𝑠 ∈ 𝐼𝑖, of the form

𝐔̃𝑛
𝑖 = 𝐔

𝑛
𝑖 +

(

𝑠 − 𝑠𝑖
) (

𝐔𝑠
)𝑛
𝑖 . (23)

ote that the scheme’s formal order of (spatial) accuracy is determined
y the polynomial interpolant order. In this case, the discrete numerical

( )𝑛
erivatives 𝐔𝑠 𝑖 are, at least, a first-order approximation of the slope
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Fig. 2. Reconstruction and evolution of the cell average solutions. Adaptive space–time
ontrol volumes according to the Riemann fan size are used for evolving the solution
n time on a intermediate grid (Kurganov et al., 2001).

nd, thus, the scheme is second-order accurate (Kurganov et al., 2001).
dditionally, if the numerical slopes are to be computed using total
ariation diminishing (TVD) approaches – e.g., nonlinear limiters –
he reconstruction is essentially non-oscillatory (Kurganov and Tadmor,
000).

In the present work, the first-order approximate derivatives
(

𝐔𝑠
)

𝑖
re calculated using the generalized minmod limiter

𝐔𝑠
)

𝑖 = minmod
(

𝜃
𝐔𝑖 − 𝐔𝑖−1

Δ𝑠
,
𝐔𝑖+1 − 𝐔𝑖−1

2Δ𝑠
, 𝜃

𝐔𝑖+1 − 𝐔𝑖
Δ𝑠

)

, (24)

where 1 ≤ 𝜃 ≤ 2 controls the reconstruction sharpness. A 𝜃 = 2 was
mployed in this work. The value of 𝜃 = 1 corresponds to this limiter’s
ore diffusive (but less oscillatory) version. The minmod function is
efined as

inmod
(

𝑥𝑘
)

=

⎧

⎪

⎨

⎪

⎩

min
{

𝑥𝑘
}

, if 𝑥𝑘 > 0 ∀𝑘,
max

{

𝑥𝑘
}

, if 𝑥𝑘 < 0 ∀𝑘,
0, otherwise.

(25)

The application of Eq. (23) provides the values of the cell interfaces
= 𝑠𝑖+½ from the cell averages, which are, in general, discontinuous.
owever, these discontinuities propagate with finite speeds due to

he hyperbolicity of the equations, and the one-sided local propaga-
ion speeds determine the size of the Riemann fans. These speeds,
ere denoted by 𝑐±𝑖+½, are estimated by the maximum and minimum
igenvalues λ1 < ⋯ < λ𝑁 of the flux Jacobian matrix 𝜕𝐅(𝐔)∕𝜕𝐔 at
= 𝑠𝑖+½ (Kurganov et al., 2001),

+
𝑖+½ = max

(

λ𝑁
(

𝐔−
𝑖+½

)

, λ𝑁
(

𝐔+
𝑖+½

)

, 0
)

,

−
𝑖+½ = min

(

λ1
(

𝐔−
𝑖+½

)

, λ1
(

𝐔+
𝑖+½

)

, 0
)

.
(26)

This suggests adaptively splitting the space–time control volumes
nto smooth and non-smooth regions, depending on the size of the
iemann fans at each cell interface (see Fig. 2), and evolving the
olutions accordingly. Concretely, the solution of the equations may
nly be discontinuous inside the space–time control volume defined
y
[

𝑠𝑛−𝑖+½, 𝑠
𝑛+
𝑖+½

]

×
[

𝑡𝑛, 𝑡𝑛+1
]

, where 𝑠𝑛−𝑖+½ = 𝑠𝑖+½ + 𝑐−𝑖+½Δ𝑡, 𝑠𝑛+𝑖+½ = 𝑠𝑖+½ +
+
𝑖+½Δ𝑡. On the other hand, the smooth solution is contained inside the
nterval

[

𝑠𝑛+𝑖−½, 𝑠
𝑛−
𝑖+½

]

×
[

𝑡𝑛, 𝑡𝑛+1
]

. This is a key feature of the central-upwind
chemes and ensures no Riemann solvers are necessary.

The solution in the new non-uniform mesh is then evolved in time
y integration, producing two intermediate cell averages 𝐖

𝑛+1
𝑖+½ and

𝐖
𝑛+1
𝑖 which are projected into the original grid to compute 𝐔

𝑛+1
𝑖 . The

rojection of 𝐖 uses a reconstruction procedure similar to that of 𝐔,
5

that is, realizing the average over the cell,

𝐔
𝑛+1
𝑖 = 1

Δ𝑠 ∫

𝑠𝑖+½

𝑠𝑖−½

(

𝐖𝑛+1
𝑖−½ (𝑠) +𝐖𝑛+1

𝑖 (𝑠) +𝐖𝑛+1
𝑖+½ (𝑠)

)

d𝑠. (27)

ccordingly, a fully discrete Godunov-type central-upwind scheme is
btained. Moreover, a semi-discrete formulation is possible by taking
he limit of Δ𝑡 → 0. The central-upwind scheme in its semi-discretized
orm assumes the form of Eq. (22) with the following numerical fluxes
∗ (time dependence of the variables is omitted) (Kurganov et al., 2001)

∗
𝑖+½(𝑡) =

𝑐+𝑖+½ 𝐅
(

𝐔−
𝑖+½

)

− 𝑐−𝑖+½ 𝐅
(

𝐔+
𝑖+½

)

𝑐+𝑖+½ − 𝑐−𝑖+½

+
𝑐+𝑖+½𝑐

−
𝑖+½

𝑐+𝑖+½ − 𝑐−𝑖+½

(

𝐔+
𝑖+½ − 𝐔−

𝑖+½

)

. (28)

Here, 𝐔±
𝑖+½ correspond to the reconstructed values of the cell interfaces.

The final formulation with the source term is

d
d𝑡
𝐔𝑖(𝑡) = −

𝐅∗
𝑖+½(𝑡) − 𝐅∗

𝑖−½(𝑡)

Δ𝑠
− 𝐒𝑖(𝑡). (29)

he system of ODEs is integrated in time with the third-order strong
tability preserving Runge–Kutta method (SSP-RK3) to maintain the
rder of accuracy and stability properties. Assuming 𝐔𝑛 = 𝐋(𝐔) is the
pproximate solution of the PDE, then
(1) = 𝐔𝑛 + Δ𝑡𝐋(𝐔𝑛),
(2) = 3

4
𝐔𝑛 + 1

4
𝐔(1) + 1

4
Δ𝑡𝐋

(

𝐔(1)),

𝐔𝑛+1 = 1
3
𝐔𝑛 + 2

3
𝐔(2) + 2

3
Δ𝑡𝐋

(

𝐔(2)),

(30)

where the time step is calculated based on the CFL number,

CFL = 1
2
𝑐maxΔ𝑡
Δ𝑠

. (31)

The maximum wave speed corresponds to 𝑐max = max
(

𝑐+𝑖+½, 𝑐
−
𝑖+½

)

.
Finally, the boundary conditions on the state variables are enforced

on the grid by using ghost cells on the reconstruction approach at the
interface edge of the domain. This approach was chosen due to its
inherent simplicity (LeVeque, 1990).

3. Validation cases

In this section, the results of the developed numerical formulation
are compared with analytical and experimental results available in the
literature. Three test cases were selected:

• Taut vibrating string.
• Shock wave propagation in a synthetic cable.
• Dynamics of a catenary mooring.

3.1. Taut vibrating string

The well-known vibrating string problem is the first validation case
with an analytical solution. Let us consider a homogeneous string with
constant mass (per unit of length) 𝑚c that is axially stretched between
two fixed endpoints at the same vertical position. The applied strain
ε0 and tensile force 𝑇0 on the string is, thus, constant in space and
time. A simplified form of the cable dynamics equation (Eq. (2)) is
derived when small displacements are considered and coincides with
the one-dimensional linear wave equation

𝜕2𝑟
𝜕𝑡2

= 𝑐2 𝜕
2𝑟

𝜕𝑠2
, (32)

where 𝑟 corresponds to the vertical displacement. The wave speed in
the normal direction 𝑐 is calculated from

𝑐 =

√

𝑇0
𝑚c (1 + ε0)

. (33)

For comparison, the same initial conditions as reported in (Palm et al.,
2017) are used, that is: unstretched string length 𝐿 = 100m, mass 𝑚 =
0 c
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Fig. 3. Absolute error ‖𝐞‖ for the vibrating string problem. 𝐫∗(𝑠, 𝑡) corresponds to the
solution using the hp-adaptive Discontinuous Galerkin method from (Palm et al., 2017).

Table 1
𝐿2-norm error (‖𝐞‖) for position 𝐫(𝑠, 𝑡) and velocity 𝐯(𝑠, 𝑡).
𝑁 𝐫(𝑠, 𝑡) 𝐯(𝑠, 𝑡)

‖𝐞1‖ [m] Rate ‖𝐞2‖ [m/s] Rate

40 8.7 × 10−3 – 7.7 × 10−3 –
80 1.8 × 10−3 2.3 2.5 × 10−3 1.6
160 3.9 × 10−4 2.2 8.7 × 10−4 1.5
320 8.8 × 10−5 2.1 3.3 × 10−4 1.4
640 2.1 × 10−5 2.1 1.4 × 10−4 1.3
1280 5.0 × 10−6 2.1 6.2 × 10−5 1.2

0.1 kg/m and pre-tension force 𝑇0 = 1100N, which is equivalent to an
initial strain ε0 = 0.1. The initial configuration of the string corresponds
to 𝑟(𝑠, 0) = sin

(

𝜋𝑠∕𝐿0
)

. In these circumstances, the analytical solution
to this problem is (Greiner, 2009)

𝑟(𝑠, 𝑡) = cos
(

𝑐𝜋
𝐿0

𝑡
)

sin
(

𝜋
𝐿0

𝑠
)

. (34)

The solution obtained by the analytical formula is compared with
he numerical one via the 𝐿2-norm of the absolute error ‖𝐞‖, after one
eriod of string oscillation,

𝐞‖ =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

𝐔num
𝑖 − 𝐔exact

𝑖
)2. (35)

The results are shown in Fig. 3 and Table 1, for increasing number
of nodes 𝑁 and CFL = 0.01. Results show excellent agreement with
the analytical solution, particularly for the position 𝐫 where the nu-
merical scheme exhibits a second-order convergence rate (as expected).
Further, for comparison, the solution obtained using the hp-adaptive
Discontinuous Galerkin method with 𝑝 = 1 (linear polynomial in each
lement) from (Palm et al., 2017) is also displayed. Both methods are
ompared for the same number of degrees of freedom. Although the
iscontinuous Galerkin method presents lower values of the error ‖𝐞‖

or the same number of degrees of freedom, it has a lower convergence
ate (approximately given by 𝑝 + ½ = 1.5) in comparison with the
resented central-upwind scheme.

.2. Shock propagation

This test case analyzes propagating shock conditions on a one-
imensional horizontal cable with a nonlinear constitutive function
f the type 𝑇 = 𝑇 (ε). Shock formation, propagation and reflection
roperties are compared against the analytical solution implemented
6

n (Tjavaras, 1996) with the method of characteristics.
Table 2
Comparison between analytical and numerical results.

Variable 𝑎 = 10 𝑎 = 20

Analytical Numerical Analytical Numerical

𝑇ref [N] 3053.8 3051.4 13347.7 13311.0
εref [-] 0.1400 0.1399 0.1332 0.1331

This problem considers a horizontal cable at rest, constituted by a
synthetic material with an exponential tension–strain relation of the
form

𝑇 (ε) = 𝐾0
(

𝑒𝑎ε − 1
)

, (36)

where 𝐾0 and 𝑎 are empirical variables that correspond to a certain
material. The cable is excited by a horizontal force 𝑓 (𝑡) in one end
(𝑠 = 𝐿) while it is kept fixed on the other (𝑠 = 0). Under these
onditions, analytical expressions for shock formation, propagation,
nd reflection are derived (Tjavaras, 1996).

The cable has the following properties: unstretched cable length
0 = 800m, mass 𝑚c = 1 kg/m and strength coefficient of 𝐾0 = 1000N.
dditionally, two different values for the strain-hardening exponent are
tudied, 𝑎 = 10 and 𝑎 = 20, and a constant initial strain ε0 = 0.05 is
pplied.

The horizontal excitation force (or strain) function has the form

(𝑡) =

{

(εf − ε0) 𝑡∕𝑡f + ε0 for 𝑡 < 𝑡f
εf for 𝑡 ≥ 𝑡f

, (37)

here the final strain is εf = 0.1, achieved at a time 𝑡f = 1 𝑠.
The wave speed in the tangential direction is calculated from (see

q. (19))

t(ε) =

√

𝑎𝐾0
𝑚𝑐

𝑒𝑎ε. (38)

In this case, a shock is formed during tension loading because 𝑐t(ε)
increases with ε. Therefore, under these conditions, a tension discon-
tinuity will be generated after a specified time and reflected at the
fixed end of the cable. The strain value after shock reflection is given
by (Tjavaras, 1996)

εref =
2 ln

(

2
√

𝑒𝑎εf −
√

𝑒𝑎ε0
)

𝑎
. (39)

The numerical formulation can thus be compared with the above
equations provided by the method of characteristics. For the numerical
setup, a total of 𝑁 = 1000 nodes were utilized in the cable’s spatial
discretization, with a time step defined by a CFL = 0.5. The results are
plotted in Figs. 4 and 5.

Both graphs demonstrate that the increase in tension imposed at
the right end induces the formation of a shock after a specified time,
as predicted by the analytical solution. This shock is reflected on the
fixed left end, with a corresponding augmentation of strain and tension.
The variation of the exponent value 𝑎 introduces a different variation
of the wave speed 𝑐t(ε) as well as different values of tension. For 𝑎 = 20,
the tension discontinuity is much more significant. Therefore, achieving
perfect shock resolution (with the same number of nodes) is more
difficult without small overshooting at the peak.

The analytical values of tension and strain after reflection are com-
pared against the numerical ones in Table 2. A very close agreement
is obtained for both values. As such, the shocks have the right propa-
gation and reflection characteristics demonstrating that the numerical
formulation is correctly implemented and with a high resolution.

3.3. Catenary mooring

In this subsection, the numerical model is validated using ex-

perimental data for a dynamically excited catenary in a water tank
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Fig. 4. (a) Evolution of the tension magnitude on the cable over time for a material with 𝑎 = 10. (b) Zoom of shock obtained at 𝑡 = 8 s.
Fig. 5. (a) Evolution of the tension magnitude on the cable over time for a material with 𝑎 = 20. (b) Zoom of shock obtained at 𝑡 = 4 s.
Fig. 6. Schematics of the experimental setup (Bergdahl et al., 2016).

(Bergdahl et al., 2016). A brief overview of the test campaign is given
below.

A catenary mooring chain of 33m is placed in a 3m deep water
ank. The cable is fixed by a weight on the ground on one end. The
ther end is connected to a rotating sheave installed slightly above the
ater level and spun at a defined rotational speed. At the same time, a

oad cell measures the tensile force, as shown in Fig. 6.
The tested rotational periods are τ = 1.25 s and τ = 3.50 s. For

τ = 1.25 s, the circular amplitude was changed between 0.075 − 0.2 m,
according with the available experimental data. A listing of the per-
tinent parameters concerning the experimental setup and utilized for
the numerical model are presented in Table 3, including the material
characteristics of the mooring line. A total of 250 nodes were used in
the numerical discretization with a CFL = 0.05 for both cases.

The chain is modelled with bilinear axial stiffness, not allowing axial
compression (negative strain). Therefore, if local negative strain values
are obtained during the computations, the corresponding axial stiffness
value switches to zero. Moreover, the afloat sections of the cable are
taken into account by modifying the source term.

In Fig. 7, the tension magnitude time-series for a circular motion
amplitude equal to 0.2m and both rotational periods is presented,
comparing the numerical and experimental results. For τ = 1.25 s (Fig. 7
7

Table 3
Numerical model parameters used to simulate the experimental setup.

Length of cable, 𝐿 [m] 33
Mass of cable per unit of length, 𝑚c [kg/m] 0.0818
Equivalent cable diameter, 𝑑c [m] 0.0022
Cable density, ρc [kg/m3] 7800
Axial stiffness, 𝐸𝐴c [N] 10000
Tangential drag coefficient, 𝐶Dt

[–] 0.5
Normal drag coefficient, 𝐶Dn

[–] 2.5
Tangential added mass coefficient, 𝐶at

[–] 0
Normal added mass coefficient, 𝐶an

[–] 3.8
Ground stiffness per unit of length, 𝑘g [GPa/m] 3
Ground damping, ξg [–] 1
Ground friction coefficient, μg [–] 0.3
Friction velocity, 𝑣μ [–] 0.01

a), despite the numerical model slightly underpredicting the maximum
tension value, the global agreement is sound, particularly near the peak
tension cycle behaviour. When the tension is close to zero (slacking
regime), the numerical tension displays large fluctuating values, which
are also observed in the experimental results, but at a smaller scale.
However, this behaviour is primarily numerical and is derived from
the seabed model implemented (linear spring–damper). The local strain
gradients on ground nodes induce artificial tension oscillations (Low
et al., 2018). A finer discretization in time and space of the touchdown
point might alleviate this effect (Low et al., 2019). Moreover, during
the upstroke part of the motion, the behaviour of the tension is well-
captured, particularly the tension recoil before the peak. As mentioned
in (Palm et al., 2017), there is a snap load formation during the slacking
phase. The resultant wave is reflected at the upper end of the cable,
thus leading to an enhanced spike in tension. The minor difference in
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Fig. 7. Comparison of numerical and experimental tensile force measured at the upper-end for the test case with (a) period τ = 1.25 s and (b) period τ = 3.50 s and circular radius
f 0.2 m.
Table 4
Maximum mean tensile force (𝑇max) for a rotational period τ = 1.25 s and different
sheave radiuses.
𝑇max [N] Circular motion radius [m]

0.075 0.100 0.125 0.150 0.200

Exp. 42.5 46.8 54.1 60.4 70.3
Num. 39.8 48.1 52.6 57.9 70.6

the peak tension between the experimental and the numerical values,
which are related to the snap load, can be owed to several factors
associated with the numerical implementation, such as the ground
model, thus difficulting the interpretation of current data. However,
the mean maximum experimental force is very close the experimental
one, see Table 4.

On the other hand, the results for τ = 3.50 s exhibited in Fig. 7b
are in reasonable agreement for the peak tension values but have a
different ascending part of the curve in comparison with the experimen-
tal tension series. For the numerical tensile force, the upward part is
abrupter, and the slacking interval is more extended and includes high-
frequency content. This loss in tension accuracy most likely derives
from the source term effect on the solution. This term is evaluated based
on each cell value. For τ = 3.50 s the solution is smoother and the effect
of this term is more pronounced. Therefore, the numerical scheme
might not accurately reflect tension changes across the entire domain.
In the shorter period, the presence of snap loads and sea bottom effects
promotes highly transient responses, and the numerical flux term of the
equations masks that influence. The aforementioned argument is a lim-
itation of the current method for smooth solutions since it introduces a
different tension behaviour compared to the experimental one.

Finally, complementary results are presented in Table 4 for the
numerical maximum tensile forces (averaged over multiple period sam-
ples) under different circular motion radii and for a rotational period
τ = 1.25 s. The experimental values are added for comparison; gener-
ally, they are congruent over the entire range with no distinct under-
or over-predictions tendencies.

4. Conclusions

Various numerical methods can simulate mooring cables, but few
are targeted to calculate snap loads. In this regard, a Godunov-type
finite-volume method (central-upwind scheme) was devised for resolv-
ing the numerical flux term of the hyperbolic equations of motion of a
single mooring cable in a conservative form. This new approach enjoys
the main advantage of (weak) finite-volume formulations, thus allow-
ing discontinuous solutions in the tension, characteristic of snap load-
8

ing regimes. The numerical model is formulated in a semi-discretized
state and evolved in time using the third-order strong stability pre-
serving Runge–Kutta. The generalized minmod limiter was used to
ensure TVD conditions. The boundary conditions were implemented
using ghost cells.

The numerical model was evaluated against three different vali-
dation cases. Comparison with the analytical solutions demonstrated
second-order spatial accuracy and accurate shock-capturing properties.
The final validation case consisted of experimental results concerning
a single catenary mooring line under slack conditions. The numerical
results showed a good agreement with the experimental values, only
slightly underpredicting the maximum tension peaks. Several factors
can explain this difference, mainly concerning the numerical setup.
For instance, the seabed model is expected to have a considerable
influence on the simulation since the peak snap load is a reflection
at the fairlead of a discontinuity appearing during the slack period.
Additionally, high-frequency oscillations appear during this phase.

The proposed finite-volume method provides a more straightfor-
ward and practical approach than current codes available in the litera-
ture for modelling snap loads on perfectly flexible cables. This scheme
does not use a Riemann solver; the only information required at cell
interfaces are the local wave speeds. Currently, the applied scheme
employs a linear function for the reconstruction step. Therefore, a fine
grid is needed to handle smooth solutions. Increasing the polynomial
degree for finite-volume schemes is challenging since a wider stencil
is required. Additionally, an improved source-term treatment may in-
crease the accuracy of the results. One approach is moving source terms
into the flux using appropriate discretization procedures.

The suitability, advantages and limitations of this method are suc-
cessfully demonstrated in this paper. At the same time, more conditions
should be tested and compared with experimental data, and that is the
focus of future work. Further improvements to the numerical model
are envisioned. Examples include mesh refinement methodologies and
nonlinear limiter switches between smooth and non-smooth solutions
to increase spatial accuracy and decrease the computational cost.
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