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Abstract

Control systems play a critical role in improving the economic viability of wave energy
converters (WEC). This paper presents a framework for a causal power-maximising feed-
back controller inspired by Phi method. Quadratic damper control and PID control are
combined to collectively achieve the optimal power absorption conditions for the peak
wave periods, which results in a nonlinear controller being suboptimal in irregular waves.
The proposed controller is tested on a fully submerged heaving spherical point absorber
in regular and irregular wave conditions in time domain. The tuning of the PID gains are
investigated in frequency-domain from a stability and control bandwidth perspective. The
modelled WEC dynamics includes linear hydrodynamic forces (excitation and radiation)
and the nonlinear viscous drag force. The main benefits of the proposed controller are
(i) it does not require any time-consuming optimisation either online or offline; (ii) has a
wider bandwidth and better power absorption performance as compared to the conven-
tional spring-damper (PI) controller; and (iii) easy to implement in practice like standard
PID control.

1 INTRODUCTION

A wave energy converter (WEC) is a device that converts ocean
wave energy into useful electricity. Compared with other renew-
able energy sources such as solar or wind, the main challenge in
commercialising WEC technologies remains in reducing their
costs, which needs to take into consideration manufacturing,
installation, and maintenance [1]. One of the critical and major
pathways for improving the economic viability of wave energy
is seen in the design of better controllers [2].

It is well-known that the maximum power absorption of a
WEC in regular waves can be achieved using complex-conjugate
control (CCC), also known as impedance matching control [3].
CCC effectively describes the underlying dynamics behind max-
imum energy absorption, however, it has some difficulties in
practical application [4]. In order for CCC to be successful in
irregular waves and provide perfect impedance-matching across
all frequencies, it is required to predict the system dynamics for
some time in the future leading to the acausality problem [5].
Acausal controllers (i.e. model predictive control [6]) heavily rely
on prediction/estimation of the future incoming waves, and the
accuracy of the WEC model. Despite some success in accurately
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predicting wave elevations [7] and testing acausal controllers in
laboratory environment [8], they are difficult and computation-
ally expensive to implement in real life.

It is possible to avoid the acausality issue in the WEC con-
trol design if the impedance matching is achieved not across all
frequencies simultaneously, but covering only a limited range of
dominant wave frequencies. Controllers built using this philos-
ophy are sub-optimal in irregular waves but can produce power
close to optimal conditions [9]. There are a number of ways to
design a causal approximation of CCC leading to simple and
reliable control strategies. The most widely used control law
for point absorbing WECs is a spring-damper controller, some-
times called proportional–integral (PI), using WEC velocity as
a basis, where stiffness and damping coefficients are tuned to
achieve impedance matching at one dominant frequency [10].
Depending on the WEC dynamics and considered sea states,
PI control can achieve up to 77–93% of the theoretical power
limit [9]. As PI control is narrow-banded by nature and optimal
for one wave condition only, a self-tuning PI strategy, where
control parameters are adjusted in real-time according to the
wave environment, has been tested in [11]. Another way to
approximate CCC has been proposed in [12, 13], where multiple
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parallel PI controllers act simultaneously targeting individual
wave frequencies from the wave spectrum. Such controllers
require a real-time decomposition of the displacement or veloc-
ity time-series into multiple frequency components using Fast
Fourier Transforms or least squares methods in real time.

In the PI (spring-damper) control algorithms, the integral
(stiffness) control coefficient is usually tuned to effectively
cancel out the total intrinsic reactance of the WEC contain-
ing its mass/inertia and hydrostatic stiffness via resonance [3].
Alternatively, [6] proposed a PID (mass-spring-damper) con-
trol structure that uses two separate control terms to cancel
out the intrinsic mass/inertia (acceleration feedback) and stiff-
ness (displacement feedback) correspondingly. This PID con-
trol (termed as approximate CCC in [6]) demonstrates a perfor-
mance close to the model-predictive control strategy (10–25%
absorbed power reduction); however, its coefficients should be
carefully tuned to avoid system instability and maintain suffi-
cient stability margin [14].

The concept of CCC usually requires that the wave energy
converter has linear dynamics, and control parameters are tuned
based on the hydrodynamic coefficients. Once the height of
the incoming wave increases, nonlinear effects such as the vis-
cous drag force start affecting the WEC motion and power out-
put [15]. To account for nonlinear dynamics in the controller
design, the WEC model is usually linearised and control param-
eters are optimised to achieve maximum power absorption for
the sea states of interests [16]. Similarly, many recently devel-
oped optimal controllers such as bang-bang based controller are
applicable only when a linear dynamics model is valid despite
their capability to handle constraints [17]. To address both lin-
ear and nonlinear dynamics in WEC power maximising con-
trol, an alternative approach, termed Phi method, has been pro-
posed in [18], where the optimal control force is formulated
analytically based on the known dynamics of the WEC, linear or
nonlinear.

Inspired by previous work on WEC PID control and Phi
method, this paper proposes and investigates a novel causal
power maximising controller, termed as PP2ID (mass-spring-
linear/quadratic damper) control, on a fully submerged heav-
ing point absorber. Quadratic damper control and PID control
are combined to collectively achieve the optimal power absorp-
tion conditions for the peak wave periods, which results in a
nonlinear controller that is suboptimal in irregular waves. The
main contributions of this paper are: (i) tuning of the proposed
controller (after linearisation) is investigated analytically in the
frequency domain from a stability and control bandwidth per-
spective; (ii) power performance of the proposed controller is
studied for both regular and irregular waves using time-domain
simulations; (iii) although the concept of WEC PID control
is not entirely new, its application to a fully submerged point
absorber is original, and its integration with quadratic damper
control to account for nonlinear viscous drag effects is unique.
The structure of the paper is as follows below. Section 2 covers
the modelling of the WEC system. Section 3 shows the con-
troller design concepts, including simulation methodology. Sec-
tion 4 demonstrates the stability and control bandwidth analy-
sis obtained in frequency domain. Section 5 demonstrates the

power performance analysis obtained in time domain. The last
section concludes the main contributions of the paper.

2 WAVE ENERGY CONVERTER

2.1 Mathematical model in time domain

Linear wave theory is commonly used to estimate the hydrody-
namic forces acting on a structure, where the dynamic equation
of motion can be formulated in either the frequency or time
domain. Equation (1) describes the motion of a WEC (e.g. in
one degree of freedom) under the wave excitation:

mz̈ (t ) = Fexc(t ) + Frad(t ) + Fpto(t ) + Fhs(t ) + Fvis(t ), (1)

where m is the mass of the buoy; z is the buoy displacement
in heave; Fexc is the excitation force; Frad is the wave radiation
force; Fpto is the control force acting on the buoy from the
PTO unit; Fhs is the hydrostatic force; and Fvis is the viscous
drag force, modelled according to the Morison equation [19]:

Fvis(t ) = −
1

2
𝜌CDAD|ż − ż0|(ż − ż0), where 𝜌 is the density of

water, CD is the drag coefficient, AD is the cross-sectional area
of buoy perpendicular to the incident wave, and ż0 is the fluid
velocity at the centre of mass of the buoy undisturbed which
is assumed to be negligible compared to the buoy velocity in
this paper.

The most common mathematical model that describes a
time-domain response of a WEC excited by waves is the Cum-
mins equation [20]:

(m + A∞ ) z̈ (t ) + ∫ t

−∞
B(t − 𝜏) ż (𝜏) d𝜏 +

1

2
𝜌CDAD|ż (t )|ż (t )

+Fhs(t ) = Fexc(t ) + Fpto(t ),
(2)

where A∞ is the infinite-frequency added mass coefficient; B(t )
is the radiation impulse response function, depending on the
motion history of the buoy; Fhs is the hydrostatic force. As
for a fully submerged buoy case considered in this paper, it
is assumed that the net buoyancy force of the buoy is always
balanced by a PTO pretension force. Therefore, the hydro-
static force becomes zero. For simulations on the radiation
effects in the time-domain, the convolution integral in Equa-
tion (2) is replaced by a state-space model according to the
methodology presented in [21]. Hydrodynamic parameters of
a submerged spherical buoy including the excitation force, and
the corresponding frequency-dependent added mass and radi-
ation damping in Equation (2) are calculated using a semi-
analytical model developed by [22]. For a spherical buoy, CD
is estimated to be 0.5 based on experimental measurement [23]
and AD = 𝜋r2, where r is the radius of the buoy. In practice,
the PTO force is dependent on the PTO machinery design
which can be very complex. At the WEC design stage and for
simplicity, PTO force is usually assumed to be a linear function
of the system state feedback measured by sensors, which will be
introduced in the following sections.
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3298 GU ET AL.

FIGURE 1 Fully submerged 1DOF single tether spherical buoy [24].

TABLE 1 Parameters of a fully submerged spherical buoy

Items Value/unit

Buoy radius (r ) 5 m

Submerged depth (hs) 8.5 m

Water depth (dw) 50 m

Buoy mass (m) 2.698 × 105 kg

Water density (𝜌) 1024 kg/m3

Gravitational acceleration (g) 9.8067 m/s2

2.2 Description of the WEC system

A heaving fully submerged spherical buoy is used as a typical
test case in this study as shown in Figure 1. Table 1 shows cor-
responding parameters, where r is the radius of the buoy; hs is
the submerged depth, which is the distance from the water sur-
face to the centre of mass of the buoy; dw is the water depth;
m is the mass of buoy and 𝜌 is the density of water; and g is
gravitational acceleration.

3 POWER MAXIMISING CONTROLLER

3.1 Design of power maximising controller

3.1.1 Phi method

Mills and Ding [18] studied the mathematical derivation of Phi
method, an algorithmic operator that determines the optimal
PTO control force in time-domain for maximising WEC power

TABLE 2 Typical dynamic terms and corresponding Phi derived optimal
control forces [18]

Dynamic terms

Analytical

expression (H)

Phi-derived control

force (Fpto)

Spring a0z (t ) a0z (t )

Damper a1ż (t ) −a1ż (t )

Inertia a2z̈ (t ) a2 z̈ (t )

Viscous drag a3|ż (t )|ż (t ) −2a3|ż (t )|ż (t )

absorption. The WEC dynamics can be written as the following
general expression:

H
(
t ; z, ż, z̈, … , z (n)

)
= Fexc(t ) + Fpto(t ), (3)

where z (n) =
𝜕nz

𝜕t n
and n is the highest order of the time deriva-

tives. H is a sufficiently smooth function of time derivatives
describing the WEC dynamics in response to the excitation and
PTO control forces, that are not necessarily linear.

Phi method derives the optimal control force as functions of
the WEC time response from the analytical WEC dynamics H

using the following expression [18]:

Fpto(t ) = −𝛼 + ∫
t

0
ż
𝜕

𝜕z
H d𝜏 −

∞∑
k=1

(
−
𝜕

𝜕t

)k−1 (
ż

𝜕

𝜕z (k)
H

)
,

(4)

where 𝛼 is a bias force equal to the mean wave force that
prevents the WEC from drifting. Table 2 shows some typical
dynamics terms and their corresponding optimal PTO control
force derived using Equation (4). The step-to-step derivation
procedures are shown in Appendix A.

Substituting the dynamic expressions and their correspond-
ing Phi-derived control force into Equation (3) and combin-
ing/cancelling common terms, the following observations can
be made. The system intrinsic spring term and inertia term are
respectively cancelled by the corresponding Phi-derived feed-
back control force, while the linear damper term is doubled
by linear damper control. These lead to the optimal force-to-
velocity mapping under impedance matching theory for the
maximum power absorption of a WEC in [3] assuming the sys-
tem is linear and under harmonic motion. The viscous drag
term, or quadratic damper term, however, according to the
Phi method, is tripled by quadratic damper control, which has
never been noted in the literature to the best knowledge of the
authors. To assist in understanding this outcome, a mathemati-
cal proof extended from impedance matching theory is shown
in Appendix B.

3.1.2 Phi-inspired feedback control

The convolution integral in the Cummins equation, Equa-
tion (2), depends on the past information of the buoy motion.
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GU ET AL. 3299

Therefore, the corresponding optimal PTO control force
depends on the future information of the excitation force,
which leads to acausal control [5]. For the derivation of causal
feedback controller using the Phi method, the convolution inte-
gral in Equation (2) is decomposed into the wave frequency-
dependent added mass term and radiation damping term
assuming that the WEC reaches its steady-state response and
oscillates under periodic waves, e.g. 𝜂(t ) = A cos (𝜔t + 𝜑n ) and
z (t ) = z0 cos (𝜔t + 𝜑z ). Therefore, for a fully submerged point
absorber WEC, Equation (2) can be rewritten as:

(m + A𝜔 ) z̈ (t ) + B𝜔rad ż (t ) +
1

2
𝜌CDAD|ż (t )|ż (t )

= Fexc(t ) + Fpto(t ),
(5)

where A𝜔 = A(𝜔) and B𝜔rad = Brad(𝜔) are the wave frequency-
dependent added mass and radiation damping respectively.
Denoting the left hand side of Equation (5) as H and the
applying Phi-operator using Equation (4), Phi-derived causal
feedback control for a fully submerged point absorber WEC
can be obtained:

Fpto(t ) = (m + A𝜔 )z̈ (t )
⏟⎴⎴⏟⎴⎴⏟

Mass control

−B𝜔radż (t ) − 𝜌CDAD|ż (t )|ż (t )
⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟

Damper control

, (6)

which consists of a mass (or inertia feedback) control term that
cancels the system intrinsic mass; a linear damper (or velocity
feedback) control term that doubles the radiation damping; and
a quadratic damper (or velocity square feedback) control term
that triples the viscous drag. The feedback controller in Equa-
tion (6) is optimal in regular waves, however, is sub-optimal in
irregular waves because the control parameters A𝜔 and B𝜔rad can
be tuned at optimal for a single/dominant wave frequency only,
leading to a narrow-banded suboptimal controller in nature.

The most well-known and commonly used causal feedback
control for maximising WEC power absorption is a spring-
damper control law:

Fpto(t ) = −Kptoz (t )
⏟⎴⏟⎴⏟
Spring control

−Bptoż (t )
⏟⎴⏟⎴⏟

Damper control

, (7)

where Kpto and Bpto are respectively the stiffness coefficient
for the spring (or displacement feedback) control term and the
damping coefficient for the linear damper (or velocity feedback)
control term. According to principle of complex conjugate con-
trol [3] where viscous drag is ignored in the WEC dynamics, the
optimal values of Kpto and Bpto are:

Kpto = 𝜔2(m + A(𝜔)), (8)

Bpto = Brad(𝜔), (9)

for a fully submerged point absorber WEC. Equations (8) and
(9) are respectively the resonance condition and the optimal

amplitude condition that are frequency-dependent. When vis-
cous drag is considered in the WEC dynamics, the optimal
amplitude condition becomes:

Bpto = Brad(𝜔) + Bvd(𝜔), (10)

where Bvd is an additional linear damper in the PTO
accounting for the viscous drag/quadratic damping dynamics
1

2
𝜌CDAD|ż (t )|ż (t ), which is often determined via numerical

optimisation approach, and varies with the variation of both
wave frequency and wave height.

Substituting Equations (8) and (10) into Equation (7) and
comparing to Equation (6) leads to the following observations:

∙ Spring control cancels the WEC intrinsic mass term includ-
ing the buoy mass and added mass only at the WEC reso-
nance condition where the spring force is in anti-phase with
the system inertia force, whilst mass control directly cancels
the WEC intrinsic mass by applying an opposite equal force.
Both spring and mass control aim to force the buoy velocity
to be in phase with the wave excitation force; however, mass
control may raise control instability issue [25], which was not
considered by Phi method.

∙ Linear damper control doubles the WEC intrinsic linear
damper terms, including the radiation damping and the lin-
earised viscous drag to achieve the optimal amplitude condi-
tion. Phi method further applies quadratic damping control
to triple the WEC viscous drag term. The resulting quadratic
damping control is nonlinear and optimal regardless of varia-
tions in wave frequency and wave height. Therefore, numeri-
cal optimisation-based linearisation for linear damper control
is no longer necessary.

To gain a comprehensive understanding on the performance
of spring and mass control strategies in combination with lin-
ear damper control, a linear mass-spring-damper controller (or
more generally termed PID controller in control discipline) is
applied [26]:

F PID
pto (t ) = a(m + A𝜔 )z̈ (t )

⏟⎴⎴⎴⏟⎴⎴⎴⏟
Derivative (mass control)

−b𝜔2(m + A𝜔 )z (t )
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
Integral (spring control)

(11)

−(B𝜔rad + B𝜔vd) ż (t )
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

Proportional (linear dampercontrol)

, (11)

where ż (t ) is regarded as the system output and thus with
respect to the system output linear damper (or velocity feed-
back) control denotes the proportion term (P), spring (or dis-
placement feedback) control denotes the integral term (I), and
mass (or inertia feedback) control denotes the derivative term
(D). The terms a and b in Equation (11) are respectively the
ratios of the D term (mass control) and I term (spring control),
which are defined for understanding the transitions between
pure spring and pure mass control. To satisfy the WEC res-
onance condition under partial mass control 0 < a < 1 and
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3300 GU ET AL.

partial spring control 0 < b < 1, the constraint a + b = 1 is
required to be met. In extreme case when a = 0 &b = 1, Equa-
tion (11) becomes pure PI control (or linear spring-damper con-
trol) in Equation (7). On the other hand, when a = 1 &b = 0,
Equation (11) becomes pure PD control (or linear mass-damper
control).

Inspired by Phi method, a quadratic damping control is inte-
grated into the PID controller that leads to a novel nonlinear
PP2ID controller:

F PP2ID
pto (t ) = a(m + A𝜔 ) z̈ (t )

⏟⎴⎴⎴⏟⎴⎴⎴⏟
D (mass control)

−b𝜔2(m + A𝜔 )z (t )
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

I (spring control)

(12)

−B𝜔rad ż (t )
⏟⎴⏟⎴⏟

P(linear damper control)

−𝜌CDAD|ż (t )|ż (t )
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

P2(quadratic damper control)

, (12)

where the quadratic damper (or velocity squared feedback) con-
trol denotes the nonlinear proportional square term (P2). Since
control parameters of PID control in Equation (11) and PP2ID
control in Equation (12) are frequency-dependent, both con-
trollers are optimal in regular waves at a particular wave period.
In irregular waves, both controllers are sub-optimal and thus
their control parameters are often tuned according to the energy
period of the wave spectrum (detailed in Section 5). It is worth
noting that the P gain of the PID control in Equation (11) usu-
ally needs to be determined via a numerical optimisation to
account for the nonlinear viscous drag dynamics, whereas the
optimal control parameters of PP2ID control in Equation (12)
can be analytically determined due to the use of quadratic
damper control. For both controllers, the optimal ratio between
the D gain (a) and the I gain (b) need to be initially investigated.
This is assisted by the frequency-domain analysis on the PID
controller configuration in Section 4, with the results equally
applicable to the PP2ID controller.

4 PID CONFIGURATION ANALYSIS IN
FREQUENCY DOMAIN

4.1 Transfer function of WEC feedback
control system

Frequency-domain approach is often used to investigate and
tune the performance of feedback control from a stability and
control bandwidth perspective [9]. Substituting the PID con-
trol force in Equation (11) into the WEC equation of peri-
odic motion (under harmonic oscillation) in Equation (5), and
applying Lorenz linearisation [27] to approximate the nonlin-
ear viscous drag effects following that in [28, 29], the linearised
model of the WEC feedback control system is obtained. The
objective of Lorenz linearisation is to find a linearised damp-
ing force (e.g. a frequency-dependent damping coefficient B𝜔vd)
that dissipates the same amount of energy as the nonlinear
quadratic force in regular waves under PIbDa control. An iter-
ative procedure is implemented to calculate B𝜔vd, because B𝜔vd
determines the P gain of the controller in Equation (11) while

FIGURE 2 Block diagram of WEC feedback control system

B𝜔vd is determined by the control force under Lorenz linearisa-
tion. It is worth noting the inclusion of this linearised version of
the drag is critical for the frequency-domain analysis, since it sig-
nificantly affects the phase margin of the WEC feedback control
system.

Then applying the Laplace transform to the resulting linear
model in the time-domain following the approach in [14], the
closed-loop transfer function (CLTF) describing the force-to-
velocity mapping of the WEC system under PIbDa control is
obtained:

V (s)

Fexc(s)
=

G (s)

1−G (s)H (s)

=
s

(1−a)(m+A𝜔 )s2+2(B𝜔rad+B𝜔vd )s+b𝜔2(m+A𝜔 )
,

(13)

where V (s) denotes the Laplace transform of the buoy veloc-
ity; G (s) denotes the WEC dynamics and H (s) denotes the
PID controller dynamics, whose TFs are respectively shown in
Figure 2. N (s) on the feedback of the closed-loop system in
Figure 2 represents a low-pass filter, which is often used to
remove noise associated with differentiations and ensure the
entire feedback controller H (s)N (s) is proper in practical appli-
cations.

The coefficients of the CLTF in Equation (13) varies with
wave frequency. Therefore, stability and control bandwidth of
PIbDa controller with various combinations of a and b are stud-
ied when the controller is tuned at four typical wave frequen-
cies, respectively. At each wave frequency, the CLTF becomes a
transfer function with constant coefficients consisting of hydro-
dynamic coefficients at that frequency for typical frequency-
domain analysis (e.g. pole-zero map and Bode diagram).

4.2 Stability analysis

In order to understand the stability of the WEC system under
PIbDa control (and its transition from PI control to PD
control), the pole locations of the CLTF in Equation (13) given
A𝜔, B𝜔rad, and B𝜔vd at 𝜔 = 0.9 rad/s (T𝜔 = 7 s) and five combi-
nations of a and b are shown in Figure 3. It is evident that when
b decreases from 1 to 0 (and a increases from 0 to 1), during
which PI control changes to PD control, the CLTF poles move
from a lightly damped stable location (blue cross in Figure 3)
towards a heavily damped marginally stable location (dark red
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GU ET AL. 3301

FIGURE 3 Pole locations of the closed-loop WEC system under PID
control (tuned for 𝜔 = 0.9 rad/s) with five ratios of Integral and Derivative
components (PIbDa). The trajectories in dashed lines show how pole locations
change with the decrease of b and increase of a

FIGURE 4 Nyquist plot showing stability margins of the closed-loop
WEC system under PID control (tuned for 𝜔 = 0.9 rad/s) with five ratios of
Integral and Derivative components (PIbDa). The Nyquist contour under PD
control (in scarlet) and the unit circle overlap each other. The red cross mark
highlights the critical point [−1 0]

cross in Figure 3) and asymptotically becoming marginally sta-
ble. With a decrease in b (and an increase in a), the transition
of the pole locations is slow towards the critical point (orange
cross in Figure 3 associated with PI0.2028D0.7972), followed by
a rapid transition towards the marginally stable location when b

further decreases towards 0 (during which spring control van-
ishes). Furthermore, following Routh–Hurwitz stability crite-
rion, the closed-loop system is found to be always stable when
0 ≤ a < 1 and a + b = 1 (the requirement for satisfying reso-
nance conditions).

The CLTF pole locations indicate that the stability margins of
the closed-loop system need further investigations, and thus the
Nyquist plot of G (s)H (s) is shown in Figure 4. It can be found
that the phase margins are the same, 23 degrees (or 0.44 s),
for all the PIbDa controller candidates, whilst the gain margin
decreases from infinity for PI control to 1 for PD control with
an increase in a. The gain margin of PI0.2028D0.7972 controller is
1.25, which implies that the closed-loop system can still be sta-

FIGURE 5 Bode diagram showing the frequency response of the
closed-loop WEC system under PID control (tuned for 𝜔 = 0.9 rad/s) with
five ratios of Integral and Derivative components (PIbDa). Upper and lower
plots show respectively the magnitude and phase relationship between Fexc(s)
and ż (s)

ble subjected to 25% error in the gain of the open-loop transfer
function. The results of CLTF pole locations and stability mar-
gins show that PI control is more stable and robust than PD
control and thus PIbDa control with b < 0.2 and a > 0.8 should
be avoided from the control stability perspective.

4.3 Control bandwidth analysis

In order to understand the control bandwidth of the WEC
system under PIbDa control when the controller is tuned at
a single wave frequency, 0.9 rad/s in this case, the hydrody-
namic coefficients in the CLTF in Equation (13) are fixed at
𝜔 = 0.9 rad/s, and the broadband frequency response of the
CLTF is shown in Figure 5. It is evident that with an increase
in the Derivative/mass control component (and a correspond-
ing decrease in the Integral/spring control component) in PID
control, the magnitude response of the buoy velocity increases
across the wave frequency range towards the response at reso-
nance (0.9 rad/s) as shown in the upper magnitude plot, while
the phase of the buoy velocity converges towards the phase of
the excitation force across the wave frequency range as shown in
the lower phase plot. Therefore, an increase in Derivative/mass
control component (a) in PIbDa control increases the control
bandwidth of the WEC system. In extreme cases, the WEC sys-
tem operates optimally only at the resonance frequency under
PI control, whilst operates at near-optimal across the wave fre-
quencies under PD control. In practice when excited by irreg-
ular waves, the WEC system will respond to a wide range of
input (excitation force) frequencies as illustrated by a PM spec-
trum with Te = 7 s and Hs = 2 m (shaded region) as shown in
the magnitude plot of Figure 5. Therefore, control bandwidth
plays a key role in maximising the power absorption bandwidth
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3302 GU ET AL.

of WEC in irregular waves when the controller is pre-tuned at
optimal for one dominant wave period only (e.g. Te) and fixed
during operation.

CLTF stability and control bandwidth are also studied when
the controller is tuned at 0.48, 0.57 and 0.7 rad/s respectively,
which demonstrate trends consistent with the results at 0.9
rad/s. Therefore, PI0.2D0.8 is a close-to-optimal configuration
regardless of wave frequency from the stability and control
bandwidth perspective, and thus is selected as a candidate for
time-domain analysis.

5 POWER PERFORMANCE ANALYSIS
IN TIME DOMAIN

5.1 Simulation setup

5.1.1 General settings

To further analyse the power performance of the proposed con-
trollers, a time-domain model following Equation (2) is assem-
bled in MATLAB/Simulink setting the fixed time step of 0.01 s
and the solver as automatic.

The average power absorbed by the WEC is calculated as:

P̄total = −
1
T ∫

T

0
Fpto(t )ż (t )dt , (14)

and only for PP2ID control, the total power can be decomposed
into the power absorbed by the linear damper (P term) and by
the quadratic damper (P2 term) respectively:

P̄P =
1
T ∫

T

0

(
Bpto ⋅ ż (t )

)
ż (t ) dt , (15)

P̄P2 =
1
T ∫

T

0

(
𝜌CDAD|ż (t )|ż (t )

)
ż (t )dt , (16)

where Fpto and ż are the instantaneous PTO force and buoy
velocity respectively. To remove the transient dynamic response,
only the last 20 cycles (out of the total 100 simulated cycles)
are used to calculate the average power output in the regu-
lar wave simulations, and the last 300 cycles (out of the total
400 simulated cycles) are used for average power calculation
in the irregular wave simulations. Typical wave periods from
6 to 13 s with an increment of 1 s are used in the simula-
tions, so the corresponding wave frequencies ranges from 0.48
to 1.05 rad/s. The wave height is set to 2 m unless otherwise
stated.

5.1.2 PTO parameter tuning

To provide a fair comparison of the control strategies, control
parameters are optimised according to the procedure below.

Regular wave analysis
PID: B𝜔rad + B𝜔vd are found via grid search [30]; the spring con-
trol coefficient is estimated by 𝜔2(m + A𝜔 ) and scaled by a pre-
defined value of b; and the mass control coefficient (m + A𝜔 ) is
scaled by a pre-defined value of a, as shown in Equation (11) to
achieve PIbDa control.

PP2ID: Due to the separation of control forces associated
with radiation damping term and viscous drag term, all the
control coefficients can be obtained analytically without offline
optimisation, following Equation (12) given predefined a and b.

The maximum power absorbed by the PID and PP2ID con-
trollers with frequency-dependent optimal PTO parameters in
regular waves are labelled as PID-max, and PP2ID-max respec-
tively. When the controllers use fixed PTO parameters only opti-
mal for a single wave period (e.g. 7 s), results will be labelled as
PID-7s and PP2ID-7s respectively.

Irregular wave analysis
In this work, irregular waves are modelled using the Pierson–
Moskowitz (PM) spectrum [31]. The relation between energy
period Te and peak period Tp for the PM spectrum is [31]:
Te = 0.858Tp. There are two methods to achieve optimisation
for the proposed controllers in irregular waves. The first method
is to do a brute-force optimisation based on the entire PM spec-
trum to obtain the optimal PTO parameters in irregular waves,
with predefined a and b. The maximum power resulting from
the optimal PTO parameters is denoted as PID-S and PP2ID-S
respectively. The second method uses the optimal PTO param-
eters obtained for a regular wave with a wave period of Te
to estimate the optimal PTO parameters described by the PM
spectrum (Tp) in irregular waves, which is denoted as PID-Te
and PP2ID-Te respectively. Thus, in the second method, close-
to-optimal PTO parameters can be determined analytically for
PP2ID control, which is attractive for practical applications. The
first method, on the other hand, is computationally expensive
and thus is only used to benchmark the performance of the sec-
ond method in this study.

5.2 Power analysis under regular wave
conditions

5.2.1 Proportional, integral and derivative (PID)
control

It has been shown in Section 3 that in theory the frequency-
dependent resonance condition can be satisfied under PIbDa

control when a + b = 1, which, together with attaining optimal
amplitude condition (also frequency-dependent), leads to max-
imum power absorption of WEC in regular waves. This theory
is further validated using a time-domain simulation, with results
shown in Figure 6, where maximum power absorption of the
WEC under PIbDa control with four sets of b and a combina-
tions (denoted as PIbDa-max) are plotted against typical wave
frequencies. It is evident that the three PIbDa controllers with
a + b = 1 have identical maximum power absorption across the
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GU ET AL. 3303

FIGURE 6 Maximum power absorption of PIbDa controllers and
PP2I0.2D0.8 controller in regular wave condition, against typical wave
frequencies and at 2 m wave height. The corresponding time series data of
PTO forces at 𝜔 = 0.7 rad/s (highlighted by the vertical dashed-dotted line)
are shown in Figure 7

FIGURE 7 Time series data of PTO force in regular wave of 9 s wave
period (𝜔 = 0.7 rad/s) under PIbDa-9s control

entire wave frequency range. Compared to other three con-
trollers, PI0D0.85-max is about 14% less efficient across the
entire wave frequency range, because the resonance condition
is not satisfied. The curve of PP2I0.2D0.8-max will be discussed
in next section. The corresponding time series data of PTO
forces at 𝜔 = 0.7 rad/s under PIbDa-9s control are shown in
Figure 7. It is evident that the phase and magnitude of the
PTO force under PI0D0.85 control is degraded compared to
other three controllers who show almost identical PTO force
pattern. With an increase in a, the PTO force starts to show
nonlinear behaviour near the peaks, which indicates that the
derivative/mass control component is sensitive to time delay in
the feedback.

In practice due to model uncertainty, unknown disturbances
and the sub-optimal nature of causal control in stochastic waves,
PID control is not always tuned at its optimal conditions for

FIGURE 8 Power absorption bandwidth of PIbDa control tuned at
optimal for 7 s wave period (𝜔 = 0.9 rad/s) (PIbDa-7s, solid lines), and
maximum power absorption of PI control at each wave period (PI-max, blue
dashed line). The corresponding time series data of buoy velocities at
𝜔 = 0.7 rad/s (highlighted by the vertical dashed-dotted line) are shown in
Figure 9

FIGURE 9 Time series data of excitation force (green circled line) in
regular wave of 9 s wave period (𝜔 = 0.7 rad/s) and corresponding buoy
velocities under PIbDa-7s control (solid lines) and under PI-9s control (blue
dashed line)

power absorption. Therefore, the power bandwidth of PID
control near its tuned optimal condition (e.g. resonance) is
investigated, with results shown in Figure 8, where power
absorption of the WEC under PIbDa control tuned for 7 s
wave period (𝜔 = 0.9 rad/s) (expressed as PIbDa-7s) are plotted
against typical wave frequencies. The blue dashed curve shows
the maximum power absorption of PI control at each wave fre-
quency extracted from Figure 6 for a comparison. It is evi-
dent that the power bandwidth of PI0.2D0.8-7s is widest among
the tested PIbDa-7s categories and is close to that of PI-max
control. These results can be explained by the control band-
width diagram in Figure 5 and the time series plot in Figure
9. It is evident in both figures that at resonance where con-
trol is tuned at optimal for the incident wave, the buoy veloc-
ity is in phase with the excitation force. On the other hand, at
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3304 GU ET AL.

FIGURE 10 Power absorption performance of PI0.2D0.8 control tuned
at optimal for each wave height (PI0.2D0.8-max) and for 0.1 m wave height
(PI0.2D0.8-0.1m), and power absorption performance of PP2I0.2D0.8 control
optimal regardless of wave heights, against typical wave heights and at 7 s wave
period. The triangle-dashed line and the square-dashed line represent the
power absorbed by the linear damper and quadratic damper respectively under
PP2I0.2D0.8 control. The corresponding time series data of PTO forces and
buoy displacement/velocity response at 3 m wave height (highlighted by the
vertical dashed-dotted line) are shown in Figures 11 and 12 respectively

off-resonance where control is not optimally tuned for the inci-
dent wave, with a decrease in the ratio of D term in PID control,
the phase lag in the buoy velocity increases, whilst the magnitude
of the buoy velocity decreases, leading to less and less power
absorption.

5.2.2 Proportional, integral, derivative and drag
(PP2ID) control

PP2ID control is proposed on top of PID control, aiming to
analytically determine the optimal control force without time-
consuming linearisation of the viscous drag term or brute-
force search. Therefore, when tuned optimally in regular waves,
PP2ID control and PID control show identical maximum power
absorption performance as shown in Figure 6.

In addition, since no longer reliant on wave-dependent opti-
misation, PP2ID control is more robust than PID control when
the incident wave height changes, as shown in Figure 10. It is
evident that PP2I0.2D0.8 control absorbs an identical amount of
power as optimally tuned PI0.2D0.8 control with wave height-
dependent PTO parameters (denoted as PI0.2D0.8-max), and
absorbs increasingly more power than PI0.2D0.8 control with
fixed PTO parameters tuned for 0.1 m wave height (denoted
as PI0.2D0.8-0.1m) with an increase in the wave height. At 4 m
wave height, PP2I0.2D0.8 control absorbs 30% more power
than PI0.2D0.8-0.1m control. The total power absorbed under
PP2I0.2D0.8 control is divided into the power absorbed by
the linear damper (triangle-dashed line) and by the quadratic
damper (square-dashed line) respectively. It can be seen that
with an increase in wave height, the quadratic damper absorbed
power becomes more and more dominant compared to the lin-

FIGURE 11 Time series data of PTO force at 7 s wave period and 3 m
wave height under PI0.2D0.8 control and PP2I0.2D0.8 control respectively

FIGURE 12 Time series data of buoy displacement-velocity response at a
wave period of 7 s and a wave height of 3 m under PI0.2D0.8 control and
PP2I0.2D0.8 control respectively

ear damper absorbed power. The corresponding time series data
of PTO forces at 7 s wave period and 3 m wave height under
PI0.2D0.8 control and PP2I0.2D0.8 control are shown in Figure
11. It is evident that when sub-optimally tuned (e.g. comparing
PI0.2D0.8-0.1m and PI0.2D0.8-3m), PI0.2D0.8 control can over-
estimate the PTO force by more than 50% at peaks. PP2I0.2D0.8
control, on the other hand, generates about 25% more PTO
force at peaks than optimally tuned PI0.2D0.8 control (PI0.2D0.8-
3m) does. The corresponding buoy velocity-displacement plot
at a wave period of 7 s and a wave height of 3 m is shown in Fig-
ure 12. It is evident that PP2I0.2D0.8 control results in almost
identical displacement/velocity response compared to the opti-
mally tuned PI0.2D0.8 control (PI0.2D0.8-3m), whilst subopti-
mally tuned PI0.2D0.8 control (PI0.2D0.8-0.1m) leads to about
30% higher displacement/velocity response.
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GU ET AL. 3305

FIGURE 13 A comparison of power performance of PI, PI0.2D0.8 and
PP2I0.2D0.8 controllers in irregular waves against peak wave periods of the
irregular wave spectrum, where -Te denotes that the optimal PTO parameters
of the controller in regular wave at Te wave period are used and -S denotes that
the actual optimal PTO parameters for the irregular wave spectrum are used in
simulation. The horizontal bar divides the total power absorbed under
PP2I0.2D0.8 into the linear damper absorbed power (upper section) and the
quadratic damper absorbed power (lower section)

5.3 Power analysis under irregular wave
conditions

The proposed causal controllers are sub-optimal in irregu-
lar wave conditions, which are investigated using time-domain
simulations in this subsection. The power absorption of PI,
PI0.2D0.8 and PP2I0.2D0.8 controllers in irregular waves using
the optimal PTO parameters obtained under a regular wave
with a wave period Te , denoted as PI-Te, PI0.2D0.8-Te and
PP2I0.2D0.8-Te respectively, are shown in Figure 13, as well as
the power absorption of these controllers using the actual opti-
mal PTO parameters for the irregular wave spectrum, denoted
as PI-S, PI0.2D0.8-S and PP2I0.2D0.8-S for a comparison. It
is evident that the on average the power absorbed by the PI
control with estimated PTO parameters (PI-Te) is 6.5% lower
than the maximum power absorbed by PI control (PI-S) across
the tested irregular wave conditions. For the PI0.2D0.8 con-
trol and PP2I0.2D0.8 control respectively, on average the power
absorption using the estimated PTO parameters (PI0.2D0.8-Te
and PP2I0.2D0.8-Te) is only 3% less than the power absorp-
tion using the actual optimal PTO parameters determined
from brute-force optimisation (PI0.2D0.8-S and PP2I0.2D0.8-S).
The power absorbed by PI0.2D0.8 control with estimated PTO
parameters is in average 21.8% (with a standard deviation of
6.2%) higher than the maximum power absorbed by PI control.
PP2I0.2D0.8 shows almost identical power absorption perfor-
mance to PI0.2D0.8. These results can be explained by the find-
ings on the power absorption bandwidth of the controllers from
regular wave analysis. The derivative/mass control term plays a
key role in both the PID and PP2ID controllers that functions
to widen the power absorption bandwidth of the controller and
thus makes WEC power absorption more effective across a
broad range of wave frequencies near the energy period of the
irregular wave spectrum. This is expected since the D term acts

FIGURE 14 Power absorption ratio of (PP2I0.2D0.8-Te/PI-S) in irregular
waves across grids of sea states. Both controllers use optimal PTO settings for
each sea state

to reduce the mass reactance, thereby leaving only the intrin-
sic resistance of the buoy which is matched to the resistance of
the fluid.

The maximum power absorption performance of PP2ID
controller is further investigated in irregular wave simulations
across a grid of sea states in comparison to that of standard
PI control, with results shown in Figure 14, where the power
absorption ratio of PP2I0.2D0.8-Te control over PI-S control is
plotted against significant wave heights and peak wave periods.
It is evident that PP2I0.2D0.8-Te control absorbs in average 50%
more power than PI-S control across all the tested sea states.
With an increase in the peak wave period and a decrease in the
significant wave height, the power ratio increases from 1.27 (at
Tp = 7 s and Hs = 4 m) to 1.74 (at Tp = 13 s and Hs = 1 m).

To achieve maximum power absorption of PP2ID control
and PI control at each single sea state, it is necessary to adapt the
PTO parameters to the current sea state that varies on an hourly
basis and thus is difficult to implement in practice. Therefore,
PP2ID control and PI control using the fixed optimal control
parameters for the sea state of Tp = 7 s and Hs = 2 m are tested
and compared across grids of sea states, with results shown in
Figure 15. The power absorption ratio of PP2I0.2D0.8-Te 7s&2m
over PI-Te 7s&2m ranges between 1.56 and 3.76, resulting in a
mean power ratio of 2.5 with a standard deviation of 0.83 across
all the tested sea states. This indicates that PP2I0.2D0.8 control
is in average 2.5 times more efficient than standard PI control
when their PTO parameters are pre-tuned at optimal for a sin-
gle/dominant sea state.

6 CONCLUSION

This paper studied the power performance of the causal PID
and PP2ID feedback controllers, as inspired by Phi method,
against that of PI control, on a fully submerged heaving point
absorber WEC under both regular and irregular wave condi-
tions. The study was conducted based on the well-known linear
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3306 GU ET AL.

FIGURE 15 Power absorption ratio of (PP2I0.2D0.8-Te 7s&2m/PI-Te

7s&2m) in irregular waves across grids of sea states. Both controllers use fixed
optimal PTO setting for Tp = 7 s and Hs = 2 m (labelled as a red asterisk)

wave theory model assuming small waves and WEC motions,
which presents a major limitation for the work. The require-
ments for practical implementation of PID control is consid-
ered as common knowledge [32] and thus was not explicitly dis-
cussed in the paper (e.g. low-pass filters, requirement for the
controller to be proper, and other common PID modifications
such as anti-windup control).

The WEC system under PID control (when 0 ≤ a ≤ 1 and
a + b = 1) is stable according to frequency-domain analysis
except for PI0D1 (pure PD control), which is marginally sta-
ble, however, the portion of Derivative component in PID con-
trol needs to be restricted to provide sufficient stability margins
considering model uncertainties. PD control has wider control
bandwidth than PI control for the fully submerged case consid-
ered in this paper. PI0.2D0.8 is a close-to-optimal configuration
considering trade-off between stability and control bandwidth.
The frequency-domain analysis conducted in this paper did not
consider system internal-stability and sensitivity, which will be
considered in future work.

Time-domain simulations show that the maximum power
absorption performance of PI and PI0.2D0.8 controls in regu-
lar wave condition are similar. However, the power bandwidth
of PID (across wave frequencies) is wider than that of PI, which
results in that the maximum absorbed power of PI0.2D0.8 is on
average 22% higher than that of PI control in irregular wave
conditions of Hs = 2 m and Tp = 7–13 s. However, the D
term component in PID control is sensitive to the time delay
in the feedback, which induces nonlinear behaviour in the PTO
force profile.

PP2ID control, as a combination of PID control and
quadratic damper control, demonstrates its advantages in both
power absorption bandwidth (across wave heights) and PTO
tuning efficiency over PID control. PP2I0.2D0.8 control (whose
PTO parameters are determined fully analytically) can achieve
similar maximum power absorption of optimal PI0.2D0.8 con-
trol (whose PTO parameters are determined via wave-condition
dependent optimisation) in both regular and irregular waves.

PP2I0.2D0.8 control generates more PTO force than PI0.2D0.8
control (when optimally tuned) does, however, generates less
PTO force than PI0.2D0.8 control (when sub-optimally tuned)
does. PP2I0.2D0.8 control generates almost identical displace-
ment/velocity response as the optimally tuned PI0.2D0.8 con-
trol but less displacement/velocity response than suboptimally
tuned PI0.2D0.8 control. PP2I0.2D0.8 control with fixed PTO
parameters (optimal for a single sea state only) is in average 2.5
times more efficient than PI control with fixed PTO parameters
when both controllers operate across sea states of Tp = 7–13 s
and Hs = 1–4 m without the consideration on sea state prob-
ability. Despite its high tuning efficiency and strong robustness
against changes in wave height and frequency, PP2I0.2D0.8 con-
trol is not capable of handling constraints, like most impedance
matching control strategies.

Future work will focus on investigating the robustness and
performance of the PID and PP2ID controllers in real WEC
applications subjected to model uncertainties and disturbances
in the hydrodynamics, by using nonlinear hydrodynamic model
(e.g. Weak Scatter model [24]) instead of linear wave theory
based model. Furthermore, the impact of time delay and higher
order dynamics in the sensor measurements on the perfor-
mance of the proposed feedback controllers will also be stud-
ied. Attempts will also be made to compare the proposed
controller with other optimisation-based controllers that are
capable of accommodating nonlinear dynamics and constraints
such as dynamic programming.
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APPENDIX A: DERIVATION PROCEDURES

FOR THE OPTIMAL CONTROL FORCE

USING PHI METHOD

This section shows how to use Phi method to derive the opti-
mal control force Fpto based on the analytical expressions of
the system dynamics (H ) as shown in Table 2, where the spring
term and the viscous drag term are used as two typical examples
here.

A.1 Spring

Substituting H = a0z (t ) into Equation (4), we have:

Fpto(t ) = ∫
t

0
ż
𝜕

𝜕z
a0z (𝜏)d𝜏 −

∞∑
k=1

(
−
𝜕

𝜕t

)k−1 (
ż

𝜕

𝜕z (k)
a0z (t )

)
.

(A.1)

The sum term in Equation (A1) disappears since partial deriva-
tive of H = a0z (t ) with respect to z (k) (when k ≥ 1) is always
zero. Thus, solving the integral term leads to:

Fpto(t ) = ∫
t

0
ż
𝜕

𝜕z
a0z (𝜏)d𝜏 = a0z (t ). (A.2)

A.2 Viscous drag

As for the viscous drag term H = a3|ż (t )|ż (t ), it can be alter-
natively written as H = a3 sgn(ż )(ż )2. Substituting it into Equa-
tion (4), we have:

Fpto(t ) = ∫ t (ż>0)

0
ż
𝜕

𝜕z
a3(ż )2d𝜏 − ∫ t (ż<0)

0
ż
𝜕

𝜕z
a3(ż )2d𝜏

− a3 sgn(ż )
∑∞

k=1

(
−

𝜕

𝜕t

)k−1 (
ż

𝜕

𝜕z (k)
(ż )2

)
=

= −a3 sgn(ż )

(
ż
𝜕(ż )2

𝜕ż

)
= −2a3 sgn(ż )(ż )2 = −2a3|ż (t )|ż (t ).

(A.3)

APPENDIX B: MATHEMATICAL PROOF ON

TRIPLING VISCOUS DRAG FOR MAXIMUM

POWER ABSORPTION

To simply the proof, it is assumed that the reactance terms in the
WEC dynamics (e.g. mass and spring) are cancelled by the con-
trol force following impedance matching theory and the radia-
tion effect is ignored. Then the WEC dynamics in Equation (2)
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can be written as:

a3|ż (t )|ż (t ) = Fexc(t ) + Fpto(t ). (B.1)

Assuming Fpto(t ) in Equation (B1) is a quadratic damper control
force, Fpto(t ) = −xa3|ż (t )|ż (t ) where x is unknown, and comb-
ing common terms, Equation (B1) becomes:

|ż (t )|ż (t ) = Fexc(t )∕(a3 + xa3). (B.2)

The average power absorbed by the PTO, or more specifically
by the quadratic damper in the PTO is given by:

P̄ = −
1
T ∫

T

0
Fpto(t )ż (t )dt =

1
T ∫

T

0
xa3|ż (t )|ż (t )2dt , (B.3)

where T is the sampling period for average. Substituting Equa-
tion (B2) into Equation (B3) gives:

P̄ =
1
T ∫

T

0
xa3

( |Fexc(t )|
a3 + xa3

) 3

2

dt =
1
T ∫

T

0

x

(1 + x )
3

2

a
−

1

2
3 |Fexc(t )| 3

2 dt . (B.4)

Solving 𝜕P∕𝜕x = 0, maximum power absorption occurs when
x = 2, which follows the Phi-derived control force Fpto(t ) =
−2a3|ż (t )|ż (t ).
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