

Exceptional service in the national interest

A trade off study of metal and composite turbines using fluid-structure interaction modeling

Budi Gunawan, Dongyoung Kim, Mohammed Abdellatef, Bernadette Hernandez-Sanchez, Peter H. Kobos

October 18, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Motivation

WPTO's vision for materials and manufacturing in marine energy*

- The materials selected for marine energy devices must be able to perform under the harsh marine environment.
- WPTO draft Materials and Manufacturing Strategy[^] identified FSI for non-rigid blades, as a near- and mid- term research needs.
- Current Energy Converter (CEC) design studies often only include Computational Fluid Dynamics (CFD) modeling with a simple rigid blade assumption or Finite Element Analysis (FEA) with simplified load distributions. This simplification can cause errors in predicting the device structural performance, reliability and LCOE.
- An FSI study takes into account the hydro-elastic behavior of the blade material, yield time-accurate solutions for loading and performance of a deforming rotor, which could be critical for understanding structural performance and failure modes.

Objectives

Objectives: Perform FSI simulations for a reference tidal turbine (DOE Reference Model 1) made of metal and composites (e.g., FRP) and compare structural performance and cost

Structural performance metrics to observe include: deflection, stresses, ultimate limit state, fatigue limit state, vibration (flutter)

Project Plan (3 years):

2022: CFD model development, FSI simulations for metal blades (lab-scale)
2023: FSI simulations for composite blades (lab-scale) & metal blades (full-scale)
2024: FSI simulations for composite blades (full-scale) & final

cost/LCOE calculations

Fluid-structure interaction concept*

CFD Setup

Computational Mesh (Medium grid)

- Tetrahedral mesh with overset multi-blocks, 29.4M cells
- No-slip wall: rotor, nacelle, bottom and right side
- Free surface effect is ignored (Slip wall)
- SST k-omega model
- $y^+ = 1.4$ on the rotor and nacelle wall
- Simulated on 128-516 cores (3-7 days)

1:40 scale RM1 turbine*

Computational Mesh for rotor and nacelle overset blocks and background domain

*Hill, C.; Neary, V.S.; Guala, M.; Sotiropoulos, F. Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter. *Energies* **2020**

Temporal Convergence

Timestep size dependency (w/o blockage)

	Time step size	C_P (diff, %)	C_T (diff, %)
<i>N</i> ₁	1° rotation per Δt	0.3667 (-)	0.7850 (-)
<i>N</i> ₂	2° rotation per Δt	0.3660 (0.20)	0.7833 (0.22)
<i>N</i> ₃	4° rotation per Δt	0.3343 (8.86)	0.7681 (2.15)
U_{k_1}		0.008%	0.054%

 U_{k_1} is uncertainty of N_1 obtained from the method of Stern et al. (2006); and Xing and Stern (2010)

Estimated C_P and C_T depends on the time step size

Spatial Convergence

Mesh size dependency study (w/ blockage)

	# of cells	C_P (diff, %)	C_T (diff, %)
G_1	66.2 $M(y^+ = 1)$	0.4018 (-)	0.8617 (-)
<i>G</i> ₂	29.4 $M(y^+ = 1.4)$	0.3984 (0.83)	0.8632 (0.18)
G_3	14.5 $M(y^+ = 2)$	0.3928 (2.24)	0.8622 (0.06)
U_{k_1}		1.007%	-

 U_{k_1} is uncertainty of G_1 obtained from the method of Stern et al. (2006); and Xing and Stern (2010)

Estimated C_P and C_T depends on the mesh size

Turbine Performance

Coefficient of power

 Discrepancy between CFD w/o blockage and Exp. (Hill et al, 2014 & 2020) results due to the extensive blockage effect (14.3%)

Measured and estimated	C_P vs. λ (coefficient of power vs. tip	-speed ratio). Solid
and dashed lines	are from Hill et al, 2014 and 2020, resp	ectively)

@ 204 rpm	C _P	Uncertainty	
Exp. Left Rotor (TSR = 5.07)	0.412, 0.434	2006	
Exp. Right Rotor (TSR = 5.03)	0.476, 0.479	5.9 %	
CFD w/o blockage (TSR = 5.14)	0.367		
CFD w/ blockage (TSR = 5.54)	0.402		

In flow Characteristics

Velocity and turbulence intensity profiles

• $U_{\text{hub,Exp}} \approx 1.04 \ m/s \ @ x = -3d_T$

• $U_{\text{hub,CFD}} \approx 0.965 \ m/s \ @ x = -3d_T$

 d_T : Turbine diameter T_u : Turbulence intensity ADV: Acoustic Doppler Velocimetry

Measured (red and blue square) and estimated (black circle) profiles for velocity components and turbulence intensity

Turbine Wake Characteristics

Normalized streamwise velocity and turbulent kinetic energy

Measured (top) and estimated (bottom) normalized

streamwise velocity (left column) and turbulent kinetic energy (right column) in x -z plane

FEA Model Setup

Geometry and mesh

o Rotor only

- Hexahedral mesh with quadratic element order
- Modelled as a solid made from aluminum alloy

Generated mesh for FEA simulation (# of elements = 1.1M)

Boundary conditions

- Assigned angular velocity corresponding to the turbine rotating speed
- Displacement support at the turbine hub center
- A fluid-solid interface on the rotor surface

One-way FSI

Simulation results at 204 rpm (TSR = 5.5)

• Mesh size dependency

Variation of estimated maximum deformation (left), strain (middle), and stress (right) with mesh density

• Estimated total deformation and equivalent stress

Instantaneous contour plots of total deformation (left) and equivalent stress (right) on rotor

Next Steps

2022:

- CFD model development
- Structural model development
- 2-way FSI simulations, for metal blades model (lab-scale)
- Power performance & wake flow analyses
- Lots of learning:
 - Mesh optimization
 - CFD & Structural coupling
 - Challenges on running on different HPCs (Sandia's HPCs, ANSYS Cloud, etc.)

2023:

- FSI simulations for composite blades (lab-scale) & metal blades (full-scale)
- Power performance, hydrodynamic and structural hydroelastic analyses
- Preliminary cost/LCOE analysis

2024:

- FSI simulations for composite blades (full-scale)
- Final cost/LCOE calculations
- Final report/publications

Questions? Comments? Contact: budi.gunawan@sandia.gov