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Use materials and manufacturing advances to enhance marine energy technology

WPTO’s vision for materials and manufacturing in marine energy*

*DOE WPTO (2022) Summary Report: October 5, 2021 Workshop on Materials & Manufacturing for Marine Energy Technologies; May 2022
ADOE WPTO (draft) Materials and Manufacturing Strategy for Marine and Hydrokinetic Energy Technologies Research & Development

The materials selected for marine energy devices
must be able to perform under the harsh marine
environment.

WPTO draft Materials and Manufacturing Strategy”
identified FSI for non-rigid blades, as a near- and
mid- term research needs.

Current Energy Converter (CEC) design studies often
only include Computational Fluid Dynamics (CFD)
modeling with a simple rigid blade assumption or
Finite Element Analysis (FEA) with simplified load
distributions. This simplification can cause errors in
predicting the device structural performance,
reliability and LCOE.

An FS| study takes into account the hydro-elastic
behavior of the blade material, yield time-accurate
solutions for loading and performance of a
deforming rotor, which could be critical for
understanding structural performance and failure
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Objectives: Perform FSI simulations for a reference tidal turbine
(DOE Reference Model 1) made of metal and composites (e.g., FRP) and

compare structural performance and cost

Structural performance metrics to observe include: deflection, stresses,
ultimate limit state, fatigue limit state, vibration (flutter)

Project Plan (3 years):

2022: CFD model development, FSI simulations for metal

blades (lab-scale)

2023: FSI simulations for composite blades (lab-scale) & metal

blades (full-scale)

2024: FSI simulations for composite blades (full-scale) & final

cost/LCOE calculations
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2-way interaction

Fluid-structure interaction concept*

*Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sangeul. (2015). The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method. Journal of Clean Energy ‘

Technologies. 3. 270-275.10.7763/JOCET.2015.V3.207.
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Computational Mesh (Medium grid)

CFD Setup

o Tetrahedral mesh with overset multi-blocks, 29.4M cells
o No-slip wall: rotor, nacelle, bottom and right side
o Free surface effect is ignored (Slip wall

o SST k-omega model

o y* = 1.40n therotor and nacelle wall
o Simulated on 128-516 cores (3-7 days)
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1:40 scale RM1 turbine*

*Hill, C; Neary, V.S,; Guala, M.; Sotiropoulos, F. Performance and Wake Characterization of a Model Hydrokinetic
Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter. Energies 2020

Computational Mesh for rotor and nacelle overset blocks and background domain
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Timestep size dependency (w/o blockage)

Time step size Cp (diff, %) Cy (diff, %)
Ny 1° rotation per At 0.3667 (-) 0.7850 (-)
N2 2° rotation per At 0.3660(0.20)  0.7833(0.22)
N3 g rotation per At 0.3343(8.86)  0.7681 (2.15)
U, 0.008% 0.054%

Uy, is uncertainty of N, obtained from the method of Stern et al. (2006); and Xing and Stern (2010)
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P Spatial Convergence

Mesh size dependency study (w/ blockage) 4
0.3
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P Turbine Performance

Coefficient of power

o Discrepancy between CFD w/o blockage and Exp. (Hill et al, 2014 & 2020) results due to the
extensive blockage effect (14.3%)
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Measured and estimated Cp vs. A (coefficient of power vs. tip -speed ratio). Solid
and dashed lines are from Hill et al, 2014 and 2020, respectively)




Inflow Characteristics

Velocity and turbulence intensity profiles
O Uhubexp = 1.04m/s @ x = —3dr

dr: Turbine diameter

O Uhub,CFD ~ 0.965 m/S @ x = _3dT T,: Turbulence intensity
ADV: Acoustic Doppler Velocimetry
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Measured (red and blue square) and estimated (black circle) profiles for velocity components and turbulence intensity
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/4 Turbine Wake Characteristics
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Measured (top) and estimated (bottom) normalized streamwise velocity (left column) and turbulent kinetic energy (right column) in x -z plane ‘
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/" FEAModel Setup

Geometry and mesh
o Rotor only

o Hexahedral mesh with quadratic element order
o Modelled as a solid made from aluminum alloy

Generated mesh for FEA simulation (# of elements = 1.1M)

Boundary conditions
o Assigned angular velocity corresponding to the turbine rotating speed

o Displacement support at the turbine hub center
o Afluid-solid interface on the rotor surface

Remote displacement point (left) and pressure on the fluid -solid interface (right)




P One-way FSI

Simulation results at 204 rpm (TSR =5.5)
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Variation of estimated maximum deformation (left), strain (middle), and stress (right) with mesh density

o Estimated total deformation and equivalent stress

Total Deformation
Type: Total Deformation

Equivalent Stress
Type: Equivalent (von-Mises) Stress

Unit: mm Unit: MPa
0.20074 Max 5.0539 Max

E 0.17844 44925
015613 3.9312
0.13383 33699
011152 2.8086
0.089219 2.2473
0.066915 1.686
0.04461 1.1247
0022305 056334
2.0923¢-7 Min 0.002026 Min

Instantaneous contour plots of total deformation (left) and equivalent stress (right) on rotor

Max. total deformation = 0.2 mm

Max. equivalent stress = 5.05 MPa
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/" Next Steps

2022:

«  CFD model development

«  Structural model development

«  2-way FSl simulations, for metal blades model (lab-scale)
- Power performance & wake flow analyses

*  Lots of learning:
Mesh optimization

CFD & Structural coupling
Challenges on running on different HPCs (Sandia’s HPCs, ANSYS Cloud, etc.)

2023:

- FSl simulations for composite blades (lab-scale) & metal blades (full-scale)
- Power performance, hydrodynamic and structural hydroelastic analyses

*  Preliminary cost/LCOE analysis

2024

«  FSlI simulations for composite blades (full-scale)

«  Final cost/LCOE calculations

«  Final report/publications
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