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Abstract: Despite extensive research on the performance of Oscillating Water Columns
(OWC) over the years, issues with low energy conversion efficiency and unstable power
generation have not been addressed. In this study, a novel OWC energy conversion system
is proposed based on the working principle of energy storage valve control. The system
utilizes accumulators and valve groups to enhance the stability of energy conversion. The
hydrodynamic model of the OWC system and the pneumatic model of the novel power take-
off (PTO) system are developed using numerical simulations. Building on this, the impact of
the incident wave period, wave height, and air chamber opening ratio on the system’s total
hydrodynamic performance are examined. The results from the hydrodynamic analysis are
subsequently used as input conditions to evaluate the proposed PTO system’s performance.
The results show that the hydrodynamic efficiency of the system presents a tendency to
increase and then decrease with the increase in the incident wave period, and an optimal
period exists. The air chamber opening ratio has a notable influence on the hydrodynamic
characteristics of the OWC system, and the larger system damping could be set to achieve
a higher capture efficiency in the low-frequency water environment. The incident wave
height has a lesser effect on the hydrodynamic characteristics and the resonant period of
the device. The designed novel PTO system can effectively improve the energy conversion
stability of the OWC device, the flow volatility through the turbine can be reduced by
53.49%, and the output power volatility can be reduced by 25.46% compared with the
conventional PTO system.

Keywords: OWC; hydrodynamic performance; accumulator; numerical simulation

1. Introduction
Recent years have witnessed a gradual increase in the research and utilization of

marine renewable energy, driven by growing environmental concerns and the declining
reserves of fossil fuels. Compared with fossil fuels, marine energy is characterized by
zero emissions and no pollution, so it has huge development potential and application
value [1]. Among the types of marine energy, wave energy, which has energy density and
high availability, has also received more and more attention [2].

Wave energy converters (WEC) have been developed in thousands of models, which
can be divided into three categories according to the different ways of obtaining energy,

Energies 2025, 18, 666 https://doi.org/10.3390/en18030666

https://doi.org/10.3390/en18030666
https://doi.org/10.3390/en18030666
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5509-4022
https://orcid.org/0000-0002-2733-5770
https://doi.org/10.3390/en18030666
https://www.mdpi.com/article/10.3390/en18030666?type=check_update&version=2


Energies 2025, 18, 666 2 of 23

namely Overtopping, oscillating bodies, and Oscillating Water Columns [3]. Overtopping
devices mainly use waterways to introduce waves into high-water reservoirs to form a
water level difference. The stored water is gradually released to drive hydraulic turbines,
converting the potential energy of water into other energy. While the energy output is more
stable, the device is often required to be large in size, impacting the marine environment [4]
and incurring high construction and maintenance costs. Oscillatory body systems, also
known as wave-activated body systems, are based on the interaction of an object with a
wave, which causes the object to oscillate and converts it into other forms of energy using a
power output mechanism [5]. Most oscillating body systems use a lift and pitch mechanism.
The energy conversion efficiency is relatively high, and the single body occupies a small
area with little influence on the wave field. The form is flexible and can be arranged
according to the local wave conditions. However, the large number and complexity of the
structural components make it challenging to design and maintain [6]. The direct contact
between the device and the waves affects its long-term reliability, and the overall risk of
damage is high. OWC devices are significantly affected by wave frequency and amplitude,
and although the overall conversion efficiency is low, compared to other WEC, the OWC
device offers several distinct advantages: their mechanical components and structure are
relatively simple [7], they can work effectively even under low-frequency wave settings,
generally below 0.1 Hz [8], while the compressibility of the air within the chamber acts
like a spring, effectively reducing structural stresses [9]. As a result, OWC devices have
been widely studied and used. The research and development of OWC devices date back
to the 1940s [10] when they were initially integrated into navigation buoys. In the 1970s,
higher power OWCs were installed on floating barges to provide them with some electrical
power [11].

So far, OWC has been investigated by numerous scholars, who mainly use three basic
methods: analytical derivation, physical modeling experiments and numerical simulation.
Delauré et al. [7] used the boundary element method (BEM) to solve the diffraction and radi-
ation potential problems associated with a three-dimensional OWC device. Evans et al. [8]
modeled a two-dimensional thin-walled OWC primarily in the frequency domain, with
derived formulas concerning scattering and radiation issues. Josset et al. [12] developed
a time-domain model for a stationary OWC using the linear boundary element method,
which was then utilized to predict and analyze the annual power generation of the OWC
on Pico Island. Nagata et al. [13] investigated a two-dimensional floating OWC in the
frequency domain using the boundary element method with linear thermodynamics, ac-
counting for variations in air temperature and density, as well as dynamic pressure, on the
internal surface of the air chamber. Iturrioz et al. [14] developed a time-domain numerical
model of a floating OWC based on the linear wave theory, and also carried out numerical
modeling simulations and physical modeling experiments to validate the accuracy of the
proposed model. Mavrakos et al. [15] performed a comprehensive solution for a floating
vertical axisymmetric OWC device using an analytical method, analyzing and evaluating
key factors, such as the hydrodynamic parameters and the mean second-order wave drift
forces. Ning et al. [16] developed a novel cylindrical OWC WEC with dual chambers based
on linear potential flow theory and the eigenfunction expansion technique, designed to
harness wave energy from deep-water waves. Ning et al. [17] mathematically modeled a
dual-chamber OWC WEC featuring a common orifice and the time-domain higher-order
boundary element method, and employing potential flow theory. Konispoliatis et al. [18]
performed a geometrical analysis of single-chamber versus dual-chamber WECs based
on the linear potential flow theory with respect to parameters such as the wall thickness
and draught of the chambers. The investigation demonstrated that the dual-chamber
OWCs displayed improved hydrodynamic performance at particular wave numbers. The
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above studies show that the structural parameters and configurations significantly impact
the overall energy conversion efficiency of OWC, which provides a theoretical basis for
further studies. However, analytical derivation is often based on idealized conditions and
simplified assumptions, and there is a limited body of research addressing complex wave
conditions, nonlinearities, and viscosities in waves.

For this reason, the experimental physical modeling approach has been indispensable
in developing OWC devices, and many previous scholars have done much work on it.
Ning et al. [19] examined the impact of incident wave conditions, such as the device width,
front wall draft depth, and bottom slope on the hydrodynamic performance of fixed OWC
devices via a comprehensive series of physical experiments. Ning et al. [20] further per-
formed experimental studies on the hydrodynamic efficiency of a terrestrial dual-chamber
OWC system, finding that both peak efficiency and effective frequency bandwidth were
improved, enhancing its application prospects. Lopez et al. [21] carried out modeling tests
and compared them with simulations to investigate the effect of air compressibility and
concluded that ignoring air compressibility leads to inaccurate estimates of the resonant
period and capture width ratio, but the effect is relatively small, and this effect is acceptable
during the initial stages of the design. Liu et al. [22] utilized a turbomachine model to
replace the orifice plate used in the mainstream of previous model tests, investigating
the conversion efficiencies of the two conversion stages. Zhou et al. [23] investigated the
impact of moorings on OWC devices and found through physical experiments that the
dimensionless amplitudes of air chamber pressure and mean air chamber level height
exhibit similar trends with wave steepness. Additionally, both effective frequency band-
width and hydrodynamic efficiency augment with increased mooring stiffness. Joensen
et al. [24] investigated the energy capture of OWC in both phases and the effect of using
check valves on the overall device by adding passive check valves to the model. However,
physical model experiments are relatively costly, involving significant expenses for equip-
ment procurement, model fabrication, and ongoing maintenance. Conducting a series of
experiments also requires substantial human and material resources.

In recent years, with the continuous development of computer technology [25], re-
search on viscous flow models in fluid dynamics can also be further developed rapidly,
and more people have gradually begun to use Computational Fluid Dynamics (CFD) simu-
lations [26] to carry out OWC-related research. CFD-based numerical models inherently
account for fluid viscosity compared to potential flow models [27]. Liu et al. [28] used
Fluent to simulate and predict the overall energy conversion of the OWC as a whole from
the wave to the final power generation and predicted the overall performance of the actual
device. Yang et al. [29] used STAR-CCM+ (Version: 2019.3.1) to simulate and analyze a
hybrid OWC system combined with a heaving floater WEC, and investigated the effects of
the inlet height and air chamber ratio on the device’s energy harvesting power, finding that
the combined structure can effectively improve the efficiency of wave dissipation of the
breakwater. Zeng et al. [30] conducted numerical simulations of a circular bottom-sitting
OWC wave energy device using STAR-CCM+ software, and found that the SST k-ω tur-
bulence model was more suitable for OWC numerical simulations by comparing it with
experimental data. Fan et al. [31] used Fluent and restricted the degrees of freedom of
the device, except for the heave, to investigate the effects of static and heave motions, as
well as the opening ratio, on the efficiency of OWC energy conversion. Peng et al. [32]
used Ansys Fluent 19 to study the hysteresis characteristics produced by the turbine on the
OWC and found that the compressibility of the air contributes to the turbine’s hysteresis
effect. Xie et al. [33] developed a fast-computing numerical model for the OWC using
OpenFOAM., which improved the simulation speed by 10 times over the traditional model,
and examined how row and column spacing affect array gain in an OWC system. The
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numerical simulation method effectively captures complex wave phenomena, including
wave breaking, eddy currents, and turbulence, thereby improving the accuracy of the
results. Additionally, it offers a more flexible and cost-effective approach for simulating
complex physical processes under controlled conditions.

In summary, the previous research focused on the hydrodynamic energy conversion
mechanism of OWC devices. Researchers sought to determine the optimal device configu-
rations for different sea conditions and analyzed the effects of various structural and wave
parameters on the device’s energy conversion using diverse research methods. However,
due to the inherent characteristics of waves and the operating principles of OWC devices,
energy capture stability remains relatively low. Despite its significance, there are limited
domestic and international studies that specifically address improving energy capture
stability in such systems. Therefore, a new power take-off system is designed in this paper
to improve the overall stability of the OWC device.

The following portions of the paper are structured as outlined below: Section 2
elucidates the power generation principle of the OWC and the system design of the novel
PTO. The construction of the numerical model and the verification of the modeling accuracy
are presented in Section 3. In Section 4, the energy conversion process of the OWC is
investigated, and the effects of different incidence periods, wave heights, and opening
ratios on the hydrodynamic characteristics of the device are discussed. In Section 5, the
operating characteristics of the novel PTO system are investigated, and the effects of the
accumulator device on the energy conversion stability are analyzed. Finally, a conclusion is
given in Section 6.

2. System Power Generation Principle
The structure of the OWC device is shown in Figure 1, which mainly consists of two

parts: an air chamber structure with openings at the bottom of the submerged water and
a PTO system mounted at the top of the air chamber for energy conversion. The incident
wave vibrates the water column up and down inside the chamber, forcing the airflow
to reciprocate. The airflow, which varies with the wave cycle, rotates the turbine, and a
generator connected to the turbine converts the mechanical energy of the turbine rotation
into electrical energy.
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Figure 1. Diagram of the OWC apparatus.

According to the above working principle, which can be found in a wave cycle, the
water column inside the air chamber fluctuates up and down, causing the air within the
chamber to compress and expand so that the air pressure changes between positive and
negative pressure. When the gas chamber transitions from positive pressure to negative
pressure or vice versa, there will be a moment when the air pressure inside the chamber
equals the outside atmosphere. At this time, the pressure difference is zero, the gas will
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not go in and out of the chamber, and so cannot drive the turbine to work. Moreover,
under actual sea conditions where waves vary irregularly, the air flux and pneumatic
pressure flowing through the turbine change frequently. Under the transient impact of the
reciprocating airflow, it is difficult to maintain a relatively constant rotational speed of the
turbine, resulting in a significant fluctuation in power generated. Ultimately, the quality
of the power supplied to the system declines, significantly complicating eventual grid
integration [34]. Most of the turbines in PTO systems use self-rectifying turbines, which
can rotate unidirectionally in both airflow directions. Moreover, unidirectional turbines
have been tested across different OWC installations, such as the twin turbines [35], the
SeaBreath [36], and the Tupperwave [37].

In this paper, a novel PTO system based on the working principle of energy storage
valve control is designed. The system utilizes accumulators and switching valves to make
the airflow produce smooth and continuous excitation to the turbine. It also utilizes
check valves to form a rectification circuit, replacing the self-rectifying turbine with a
unidirectional turbine to realize smooth energy conversion. The structure of the overall
novel PTO system is shown in Figure 2, and the OWC air chamber is connected to the PTO
system through piping.
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When the wave inside the air chamber rises, the air pressure becomes higher than the
atmospheric pressure. The airflow inflates accumulator 2.1 through check valve 1.1 and
drives the turbine through check valve 1.2.

The air pressure sensor is used to detect the air chamber pressure; when the pressure
is lower than the set value, this indicates that the air chamber pressure is already low and
the airflow through the turbine is decreasing. At this time, the control switch valve 3.1
opens, and the accumulator 2.1 releases energy to further drive the rotation of the turbine.
The airflow passes through the turbine and check valve 1.6 before exiting the system into
the atmosphere.

When the wave inside the air chamber falls, the pressure decreases and becomes
lower than the atmospheric pressure, thereby forming negative pressure. Consequently,
the air in the atmosphere flows into the system through check valve 1.5 and drives the
rotation of the turbine. Thereafter, the airflow enters the air chamber through check valve
1.3. Concurrently, the decline in pressure within the air chamber prompts airflow from
accumulator 2.2 into the air chamber through check valve 1.4. This process reduces the



Energies 2025, 18, 666 6 of 23

volume of the storage chamber within accumulator 2.2 and causes a consequent decrease
in air pressure.

If the air pressure sensor detects air chamber pressure that exceeds the preset value, it
indicates an imminent equilibrium between the air chamber pressure and outside pressure.
Consequently, the airflow through the turbine is reduced. Concurrently, switching valve
3.2 is opened, thereby establishing a new negative pressure chamber through accumulator
2.2 and maintaining the turbine’s operation.

3. Hydrodynamic Numerical Analysis Model
In this paper, the hydrodynamic performance of the device is mainly studied by

numerical simulation. The CFD software STAR-CCM+ (Version: 2410.1) is employed to
simulate wave conditions more realistically. The wave power absorbed by the air chamber
component of the device under varying incident wave conditions is calculated in the time
domain to investigate the optimal capture effect of the device.

3.1. Experimental Modeling

The primary structure of the OWC air chamber adopts a cylindrical configuration. A
full-size model with R f ull = 5 m, D f ull = 0.1 m, d f ull = 2 m was designed, which is well
able to absorb full-size wave energy with periods in the range of 4s–7s. The simulation
uses 1:10 scaling, so the radius R is 0.5 m, the total height is 0.6 m, and the wall thickness D
of the air chamber is 0.01 m. The PTO damping is simulated by setting up an orifice above
the air chamber [38], and the radius of the orifice is defined as Ro. The 3D model of the
device is shown in Figure 3.
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A 3D numerical water flume for analyzing the performance of the OWC device is
subsequently established. The positive direction of the x-axis is set as the direction of wave
propagation, and the fifth-order Stokes wave is used to simulate the wave conditions. The
OWC device is placed in a position 15 m away from the incident boundary. The wave
generation and absorption zones are configured to eliminate the influence of wave reflection
on the experimental results. The water depth h is 1 m, and the draft of the device d is 0.2 m.
The overall schematic of the numerical model is shown in Figure 4. In instances where
the width of the flume exceeds five times the width of the device, the impact of the flume
wall on the experiment is rendered negligible [39]. Consequently, the width of the flume
is designated to be 7 m. Three wave height detection points, G1 (0 m, 0 m), G2 (−0.25 m,
0 m), and G3 (0.25 m, 0 m), are established to detect the wave surface height inside the
air chamber. Two pressure monitoring points, P1 (−0.25 m, 0.39 m) and P2 (0.49 m, 0.3m),
are set at the inner wall and the top of the chamber to detect the air pressure inside the
chamber. The average of the obtained values is taken as the overall pressure value.
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3.2. Numerical Modeling

Water and air are assumed to be incompressible, which is considered a valid assump-
tion for devices at experimental scales [40]. The continuity of the two-phase (air and water)
flow and the Navier–Stokes equations are used here as controlling equations [41]:

∇ · u = 0 (1)

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p +

µe

ρ
∇ · (∇u) + f (2)

where u = (ux, uy, uz) denotes the fluid velocity, ∇ = (∂/∂x, ∂/∂y, ∂/∂z) is the gradient
operation, ρ is the fluid density, p is the pressure in excess of the hydrostatic pressure
of the fluid, f is the volumetric force of gravity, and µe is the dynamic viscosity. The
above equations are then further closed using the SST k-ω turbulence model, which is a
turbulence model whose ability to capture better detailed flow field information, such as
velocity, eddies with higher accuracy [42]. The transport equations of the model can be
expressed as follows [43]:

∂ρk
∂t

+
∂ρujk

∂xj
=

∂

∂xj

[
(µlam + σkµturb)

∂k
∂xj

]
− β∗ρωk + τij

∂ui
∂xj

(3)

∂ρω
∂t +

∂ρujω

∂xj
= ∂

∂xj

[
(µlam + σωµturb)

∂ω
∂xj

]
+ γ

ρ
µturb

τturb,ij
∂ui
∂xj

−βρω2 + 2(1 − Fφ)
ρσω2

ω
∂k
∂xj

∂ω
∂xj

(4)

where xj is the position vector, uj is the velocity vector, and µlam and µturb are the laminar
and turbulent viscosities, respectively. τturb is the Favre-averaged Reynolds stress calculated
according to the Boussinesq eddy viscosity assumption.



Energies 2025, 18, 666 8 of 23

In order to better simulate and track the state of motion of the free surface, the volume
of fluid (VOF) method [44] is used. The volume fraction of water within the computational
cell satisfies the following advection equation:

∂ϕ

∂t
+∇ · (ϕu) +∇ · (ϕ(1 − ϕ)ur) = 0 (5)

where ur indicates the relation of velocity between air and water. The phases of the
computational grid are mainly determined by the volume fraction ϕ and are defined as
follows: ϕ = 1 corresponds to the water phase, 0 < ϕ < 1 represents the mixed air and
water phase, and ϕ = 0 indicates the air phase. Therefore, in the numerical simulation, the
fluid density and dynamic viscosity can be expressed as follows:

ρ = ϕρwater + (1 − ϕ)ρair (6)

µ = ϕµwater + (1 − ϕ)µair (7)

Regarding the boundary conditions of the simulated wave flume, the upper boundary
is designated as the pressure outlet. The bottom is designated as the wall boundary, and
the wave generation and absorption boundaries are set as the velocity inlet boundary. The
two flume sides are defined as symmetry plane boundary conditions. The wave generation
and absorption zones are set as wave forcing zones, with their length set to 1.5 times the
incident wave wavelength [45].

The entire numerical flume is meshed using the built-in automatic meshing technique
in STARCCM+. The grid size setting is a critical factor in the process of numerical simulation
which determines the efficiency of the numerical simulation. To accurately capture the wave
motion and the output power of the air chamber, the mesh size in the vertical z-direction
of the free surface region and the OWC opening region needs to be refined. Three mesh
sizes, 15/H, 20/H, and 25/H, were selected to analyze the mesh convergence. Figure 5
represents the variations in wave surface height and pressure inside the OWC device with
time for different grid sizes (wave height H = 0.2 m, period T = 1.8 s).
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Figure 5. Comparison of simulation outcomes utilizing various mesh sizes: (a) pressure and
(b) weave height.

It can be found that the variations in pressure and wave height values tend to be
approximately the same for the three grid sizes. The pressure of the two sparser grids
and the third grid differ by 3.2% and 2.5%, respectively, while the troughs differ by 2.23%
and 1.1%. Similar conclusions can be drawn from the plots of wave height. Thus, with
the above analysis, the grid can be considered to have converged, and the size of the
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encrypted grid is set to H/20 in the following analysis. The overall grid delineation is
shown in Figure 6.
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Figure 6. Mesh configuration for the numerical wave flume: (a) mesh distribution surrounding
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3.3. Numerical Model Validation

To validate the dependability of the developed numerical model, the experimental
results of the interaction model between waves and offshore fixed OWC devices conducted
by Iturrioz et al. [46] were used for verification. The overall dimensions of the OWC device
are shown in Figure 7, with a water depth of 0.6 m. The incident wave parameters were
established with a wave height H = 0.08 m and period T = 1.3 s.
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The wave height and air pressure inside the chamber obtained from the simulation
are compared with those obtained from the model experiment, with the result shown in
Figure 8. The trend of the two changes is consistent, and the degree of overlap is high.



Energies 2025, 18, 666 10 of 23
Energies 2025, 18, x FOR PEER REVIEW 10 of 25 
 

 

5 10 15 20
-0.10

-0.05

0.00

0.05

0.10
W

a
v
e
 h

e
ig

h
t(

m
)

t(s)

 NUM.

 EXP.

 
5 10 15 20

-100

-50

0

50

100

P
re

ss
u
re

(P
a
)

t(s)

 NUM.

 EXP.

 

(a) (b) 

Figure 8. Comparison chart of simulation results and model experiment results: (a) wave height and 

(b) pressure. 

4. Hydrodynamic Numerical Analysis and Discussion 

In order to investigate the energy conversion mechanism in the hydrodynamic stage 

of the OWC device and further analyze the effects of the device’s opening ratio on energy 

conversion under different wave conditions, the opening ratio is defined as 𝜀 = 𝑆𝑜/𝑆𝑤, 

where 𝑆𝑜 is the opening area of the device, while 𝑆𝑤 is the total wave surface area within 

the air chamber. The opening ratio is typically selected within the range of 0.5% to 2% [47]. 

4.1. Analysis of Energy Conversion Process 

As demonstrated in Figure 9, the airflow velocity in the OWC device during a wave 

cycle is illustrated, and the wave surface height in the device at its corresponding moment 

is shown in Figure 10. At the moment of 1/4 T, the wave surface inside the air chamber 

moves upward, which squeezes the air within the chamber. At this moment, the air pres-

sure reaches its maximum value of 183.23 Pa, corresponding to the maximum upward 

velocity of the wave surface. Simultaneously, the airflow velocity at the orifice also attains 

its highest value, with an average airflow velocity of 12.45 m/s. At the moment of 1/2 T, 

the wave surface reaches its highest point of 0.065 m, at which point the air inside the 

chamber is no longer compressed. As a result, the airflow will change direction from flow-

ing out of the chamber to entering the chamber, and the chamber pressure becomes 0 Pa. 

At the moment of 3/4 T, the wave surface moves continuously downward, causing the 

device to take in air from the atmosphere constantly. The velocity of the wave surface 

reaches its maximum negative value, resulting in the air chamber pressure dropping to 

its minimum of −191.2 Pa, while the airflow velocity reaches its peak in the opposite di-

rection, with an average airflow velocity of −12.86 m/s. Finally, at the moment of T, the 

wave surface reaches the lowest point −0.069 m, and the device no longer takes in air, 

which is the secondary reversal moment of airflow rate. The air chamber pressure also 

reaches 0 Pa. Subsequently, the wave surface continues to move upward, repeating this 

process. This cyclical motion constitutes the energy harvesting process of the OWC device. 

Figure 8. Comparison chart of simulation results and model experiment results: (a) wave height and
(b) pressure.

4. Hydrodynamic Numerical Analysis and Discussion
In order to investigate the energy conversion mechanism in the hydrodynamic stage

of the OWC device and further analyze the effects of the device’s opening ratio on energy
conversion under different wave conditions, the opening ratio is defined as ε = So/Sw,
where So is the opening area of the device, while Sw is the total wave surface area within
the air chamber. The opening ratio is typically selected within the range of 0.5% to
2% [47].

4.1. Analysis of Energy Conversion Process

As demonstrated in Figure 9, the airflow velocity in the OWC device during a
wave cycle is illustrated, and the wave surface height in the device at its corresponding
moment is shown in Figure 10. At the moment of 1/4 T, the wave surface inside the air
chamber moves upward, which squeezes the air within the chamber. At this moment,
the air pressure reaches its maximum value of 183.23 Pa, corresponding to the maximum
upward velocity of the wave surface. Simultaneously, the airflow velocity at the orifice
also attains its highest value, with an average airflow velocity of 12.45 m/s. At the
moment of 1/2 T, the wave surface reaches its highest point of 0.065 m, at which point
the air inside the chamber is no longer compressed. As a result, the airflow will change
direction from flowing out of the chamber to entering the chamber, and the chamber
pressure becomes 0 Pa. At the moment of 3/4 T, the wave surface moves continuously
downward, causing the device to take in air from the atmosphere constantly. The velocity
of the wave surface reaches its maximum negative value, resulting in the air chamber
pressure dropping to its minimum of −191.2 Pa, while the airflow velocity reaches its
peak in the opposite direction, with an average airflow velocity of −12.86 m/s. Finally,
at the moment of T, the wave surface reaches the lowest point −0.069 m, and the device
no longer takes in air, which is the secondary reversal moment of airflow rate. The air
chamber pressure also reaches 0 Pa. Subsequently, the wave surface continues to move
upward, repeating this process. This cyclical motion constitutes the energy harvesting
process of the OWC device.
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Figure 10. Wave surface height in the OWC device during a wave cycle: (a) 1/4 T; (b) 1/2 T; (c) 3/4
T; and (d) T. (H = 0.2 m; T = 1.5 s).

In this paper, hydrodynamic efficiency is employed as a metric to assess the primary
energy conversion efficiency of the OWC system, which can visually reflect the hydrody-
namic performance of the device.

ξ =
Pair

PwW
(8)

where Pair is the energy absorbed by the OWC, Pw is the power unit width of the incident
wave, and W represents the projected breadth of the OWC in the direction of the incident
wave. In this paper, W = 2R. Pair and Pw can be calculated as follows.

Pair =
1
T

∫ t0+T

t0

Q(t)P(t)dt (9)

where T is the period of the incident wave, Q(t) is the volume flow rate of the air through
the orifice, and P(t) is the relative air pressure in the chamber.

Pw =
1
2

ρgAi
2cg (10)

where g is the gravitational acceleration, ρ is the water’s density, and Ai is the incident
wave’s amplitude. The group velocity of the incident wave cg can be defined as

cg =
c
2

(
1 +

2kh
sinh2kh

)
(11)

where k represents the wave number, and c is velocity of the incident wave which can be
described as

c =
ω

k
(12)
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To more accurately reflect the overall movement of the waves within the air chamber,
wave heights measured simultaneously at detection points G1, G2, and G3 under different
wave heights η1, η2, and η3 are averaged to determine the wave surface elevation in the
air chamber.

η =
η1 + η2 + η3

3
(13)

4.2. Effects of Incidence Wave Period

To study the hydrodynamic effects of different incident wave periods on the OWC
device, the opening ratio was set as ε = 2%, and the incident wave height was specified
to be 0.2 m. The other parameters were set as follows: h = 1 m, d = 0.2 m, R = 1 m, and
D = 0.01 m.

Figure 11 shows the wave height versus time inside the air chamber at different
incidence wave periods, and the time is dimensionless for comparative analysis so that
the horizontal coordinate is set as t/T. It is evident that the wave surface height in the air
chamber varies approximately sinusoidally, with the amplitude of the crests exceeding that
of the troughs. Furthermore, as the incident wave period increases, the maximum value
of the wave height experiences a corresponding rise. The wave height can reach 1.1 m at
T = 2.4 s, while the minimum is only 1.04 m at T = 1.2 s.
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Figure 12 shows the air pressure versus time inside the air chamber at different incident
wave periods. It can be observed that the maximum value of pressure exhibits an irregular
variation with the increase in the incidence period. For T = 1.5 s and T = 2.1 s, the maximum
pressure values are relatively close, at 193 Pa and 187 Pa, respectively, while for T = 1.2 s,
the maximum pressure value is the smallest, at only 86 Pa.

The airflow velocity at the opening orifice and the captured power of the air chamber
versus time for different incident periods are shown in Figures 13 and 14, respectively.
It can be observed that the variation trends of the parameters under different periods
are significantly different. Both the maximum airflow velocity and captured power are
recorded at T = 2.1 s, with the maximum airflow velocity reaching 13.58 m/s and the
captured power reaching 50.1 W. The minimum values are recorded at T = 1.2 s, with the
airflow velocity and power only reaching 8.96 m/s and 13.97 W, respectively. Additionally,
it can be noticed that there are some differences in the crest values of the airflow entering
and exiting the chamber across the two stages. However, the differences between the two
stages are relatively small at T = 1.2 s and T = 1.5 s. Figure 11 shows that the captured
power of the OWC system is highly unstable, dropping to 0 W twice within each wave
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period, which is mainly related to the characteristics of the wave itself. It is difficult to solve
the unstable power output from the first stage of the energy conversion process.
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The numerical simulation results of the hydrodynamic efficiency of the OWC at
different incident wave periods and the corresponding fitting line are shown in Figure 15.
The figure demonstrates that hydrodynamic efficiency initially rises and subsequently
declines with the period. The effective period bandwidth of the efficiency ξ ≥ 0.2 is marked
with a dashed line in the figure, and it can be found that the effective period bandwidth of
the device is mainly in the range of 1.3 s to 2.1 s. The maximum hydrodynamic efficiency
point was obtained at T = 1.5 s, reaching 0.322, from which it is inferred that the resonant
period of the OWC occurs around T = 1.5 s. In contrast, the minimum point was obtained
at T = 3 s, which was only 0.088. When the wave period is small, the reflection effect is
strong, and most of the energy is reflected when it meets the front wall of the OWC and
cannot enter the interior of the OWC, thus lowering the captured energy and hydrodynamic
efficiency. When the wave period is large, the transmissivity of the waves will increase, and
the waves will propagate directly through the OWC system, resulting in a decrease in the
efficiency of the OWC system.
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4.3. Effects of Opening Ratio

In this section, in order to investigate the effect of different opening sizes on the
hydrodynamic characteristics of the OWC, three opening ratios are set as 2%, 1.5%, and 1%,
corresponding to opening radii of Ro1 = 0.075 m, Ro2 = 0.06 m, and Ro3 = 0.05 m, respectively.
The wave height is set as 0.2 m, and other setup parameters are kept constant. Figure 16
shows the variation in the average wave surface elevation ∆η = (ηcrest − ηtrough)/2 inside
the chamber with the incident wave period for different opening ratios. Different opening
ratios have a large impact on the hydrodynamic characteristics of the OWC device. As the
opening ratio decreases, which means the damping keeps increasing, the average wave
surface elevation inside the air chamber keeps decreasing, and the overall trend is the same.
The minimum value is observed at an opening ratio of 1% and an incident wave period of
1.2 s. The average wave surface elevation ratio to the incident wave amplitude is 0.283. The
maximum value is attained at ε = 2% and T = 2.1 s, reaching 0.9415. It is noticed that near
the resonant period of the device, the oscillation of the water column inside the air chamber
is more intense, and the average wave surface elevation changes more significantly. At the
high-period region, the ratio of the average wave surface elevation to the incident wave
amplitude gradually converges to 1 [48], which is mainly due to the long wave which can
penetrate the OWC more easily.
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Figure 16. Variation in average wave surface elevation within the chamber with different incident
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Figures 17 and 18 illustrate variation in the average pressure ∆P = (Pcrest − Ptrough)/2
inside the air chamber and the average airflow velocity at the opening orifice with the
incident wave period for different opening ratios, respectively. It can be found that, under
different opening ratios, the average pressure inside the air chamber and the average airflow
velocity at the opening orifice show the same trend with the incident wave period. Both
demonstrate an overall change process of increasing first and then decreasing, and both
attain their maximum value at T = 2.1s. As the opening ratio decreases, both pressure and
air velocity increase, contrary to the tendency of the surface elevation inside the chamber.
The pressure within the air chamber reaches 474.11 Pa and the average airflow velocity
is 11.05 m/s at an opening ratio of 1% and a period of 2.1 s. Conversely, the minimum
values are obtained at a 2% opening ratio with a 1.2 s period, which are 93.23 Pa and
5.27 m/s, respectively.
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Figure 17. Variation in average pressure inside the chamber with different incident wave periods at
various opening ratios.

The variation in hydrodynamic efficiency with the incident wave period for different
opening ratios is shown in Figure 19. The overall trend of change is consistent. As the
period increases, the hydrodynamic efficiency demonstrates a trend of an initial increase
and subsequent decline. As the incident wave period of 1.5 s approaches the resonant
period of the OWC device, the hydrodynamic efficiency is higher at the opening ratio of
2%, whereas smaller opening ratios (ε = 1.5%, ε = 1%) at high-period regions result in
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higher efficiency. Consequently, in the face of different wave conditions, the PTO damping
of the device should be appropriately selected. For instance, installing larger PTO damping
in the high-period region can enhance the energy conversion efficiency of the first stage of
the OWC device.
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4.4. Effects of Incidence Wave Height

This section investigates the effects of different incident wave heights on the hydro-
dynamic efficiency of the OWC device. The opening ratio is 1.5%, and five wave height
cases are selected (H = 0.05 m, 0.1 m, 0.15 m, 0.2 m, 0.25 m). All other variables remain
unchanged. Figure 20 illustrates the relationship between hydrodynamic efficiency and
incident wave height. It can be noticed that the overall hydrodynamic efficiency initially
increases with the rise in incident wave height, attains a maximum value at the critical
wave height Hi, and subsequently diminishes with an increase in wave height. The critical
wave heights are not exactly the same across different incident wave periods, and the
maximum efficiency values reach 0.33 and 0.31 at T = 1.5 s and T = 2.1 s when Hi is taken
at 0.15 m, respectively. At T = 1.8 s, Hi is obtained at 0.1 m, and the maximum efficiency
value is 0.29.



Energies 2025, 18, 666 17 of 23

Energies 2025, 18, x FOR PEER REVIEW 17 of 25 
 

 

1.2 1.5 1.8 2.1 2.4 2.7
0.0

0.1

0.2

0.3

0.4

0.5
 =2%  =2%   （Fitting line）

 =1.5%  =1.5%（Fitting line）

 =1%  =1%   （Fitting line）

x

T(s)  

Figure 19. Variation in hydrodynamic efficiency of OWC with different incident wave periods at 

various opening ratios. 

4.4. Effects of Incidence Wave Height 

This section investigates the effects of different incident wave heights on the hydro-

dynamic efficiency of the OWC device. The opening ratio is 1.5%, and five wave height 

cases are selected (H = 0.05 m, 0.1 m, 0.15 m, 0.2 m, 0.25 m). All other variables remain 

unchanged. Figure 20 illustrates the relationship between hydrodynamic efficiency and 

incident wave height. It can be noticed that the overall hydrodynamic efficiency initially 

increases with the rise in incident wave height, attains a maximum value at the critical 

wave height 𝐻𝑖 , and subsequently diminishes with an increase in wave height. The critical 

wave heights are not exactly the same across different incident wave periods, and the 

maximum efficiency values reach 0.33 and 0.31 at T = 1.5 s and T = 2.1 s when 𝐻𝑖  is taken 

at 0.15 m, respectively. At T = 1.8 s, 𝐻𝑖  is obtained at 0.1 m, and the maximum efficiency 

value is 0.29. 

0.05 0.10 0.15 0.20 0.25
0.1

0.2

0.3

0.4

x

H(m)

 T=1.5

 T=1.8

 T=2.1

 

Figure 20. The variation in hydrodynamic efficiency with incident wave height. 

5. Pneumatic System Simulation Analysis 

5.1. Mathematical Problem 

This paper assumes that air is an ideal gas. The following expression for the gas mul-

tivariable equation is satisfied for a given mass of gas. 

𝑝1𝑉1
𝑛 = 𝑝2𝑉2

𝑛 = 𝐶 (14) 

Figure 20. The variation in hydrodynamic efficiency with incident wave height.

5. Pneumatic System Simulation Analysis
5.1. Mathematical Problem

This paper assumes that air is an ideal gas. The following expression for the gas
multivariable equation is satisfied for a given mass of gas.

p1V1
n = p2V2

n = C (14)

where V1, p1, and V2, p2 are the volume and pressure of the gas in the two equilibrium
phases, respectively. n is the multivariate index, and different values of n correspond to
different processes of change in gas.

Pneumatic check valves allow the gas passage in one direction while completely shutting
off the gas in the other direction. The effective opening area and opening pressure are pivotal
parameters that influence the operational efficiency of the equipment. The air mass flow rate
through the check valve can be determined by steady-state subsonic flow modeling as

Qv = CvαAv

√
2ρair(pin − pout) (15)

where Cv is the valve’s discharge coefficient, αAv is the effective opening area when the
valve is fully open, ρair is the density of water, and pin and pout are the gas pressure at both
ends of the check valve.

This paper utilizes a spring-loaded accumulator, which exhibits an optimal motion
response. Assuming that the working motion of the accumulator is a solely axial motion,
the volume of the accumulator storage chamber Vb can be expressed as

Vb = V0 + Aax(t) (16)

where V0 is the initial volume of the storage chamber, Aa is the piston area, and x(t) is
the piston displacement. Accordingly, the kinetic equations are established by Newton’s
second law.

ma
..
x(t) = (pb − pa)Aa − kax(t)− Ca

.
x(t) (17)

where ma is the mass of the piston, and pa and pb are the pressure at the spring section
of the accumulator and the pressure in the gas storage chamber. The spring section is
connected to the atmosphere, so the pressure is atmospheric pressure, and ka and Ca are
the spring stiffness and damping at the spring section. The flow rate is defined into the
accumulator as qb.

qb =
.

Vb = Aa
.
x(t) (18)
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In the turbine module, a simplified analysis analogous to the check valve modeling is
employed. In this analysis, the turbine is replaced by a small orifice, and its mass flow rate
exhibits a quadratic relationship with the pressure drop.

Qt =

√
pup − pdown

kt
(19)

where pup and pdown are the pressure up- and downstream of the turbine, respectively; Qt

is the mass flow rate via the turbine; and kt is the flow coefficient of the turbine, which is
given as

kt =
(

2ρair At
2Ct

2
)−1

(20)

where AT is the orifice area and Ct is the discharge coefficient, which usually takes values
between 0.5 and 1.

Finally, the output power of the turbine can be defined.

Po =

(
Pup − Pdown

)
Qt

ρair
(21)

5.2. Model Construction

The simulation model of the novel PTO system depicted in Figure 21 was constructed
using AMESim (Version: 2020.1). The parameter input module mainly inputs the param-
eters of air chamber temperature (K) and air chamber pressure (barA) over time, which
can be obtained from the hydrodynamic simulation analysis in the previous section, to
the whole pneumatic system. The rectification circuit module mainly uses the check valve
group to rectify the airflow into a unidirectional flow. The specific parameters and modeling
of unidirectional turbines are not studied. Consequently, the orifice is utilized to replicate
the dampening effect of the turbine, and the pneumatic power output is used to express the
effect of energy conversion. In the accumulator module, a pneumatic accumulator model
was constructed using components from the Pneumatic Component Design Library and
the 1D Mechanical Library. A logic control loop uses signaling elements to control the
switching valve under predetermined conditions, modulating the accumulator’s charging
and discharging states. This enhances the stability of the airflow through the turbine.
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5.3. Data Analysis

The pressure and temperature inside the air chamber were selected as inputs to the
PTO system for H = 0.2 m and T = 1.5 s, ε = 2%. The inputs to the PTO system after the air
chamber operation has stabilized are shown in Figure 22.
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Assuming that the check valve and switching valve are either completely open or
completely closed and there is no pressure loss, the positive pressure accumulator’s initial
volume is set as 0.5 L, while the negative pressure accumulator’s initial volume is set as 10 L
due to the need to form negative pressure. To investigate the impact of the accumulator
on the system’s energy conversion, a model of the rectifier loop PTO system without
accumulators is constructed, as illustrated in Figure 23. This model will henceforth be
referred to as the conventional PTO system.
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Figure 23. Simulation model of the conventional PTO system.

Figure 24 shows the mass flow rate via the turbine, and it can be found that the fluctu-
ation of the flow rate via the turbine can be effectively reduced by setting the accumulator
module. Figure 25 shows the pressure up- and downstream of the turbine in the novel
PTO system compared to the conventional PTO system. In the conventional PTO system,
it can be observed from the figure that, since the air chamber pressure reaches 0 Pa twice
in a wave cycle, the pressure up- and downstream is equal, and no flow passes through.
The accumulator system can effectively improve this phenomenon; when the air chamber
pressure is close to 0 Pa, the switching valve opens so that the accumulator will release
energy. This effectively prevents the pressure between the pressure up- and downstream of
the turbine is equal.

Figure 26 compares the system’s output power, and it can be more intuitively found
that the addition of the accumulator leads to a more stable output power of the system.
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tional PTO system.
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Figure 26. Comparison of the system’s output power: (a) novel PTO system and (b) conventional
PTO system.

The hydrodynamic outputs for T = 1.8 s and T = 2.1 s under identical parameters are
subsequently applied to the PTO system using the same method. The results, presented in
Figure 27, demonstrate that the novel PTO significantly enhances the stability of energy
conversion under varying wave conditions.
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6. Conclusions
In this paper, a novel OWC wave energy harvesting system constructed on the working

principle of energy storage valve control, and the hydrodynamic performance of the OWC
and the performance of the novel PTO system are studied. A 3D numerical simulation
model of the OWC device was constructed using CFD software. The effects of incident
wave period, wave height, and opening ratio on the hydrodynamic performance of the
device were investigated. Subsequently, based on the analytical results, the designed novel
PTO system was modeled using AMESim to explore the accumulator’s effect on the overall
device’s stability for energy conversion. The final results are as follows:

(1) As the period increases, the energy acquisition efficiency of the OWC device first
rises, peaks at 1.5 s, and then declines. This is primarily because the device’s resonant
period is near 1.5 s, resulting in water column resonance within the air chamber and
enhanced hydrodynamic performance. At shorter periods, stronger wave reflection
reduces energy capture, while at longer periods, greater transmission limits energy
absorption, resulting in suboptimal performance.

(2) The opening ratio significantly affects the hydrodynamic efficiency of the OWC device.
As the opening ratio decreases, the average wave surface elevation inside the chamber
drops, while the average chamber pressure and airflow velocity at the orifice increase.
The optimal opening ratio varies with the incident wave period. Increasing turbine
damping in long-period wave conditions can enhance the energy conversion efficiency.

(3) The height of the incident wave slightly affects the device’s resonance period and
hydrodynamic efficiency. The hydrodynamic efficiency initially increases and then
decreases with rising wave height. The optimal wave height varies for different
wave periods.

(4) The novel PTO system, incorporating accumulators and switching valves, significantly
improves airflow stability through the turbine, resulting in a more stable relative
power output. The rational selection of the accumulator system parameters and the
construction of the logic control of the switching valve can reduce the volatility of
the mass flow rate via the turbine by 53.49% and the volatility of the output power
by 25.46%.
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