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Abstract

This article presents an approach to implement a Nonlinear Model Predictive Controller
(NMPC) in real-time with a non-standard cost index. The proposed technique’s applica-
tions are presented to maximize the energy produced by a Wave Energy Converter (WEC)
when the cost index is a non-quadratic piecewise discontinuous functional of some design
variables. The presented framework is based on pseudo-quadratisation and weight schedul-
ing, which is implemented using the ACADO toolkit for MATLAB/Simulink. The pro-
posed strategy features code generation and deployment on the real-time target machines
for industrial applications. The simulations and experiments confirm the success of the
proposed approach in achieving the feasible operation of the NMPC and an optimal power
capture by the wave energy converters.

1 INTRODUCTION

Renewable energy technologies present a viable, sustainable
solution to the growing energy demands of the world. The
ocean provides a potential for an enormous untapped energy
resource [1]. Interest in ocean wave energy has triggered
research in the optimal power capture techniques for wave
energy converters. Achieving optimal power capture by a WEC
is a multifaceted objective. It depends on factors such as the
physical design of the WEC, the ocean conditions, and the con-
trol techniques. Model Predictive Control (MPC) is a promis-
ing control approach for wave energy converters’ relatively
slow plant dynamics because it maximizes energy capture while
respecting the system’s mechanical limits [2]. MPC is a look
ahead control strategy that predicts future system behaviour to
solve a constrained optimization problem and determines the
best control action to maximize the output power of a WEC
[3]. The MPC algorithm uses an internal model of the plant
to predict the future states of the system. Most of the litera-
ture formulates the MPC problem by considering linear WEC
plant dynamics with a quadratic performance index [4]. Non-
linear MPC design is required if nonlinear or time-varying plant
dynamics are addressed, such as nonlinear mooring force and
time-varying PTO dynamics [5]. However, most of the research
on this subject focuses on formulating some form of standard
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convex quadratic performance functional for either a linear or
nonlinear MPC optimization problem. The primary reason for
such a formulation is the availability of efficient algorithms to
solve standard convex optimization problems. The execution
time becomes a significant concern when the ultimate objective
is to solve the optimization problem and deploy the algorithm
on real-time target machines to control the PTO mechanisms
[6].

An increase in the WEC efficiency requires considering the
nonlinear effects in the WEC dynamics and the PTO mecha-
nisms and treating the whole system in an integrated way, that
is, the point absorber dynamics, the PTO system, and the con-
trol strategy. This results in MPC optimization formulations that
have nonconvex and non-standard cost functionals. The capa-
bility of an NMPC formulation to handling such non-standard
cost indexes is still mostly an unaddressed issue. This issue
becomes important during the deployment phase of NMPC
in real-time applications; for example, the NMPC designed in
[5] does not focus on the real-time applicability of the pro-
posed solution. Nonlinearities in the WEC dynamic models
and non-standard cost functions are addressed using pseudo-
spectral methods and differential flatness in [7, 8], where
the developed nonlinear program is solved by the Sequen-
tial Quadratic Programming (SQP) method using Matlab rou-
tines fmincon and quadprog. The Economic Model Predictive
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Control (EMPC) method is presented in [9, 10], where the con-
cept of a tracking cost function is presented, and the cost func-
tion reflects the economic objective of the system. Pseudo-
spectral methods and EMPC techniques are promising solu-
tions but are computationally intensive for nonlinear MIMO
systems with non-standard optimization objectives, especially
if the end objective is deploying the proposed algorithm to
an embedded controller using the available Real-Time Iterative
(RTI) solvers.

This research presents a framework to implement NMPC
in real-time for multiple degrees of freedom wave energy con-
verters formulated as general time-varying nonlinear dynamic
systems. It also considers the problems in which the PTO mech-
anisms’ cost index takes non-standard forms, such as affine
form, polynomial with a degree higher than two, piecewise poly-
nomial of PTO force, trigonometric polynomials of design vari-
ables, and time-varying parametric. This work focuses on practi-
cal implementation considerations rather than in-depth mathe-
matical formulation or algorithm design, for instance, the refor-
mulation of a given non-standard NMPC problem for imple-
mentation on a real-time target-machine using a nonlinear opti-
mization solver, such as ACADO, which supports differential-
algebraic process dynamics and constraints [11, 12]. This paper
explores the pseudo-quadratisation technique to reformulate
the non-quadratic objection functional to quadratic-like forms.
This technique enables the use of available software package
for the problem sets that have non-standard cost indexes.

Moreover, the technique of weight scheduling is presented
to broaden the application of the proposed technique further
to include the problems that require the optimization of cost
indexes defined in a piecewise polynomial form. Such systems
are common in the wave energy generation sector. The pro-
posed method is applied to case study NMPC optimal power
take-off (PTO) problems that take the form of a real-time opti-
mization problem over a non-standard piecewise polynomial
cost index.

2 MATHEMATICAL FORMULATION
FOR NMPC

A given NMPC problem optimizes a manipulated variable u ⊆
w to maximize some cost functional P of a set of design vari-
ables w, while respecting the given system constraints. This
research focuses on a class of NMPC problems in which the
cost functional takes on a general nonlinear piecewise polyno-
mial form. Considering the case of finite-horizon optimization,
we can mathematically describe the NMPC problem of such a
class as:

max
u

P (w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

P1 (w) + 𝜌N ,1 (w) wn < R1

P2 (w) + 𝜌N ,2 (w) R1 ≤ wn ≤ R2

⋮

Pj (w) + 𝜌N , j (w)

⋮

R j−1 ≤ wn ≤ R j

(1)

subject to,

†x = g (w) (2)

q = p (w) (3)

Υ1 = Bequal (4)

Blower ≤ Υ2 ≤ Bupper (5)

where Υi vectors are of the following forms,

Υ1 = 𝚿1q,

Υ2 = 𝚿2q
(6)

here, g and p are vectors of real-valued nonlinear functions of
some design variables w, and Pi and 𝜌N , j are real-valued polyno-
mial functions of w. The real-valued design variable wn ∈ w is
responsible for the switching of the cost manifold in (1) depend-
ing upon its magnitude lying in a particular interval defined by
some real numbers Ri . The description of various variables and
constants in (1) through (6) is given in Table. 1. The maximiza-
tion of the cost functional in Equation (1) is subjected to the
dynamic constraints in Equation (2), which corresponds to a
general nonlinear state-space description of the physical WEC
plant. The proposed NMPC formulation considers the nonlin-
ear algebraic constraints described by Equation (3). The equal-
ity and inequality constraints are described by Equations (4)
and (5), respectively. These constraints are formulated in Equa-
tion (6) in terms of the algebraic expressions of the design
variables.

3 TIME DOMAIN MODEL OF A WEC

Consider a single degree of freedom heaving point absorber
WEC with a linear generator PTO mechanism, as shown in Fig-
ure 1: a single input multiple output system with heave PTO
force as the control input and the velocity and positions of
the float as outputs. The time-domain model of a WEC with
frequency-dependent damping has been developed and vali-
dated in [13, 14],

x =
[

vpto zpto Fr F
]T

g =

⎡⎢⎢⎢⎢⎣
−k

M
zpto +

1
M

Fr +
1
M

u +
1
M

d

vpto

−cavpto − cbzpto − cd Fr − ceF

Fr

⎤⎥⎥⎥⎥⎦
(7)

The description of various variables and constants in
Equation (7) is given in Table 1. The state-space form of
the WEC dynamics in Equation (7) becomes the differential
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HAIDER ET AL. 3333

TABLE 1 Notations

Variable Description

w Set of design variables

N Prediction horizon

x ⊆ w State vector

u ⊆ w Manipulated variable

𝜌N ,i Finite horizon terminal cost penalty

Pi Real-valued polynomial of design variables

𝚿i Constant matrices

Bi Constant column vectors

Υi Column vectors of real-valued nonlinear
functions

q Column vectors of real-valued nonlinear
functions

Ri Some real number

Vpto Float heave velocity (m/s)

Zpto Float heave position (m)

Fr Radiation force (N)

F Time integral of the radiation force

u Control input, Fpto(N)

m Float mass (kg)

A Float added mass (kg)

k Float hydrostatic stiffness (N/m)

Ci Constants with i,j ∈E {a, b}

d Excitation force disturbance, Fe (N)

Ipto PTO generator current

M Effective mass m + A (∞) (Kg)

h Column vectors of real-valued nonlinear
functions

hN Column vectors of real-valued nonlinear
functions

constraints in Equation (2). The dynamic system (7) may
include time-dependent variables to incorporates some prac-
tical scenarios, such as a change in the configuration of float
[14] or actively varying the number of PTO generator pickup
coils.

3.1 Nonquadratic WEC-PTO models

The electrical power output from the PTO mechanism of the
WEC is the difference between the mechanical power input
from the waves and the losses in the PTO system. For a given
PTO generator with a converter efficiency 𝜂Conv , the copper
loss constant KCu , and the winding resistance RΩ, the electrical
power cost functional to be maximized, including the electrical
losses, is given by,

max
Fpto

PE = 𝜂Conv

(
Fptovpto − KCuI 2

ptoRΩ

)
(8)

FIGURE 1 Point absorber WEC with linear generator PTO mechanism
by Wedge-Global

3.1.1 Higher-order PTO models

This case study scenario is taken from McCleer Power’s Linear
PTO generator with the PTO force-current characteristics given
by Figure 2. This relation is described by a third-order curve fit
between the PTO current and the PTO force,

Ipto

(
Fpto

)
= a3 Fpto

3
+ a2Fpto

2
+ a1Fpto + a0 (9)

Putting Equation (9) in Equation (8), we get,

PE = c0Fptovpto − ( c1F 6
pto + c2F 5

pto + c3F 4
pto

+c4F 3
pto + c5F 2

pto + c6Fpto + c7)
(10)

It can be seen that Equation (10) is a higher-order non-
quadratic cost functional to be maximized.

3.1.2 Piecewise linear PTO models

This case study scenario considers the data from Figure 2. How-
ever, the relation between the PTO current and the PTO force
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3334 HAIDER ET AL.

FIGURE 2 Higher-order current-force relation for a WEC PTO
generator
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Domain 2 linear fit
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Domain 4 linear fit
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Domain 8 linear fit
Domain 9 linear fit
Domain 10 linear fit
Fpto Domain Separators

FIGURE 3 Piecewise linear current-force relation for a WEC PTO
generator

is approximated by the piecewise linear curves that fit between
each of the two consecutive data points in Figure 3. Each
linear curve fit is valid for the corresponding domain of the
PTO force. For Figure 3, these piecewise linear curve fits are
described by Equation (11).

Ipto

(
Fpto

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a11Fpto + a10 Fk1 ≤ Fpto < Fk2

a21Fpto + a20 Fk2 ≤ Fpto < Fk3

a31Fpto + a30 Fk3 ≤ Fpto < Fk4
⋮ ⋮

a101Fpto + a100 Fk10 ≤ Fpto < Fk11

(11)

FIGURE 4 WEC-PTO power loss manifolds for piecewise linear curve
fitting (only a few surfaces are shown for clarity)

Putting Equation (11) in Equation (8), we get,

PE ,i = c0 Fptovpto −
(

ci1F 2
pto + ci2Fpto + ci3

)
,

i ∈ {1, 2… 10}
(12)

It can be seen that Equation (12) is a piecewise quadratic
cost functional to be maximized. Comparing Equation (8) with
Equation (12), we can observe that the power loss component
of PE in Equation (12) is dependent upon the magnitude of
PTO force. Each component represents a manifold, which is
a 2D surface, as shown by Figure 4.

3.1.3 Piecewise nonlinear PTO models

This case study scenario is taken from Wedge Global’s lin-
ear PTO generator with the PTO force-current character-
istics given by Figure 5. This relation is approximated by
piecewise nonlinear curve fits over the PTO force domains.
For Figure 5, these piecewise curve fits are described by
Equation (13).

Ipto

(
Fpto

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Fpto − 𝛼

𝛽
Fpto ≤ −Fk

−

√
−Fpto

𝛾
−Fk < Fpto < 0√

Fpto

𝛾
0 ≤ Fpto < Fk

Fpto + 𝛼

𝛽
Fpto ≥ Fk

(13)
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FIGURE 5 Piecewise nonlinear current-force relation for a WEC PTO generator

Putting Equation (13) in Equation (8), we get Equation (14).
It can be seen that Equation (14) is a higher-order piecewise
non-quadratic cost functional to be maximized. Comparing
Equation (14) with Equation (8), we can observe that the power
loss component of PE in Equation (14) is dependent upon the
magnitude of PTO force. Each component represents a mani-
fold, which is a 2D surface, similar to Figure 4.

PE =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

c10Fptovpto + c11F 2
ptovpto − c12F 2

pto + c13Fpto + c14vpto − c15 Fpto ≤ −Fk

c20Fptovpto + c21Fpto −Fk < Fpto < 0

c30Fptovpto − c21Fpto 0 ≤ Fpto < Fk

c40Fptovpto + c11F 2
ptovpto − c12F 2

pto − c13Fpto + c14vpto − c15 Fpto ≥ Fk

(14)

4 NMPC IMPLEMENTATION
METHOD

The cost functionals in Equations (10), (12), and (14) are not
standard quadratic forms. To implement such problems, we

have used the method of pseudo-quadratisation and weight
scheduling. With this technique, we can extend the capabilities
of the standard quadratic solvers [11] to implement the NMPC
for the non-standard optimization problems according to the
scheme shown in Figure 6.

4.1 Pseudo-quadratisation and weight
scheduling

If the cost functional P in (1) is not quadratic, then the
technique of pseudo-quadratisation relies on appropriately
defining two vectors of nonlinear real-valued functions, h(w)
and hN (w) to convert P into quadratic-like forms. A proper
selection of these vectors along with the weighting matrices Wi
would enable us to put Equation (1) into a form given by
Equation (15).

Pi (w) =
1
2

hTWih, i = 1, 2… , j

𝜌N ,i (w) =
1
2

hT
N

WN ,ihN, i = 1, 2… , j

(15)
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3336 HAIDER ET AL.

FIGURE 6 Implementing nonlinear MPC with ACADO Toolkit

FIGURE 7 NMPC implementation in Simulink using ACADO Toolkit

The expression in Equation (15) resembles a quadratic form
but might not expand to a quadratic polynomial of design vari-
ables, as we will discuss shortly; hence, they are named pseudo-
quadratic forms. For nonconvex problems, the convex relax-
ation of the cost manifold Pi in Equation (15) can be imple-
mented by the superposition of some convexifying manifold Di .
Let us denote the modified manifold as Pi,m and we can write it
as:

Pi,m (w) =
1

2
hTWih + Di (w) (16)

0 50 100 150 200 250
time (sec)

-8

-6

-4

-2

0

2

4

6

8

F
ex

t(N
)

10 5 Excitation Force Profile

FIGURE 8 Excitation force profile for simulation of the proposed
controller

50 100 150 200 250
time (sec)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
P

pt
o,

E
(W

)
104 Closed Loop PTO Electrical Power

PTO Electrical Power Instantaneous
PTO Electrical Power Average

FIGURE 9 Instantaneous and average PTO power output

The manifold Di can be decomposed into the quadratic form
using appropriate weighting matrices Wd ,i ,

Di (w) =
1

2
hTWd ,i h (17)

Using Equation (17) in Equation (16), the modified manifold
Pi,m can be expressed as:

Pi,m (w) =
1

2
hT

(
Wi +Wd ,i

)
h =

1

2
hTWi,mh (18)

The choice of Di and hence, the weighting matrices Wd ,i

are not unique and depend upon a specific cost functional
Equation (15) for a given problem. The manifold Di can be
used to appropriately increase the weights of the convex terms
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HAIDER ET AL. 3337

FIGURE 10 The PTO force and PTO velocity locus on the WEC
electrical power cost functional

0 50 100 150 200 250
time (sec)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

P
pt

o,
E

(W
)

10 5 Closed Loop PTO Electrical Power

PTO Electrical Power Instantaneous
PTO Electrical Power Average

FIGURE 11 Instantaneous and average PTO power output for piecewise
nonlinear cost manifold

of Pi in Equation (15), for example F n
pto, where n is an even

number. Some other deciding factors are the convergence rate
of the optimization algorithm and the modified cost mani-
fold’s allowed deviation in Equation (18) from the actual cost
manifold (1).

Now let us apply the above technique to the higher-order
PTO model in Equation (10). Defining a h vector as:

h =
[

F 3
pto F 2

pto Fpto vpto 1
]T

(19)

FIGURE 12 The PTO force-velocity locus on piecewise nonlinear cost
manifold

Although Equation (10) is not a quadratic form but using
Equation (20) in Equation (10), we get a pseudo-quadratic form
described by Equation (21).

PE =
1
2

hT

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c1
−c2
2

0 0 0
−c2
2

−c3
−c4
2

0 0

0
−c4
2

−c5
c0
2

−c6
2

0 0
c0
2

0 0

0 0
−c6
2

0 −c7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
h (20)

The cost functional expression in Equation (21) can be imple-
mented using nonlinear optimization solver ACADO. Similarly,
defining a vector h for Equation (12) as,

h =
[

Fpto vpto 1
]

(21)

Using Equation (22) in Equation (12), we get a weight-
scheduled quadratic form described by Equation (23).

PE ,i =
1
2

hT

⎛⎜⎜⎜⎜⎝
2

⎡⎢⎢⎢⎢⎣
−ci1

c0
2

−ci2
2

c0
2

0 0
−ci2

2
0 −ci3

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠

h (22)

The cost functional expression in Equation (23) can be imple-
mented using nonlinear optimization solver ACADO using
weight scheduling for the PTO force.
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3338 HAIDER ET AL.

FIGURE 13 The PTO force domains and selection of weight matrix index for cost functional

5 SIMULATION, TESTING, AND
RESULTS

The Simulink block diagram for the implementation of NMPC
is shown in Figure 7 for the WEC in Equation (7) using param-
eter values from [13] and the cost functional in Equation (21).
The test excitation force profile is shown in Figure 8, corre-
sponding to a JONSWAP spectrum (significant wave height of
2.5 m, and peak period of 8 s). The plots for the instantaneous
PTO power and the average PTO power are shown in Figure 9.
The NMPC optimization solution is convergent, and the locus
of the PTO force and the PTO velocity along with the manifold
(21) are shown in Figure 10. The planes separating the four
quadrants of the PTO velocity and force are also shown in
Figure 10. The locus traverses a trajectory that lies on the
manifold Equation (21), satisfying the cost objective. The
trajectories are also inclined towards the first and fourth octant
of the PTO force-velocity space as the controller attempts
to actuate the WEC PTO generator to make the PTO force
in-phase with the PTO velocity to maximize the PTO power
capture.

For the piecewise cost functional of the form (23), the plots
for the instantaneous PTO power and the average PTO power
are shown in Figure 11. For an illustration of piecewise case
Equation (23), a PTO cost manifold with only two pieces is
considered, as shown in Figure 12. The controller is manually
switched from one cost manifold to the other at 150 s. The locus
of the PTO force and the PTO velocity, along with the cost
manifolds, are shown in Figure 12. The locus traverses a trajec-
tory that lies on the manifolds and satisfies the cost objective.
In the actual scenarios, the manifold switching would depend

upon the current magnitude of PTO force according to Equa-
tion (11), as shown in Figure 13. The selection of the weight
matrix in Equation (15) would depend on the domain inter-
val of the PTO force at any given time. The QP optimization
algorithm withstands the manifold switching operation in Fig-
ure 12 and converges to an optimal solution. However, with the
ACADO toolkit, there is no theoretical guarantee that the opti-
mization routine can always remain safely in its region of con-
vergence [13]. Given that the cost index formulation in Equa-
tion (8) includes a convexifying power loss term, for example
the power loss surface plots in Figure 4, and Ipto linear curve
fits in Figure 3 do not have jump discontinuity at the switching
value, the close loop system tends to maintain a stable opera-
tion. If the QP problem formulated at a given sample interval
is infeasible, the controller will fail to find a solution. This issue
can be handled by monitoring the status of the QP solver dur-
ing each sampling interval and selecting a suboptimal solution
when the QP solver fails.

The proposed design is implemented on Speedgoat Perfor-
mance real-time target machine-109100 [15] with Intel Core
i3-3220, 3.3 GHz processor, and 2048 MB of installed RAM.
Given the typical ocean wave period of 10 s, a sample time
of 0.1 s was selected for the real-time simulation of NMPC.
The Speedgoat based controller implementation is shown in
Figure 14. The target machine is configured to communicate
with the WEC plant over the Modbus TCP/IP channel. The
WEC dynamics were emulated on another real-time machine,
as shown in Figure 15. An average of 12% processor load was
observed per sampling interval during testing. The real-time
implementation of the controller confirmed the simulation
results. The updated code has been made publicly available
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FIGURE 14 Implementation of the proposed NMPC for the Speedgoat real-time target machine

FIGURE 15 Testing the controller using real time target machine and the
WEC emulator machine

at the following online repository (github.com/aliSHaider/
NMPC_Acado_Simulink_Speedgoat).

6 CONCLUSION

An approach to implement a Nonlinear Model Predictive Con-
troller (NMPC) in real-time with a non-standard cost index is
presented. The case study WEC PTO models were presented.
The specific PTO power formulations are non-quadratic
piecewise functional of the PTO force and PTO velocity. The
method of pseudo-quadratisation and weight-scheduling is used
to implement the NMPC problem using the ACADO toolkit
for MATLAB/Simulink. The proposed strategy supports code
generation, and the controller was deployed on the Speedgoat
Performance real-time target machine-109100, coupled to the

real-time WEC emulator machine over the Modbus TCP/IP
channel. The proposed methodology successfully maintained
an overall feasible operation of the real-time NMPC problem
in simulation as indicated by the status port of the NMPC
QP-solver. The experimental implementation on the Speed-
goat target machine confirmed the optimal power capture
results from the simulation with an average of 12% processor
load.
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