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A B S T R A C T

The new methodology based on generalised coordinates for the analysis of floating multi-body systems with 
nonlinear geometric constraints is developed, and it is demonstrated through numerical application for a hybrid 
floating wind-wave platform consisting of a floating offshore wind turbine and an articulated wave energy 
converter that moves a hydraulic piston. The formulation is applied to achieve explicit formulae regarding the 
dynamic response in a low-dimensional scenario used to verify a post-processing code. The verification considers 
the nonlinear geometric constraints, hydrodynamic interaction, the dynamics of articulated arms, and the dy-
namics of hydraulic power take-off systems. An analytical expression for the system’s natural frequencies is 
attained and verified likewise. The results presented in this paper indicate significant improvement in the 
simulation and analysis of multi-degrees-of-freedom nonlinear hydrodynamic systems, which will ultimately be 
necessary for designing efficient hybrid floating wind-wave platforms.

1. Introduction

The theoretical analysis of floating systems with multiple underwa-
ter geometries started over 50 years ago; however, the application was 
somewhat limited to rigid-body structures with multiple underwater 
geometries, such as the case of catamarans and floating stations 
(Ohkusu, 1969). Nevertheless, important conclusions were drawn 
regarding interactions between the different hulls, for instance, those 
interactions may be exceptionally strong for specific wavelengths and 
spacing between hulls (Ohkusu, 1970).

The theoretical analysis of floating systems with separated geome-
tries started years later, at the beginning of the 1970s, and with direct 
application in problems of ship-to-ship interactions, especially the ones 
raised by passing ships near moored ships in ports (Tuck and Newman, 
1974; Yeung, 1978). The studies were conducted after a series of acci-
dents at sea, but the matter still has importance in research and practical 
engineering (Zhou et al., 2021; Xu et al., 2024).

The theoretical analysis of floating multi-body systems for offshore 
renewable energy (ORE) application started not much later, as one may 
think. Indeed, the generalisation of hydrodynamic wave-structure 
interaction formulation was first demonstrated for multi-body systems 
with many geometries (Budal, 1977; Falnes, 1980), within a theory that 
had direct application in farms of wave energy converters (WECs). At the 

time, however, the application was somewhat limited to identical and 
axisymmetric bodies, yet knowledge acquired during years of investi-
gation led to several contributions to the field of multi-body hydrody-
namics (e.g., Mavrakos, 1991; McIver, 1994; Mavrakos and McIver, 
1997; Mavrakos and Kalofonos, 1997). Today, the state-of-the-art hy-
drodynamic modelling for WECs and WEC arrays encompasses many 
robust techniques, especially for optimisation (e.g., Fitzgerald and 
Thomas, 2007; Child and Venugopal, 2010; Sinha et al., 2016b) and 
control strategies (e.g., Balitski et al., 2014; Gaspar et al., 2017).

The effects of wave multi-scattering raised by floating multi-modules 
or multi-body structures have been detailed and applied to different 
structures by Chakrabarti (1999, 2000). Though the latter scholar has 
introduced a powerful modelling technique, there is a lack of in-depth 
research that validates multi-scattering wave models for a series of 
floating multi-modules or multi-body structures. In the case of con-
strained floating multi-body structures, theoretical analysis started near 
the 1990s, when it was demonstrated that the usual formulation of 
first-order wave-structure interaction can be applied to hinged struc-
tures using generalised modes formulation (Newman, 1994). Newman 
(2001) has also reviewed and summarised the many conclusions drawn 
by the different floating multi-body modelling techniques, emphasising 
the wave field’s near-trapping modes within WEC arrays. Time domain 
simulation of floating multi-body geometries with hydrodynamic 
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interaction has been studied in detail by Kara (2020), who demonstrated 
that the influence of the coupled impulse response functions (IRFs) de-
pends on the relative distance between different floating bodies.

More recently, the research on multi-body hydrodynamics has 
become important again, with particular emphasis on constrained 
floating multi-body structures, due to the economic trends of offshore 
aquaculture (Mohapatra et al., 2021; Liu and Guedes Soares, 2023) and, 
especially, the rapid development of floating offshore wind (Diaz and 
Guedes Soares, 2020; GWEC – Global Wind Energy Council, 2024). The 
number of FOWTs in operation is expected to increase significantly in 
years to come (Diaz et al., 2022).

Thus, today, research on hybrid platforms for ORE extraction 
offshore is seen as a hot topic, where the recent developments in floating 
wind-wave platforms (FWWPs) have been reviewed by Hallak and 
Guedes Soares (2024). For instance, it is concluded that prospective 
hybrid systems are the ones based on multi-WEC arrangements or 
massive displacement hulls (e.g., Asai et al., 2024; Stansby and Li, 
2024), though the structural integrity of the latter designs has not been 
assessed. It is shown that single-WECs employed on available FOWT 
designs do not lead to significant cost-savings nor additional energy 
output, whereas the main advantages to be explored with the coupling 
are an increase in weather windows for operation & maintenance 
(O&M) in the farm – as proven by Teixeira-Duarte et al. (2024), and the 
reduction of intermittency and smoother energy output – as demon-
strated by Gao et al. (2024). It is also concluded that, for various FWWP 
configurations, WECs may be actively and accurately controlled to 
suppress system loads and reduce wind turbine accelerations and fatigue 
loads, to increase the FOWTs’ lifetime. This will depend on rational 
design and optimisation at different levels, which is currently a research 
gap within the field.

Besides hydrodynamic effects, the physical complexity of floating 
multi-body systems is further increased when mechanical connections 
are considered, which is the case of FWWPs. Mechanical connections 
may be performed using mechanical bearings, flexible connectors, 
joints, and articulated arms, among others, whereas the constraint forces 
that appear in the connection point are hard to control, and the 
constraint equations may be nonlinear, as is the case of articulated arms. 
The constraints may also require the application of Gauss’ Principle of 
Least Constraint to be correctly modelled, even though the mathemat-
ical models used for FWWPs are still based on the classical Newtonian 
perspective. For instance, Chen et al. (2023) studied floating multi-body 
hydrodynamics from the perspective of flexible interconnections: A 
robust mathematical model was developed and used for frequency and 
time domain analysis of various types of flexible floating multi-body 
systems. The major drawback of the model is that the interconnections 
are simplified – they are performed by single-point flexible connectors, 
which is not realistic for the PTO models.

Zhao et al. (2021) developed a semi-analytical formulation for the 
performance of a WEC mounted on a floating breakwater near the 
seawall. This model is robust and accounts for all main interactions 
between waves, floating breakwater, and the WEC. The model was later 
extended for WEC arrays mounted on flexible platforms (Zhao et al., 
2023). The results are promising, showing that the model is one of the 
few hydrodynamic models that accounts for the complex dynamics of 
PTOs when mounted on top of floating platforms. In these studies, 
however, the major drawback comes from the two-dimensional model-
ling, which is suitable for floating breakwaters but unsuitable for hybrid 
wind-wave technologies or hydrodynamic systems under short-crested 
sea waves.

Some FWWP configurations represent reduced complexity in terms 
of dynamic behaviour. That is particularly true for the Spar-Torus 
Combination (STC), which has been intensely studied in the literature 
and validated in the laboratory (Wan et al., 2015, 2016). Because only 
one WEC is employed and only one extra DOF is added to the dynamic 
system (namely, the relative heaving mode), both mathematical and 
physical complexities are reduced, while in practice, the STC would be 

accomplished using shafts. Results presented by different studies that 
further investigated the STC reveal that the heaving motion of the spar is 
drastically increased after coupling it to the torus WEC (e.g., Li et al., 
2018; Skene et al., 2021).

The platform investigated in this paper belongs to another configu-
ration deeply studied in the literature: The combination of a semi- 
submersible FOWT with point absorber (PA) WECs. The general 
concept enables different possible configurations and WEC arrange-
ments; thus, many configurations have been addressed in the literature, 
but the research is mostly preliminary and has not converged to an ideal 
FOWT-PA-WEC geometry. Possibilities include, for instance, the 
coupling between a semi-submersible FOWT with articulated PA-WECs 
hinged on the bracings of the platform, a configuration that has been 
through experimental validation, as provided in detail by Sinha et al. 
(2016a) and Kamarlouei et al. (2020, 2022) for a series of arrangements 
with different number of WECs, spring and damping components. Nu-
merical analyses of similar configurations are given by Ghafari et al. 
(2021, 2022), where it is shown that maximum wave power absorption 
is found at around 10-m diameter WECs for this particular configuration.

For articulated PA-WECs hinged on the columns of the platform, 
numerical analysis has been conducted for different configurations by 
Hallak et al. (2021), Si et al. (2021), and Wu et al. (2024). By comparing 
the results provided by the different references, it is noted that the 
configurations with hinges on the bracings can be more advantageous 
than the hinges on the columns because when the WECs are closer to the 
platform’s Centre of Gravity (CoG), the lever effects that influence pitch 
motion are reduced.

Other configurations have been analysed, for instance, heaving 
WECs below the FOWT bracings (e.g., Hu et al., 2020; Chen et al., 2022; 
Zhu et al., 2023), and heaving WECs on a modified superstructure to 
accommodate the WECs and PTO near the middle of the platform (e.g., 
Chen et al., 2020; Chen et al., 2024). By comparing the different refer-
ences, it is concluded that heaving WECs, especially near the middle of 
the platform, are much less likely to modify the dynamics of the hybrid 
platform than articulated WECs. However, articulated WECs can provide 
more stability and absorb more wave power.

The state-of-the-art multi-body hydrodynamic models for articulated 
geometries usually violate the nonlinear mechanical constraints 
imposed by actual PTOs and articulated arms. Despite the modelling 
issues, articulated point absorbers provide the highest energy absorption 
per unit of mass, around 1.5 MWh/ton, as revealed by a benchmark 
study on eight types of WECs performed by Babarit et al. (2012). That is 
a benefit when coupling WECs with FOWTs, for the maximum deck load 
on an FOWT might not be too high. The trade-off appears on the PTO 
forces, which are high overall, quickly reaching the order of 104 kN. The 
mathematical formulation presented by Hallak et al. (2023) has been 
developed to overcome the modelling issues of articulated floating 
multi-body geometries and hydraulic PTOs that single-point PTO models 
cannot represent.

This paper extends the formulation and applies it to a realistic case 
study, a hybrid ORE system that combines an adapted version of the 
DeepCWind semi-submersible platform for a 10 MW wind turbine with a 
nonlinear articulated point absorber WEC. Explicit formulae are ach-
ieved for the dynamic response of the different floating bodies and the 
system’s natural frequencies. Also, a post-processing tool is verified by 
comparing numerical results with analytical formulae. Moreover, the 
response amplitude operators (RAOs) and response phase operators 
(RPOs) of the combined system, are obtained and analysed in detail, as 
well as the wave power absorption characteristics.

The paper is organised as follows: Section 2 presents the mathe-
matical model in detail, including the theoretical assumptions and the 
evaluation of responses and natural frequencies. Section 3 describes the 
mathematical-numerical model implementation within the hybrid ORE 
case study, including the environmental parameters. Section 4 presents 
analytical and numerical results and a detailed analysis of the obtained 
results. Finally, in Section 5, the several conclusions obtained from the 
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investigation are drawn and further discussed.

2. Mathematical modelling

2.1. Potential flow theory

Despite its limitations, potential flow theory has evolved within the 
field of hydrodynamics as a relatively straightforward theory. Within 
this theory, many physical phenomena and constraints are respected, 
such as the conservation of mass and momentum, the boundary condi-
tions (some exactly, others in linearised form) and the dispersion of 
ocean waves, to cite a few. Due to such representativeness, potential 
flow theory can devise reasonable wave-structure interaction models for 
large fixed and floating offshore structures and displacement hulls.

The development of potential flow theory has yielded textbooks, e.g., 
Newman (1977), making it solid. A generalisation of the same theory has 
been proven sound for floating multi-body geometries, while it is mainly 
based on the linear separation of potentials and exact definition of the 
multi-body geometries. That said, this paper will not discuss the basis of 
the potential flow theory found in Newman (1977). The theory will now 
be applied to the particular case of wave-structure interaction for 
floating constrained multi-body geometries.

2.2. Frequency domain formulation

Because the hydrodynamic loads in wave-structure interaction come 
from the environment, they are normally evaluated from a global 
perspective. Thus, the global reference frame Oxyz is used to define the 
global motion variables. The global reference frame is centred in the 
waterplane (z = 0), with the z-axis pointing upwards.

Within a frequency domain formulation, it is further assumed that 
the potentials can be linearly separated, that is, diffraction effects are 
modelled as if the floating bodies were at rest, and the radiation effects 
are modelled as if there were no other perturbations in the wave field. 
The diffraction potential is proportional to the wave amplitude, while 
the radiation potentials are proportional to the motion amplitudes. The 
effects of multi-scattering are not accounted for, meaning that one 
body’s diffracted or radiated waves do not perturb the other bodies. 
Then, the total velocity potential Φ can be split as the wave field, 

Φ≡Φ(F,t)=|Φ(F)|exp iωt=Φexc+Φrad=Aw
(
Φinc+Φdiff

)
+
∑N

i=1

∑6

j=1
ξijΦrad ij,

(1) 

where ω is the wave frequency, F is the position vector of the fluid 
particle, Φ is the total velocity potential, Φexc is the exciting potential, 
Φinc the incident wave potential, Φdiff is the diffracted wave potential, 

Φrad is the total radiation potential, N is the number of floating bodies, 
Aw is the amplitude of the incoming wave, and ξij is the amplitude of 
motion of the body i in mode j.

The velocity of a fluid particle is given by the real part of the gradient 
of the total potential, 

v(F, t)=Re{∇(Φ(F, t))} . (2) 

2.3. Equation of motion

The hydrodynamic problem of wave-structure interaction between 

planar Airy waves and a rigid-body structure is physically represented 
by a mass-spring-damper system or, mathematically, by a 2nd-order 
linear ordinary differential equation (ODE). For a single rigid body, if 
all modes of motion are considered, the dimension of the ODE system is 
six. If different floating structures are considered, a first generalisation is 
obtained by increasing the linear system’s dimension and the DOF 
number accordingly. Further addition of constraints may reduce the 
number of DOFs in the system, but not necessarily the number of vari-
ables. If the constraint equations are holonomic, as in the case of artic-
ulated arms, then the equations of motion may be obtained with the 
Newton-Euler method.

Under these assumptions, the dynamic equation of the multi-body 
system can be written as 

[M+Mrad(ω)]{ẍ}+ [Badd +Brad(ω)]{ẋ}+
[
Chyds

]
{x}={fe(ω)} + {fc},

(3) 

where M is the mass-inertia matrix, Mrad(ω) is the added mass matrix 
obtained from the radiation potential, Brad(ω) is the radiation damping 
matrix, Badd is the added damping matrix, Chyds is the hydrostatic 
restoring matrix, x are the global coordinates, fe(ω) is the wave excita-
tion force array and fc is the constraint force array.

If the different bodies are connected through an articulated arm, in 
terms of the variables x, the geometric constraint imposed, though 
holonomic, is nonlinear, for the following quantity must be constant, 

LPQ ≡‖P,Q‖⇒(LPQ)
2
=(xP − xQ)

2
+
(
yP − yQ

)2
+ (zP − zQ)

2
, (4) 

where P = (xP, yP, zP) and Q =
(
xQ, yQ, zQ

)
are the position vectors of the 

interconnection endpoints (hinged or fixed connections) and LPQ is the 
length of the arm.

2.4. Multi-body hydrodynamics – modelling of constrained systems

The nonlinear system of equations is analytically and numerically 
demanding to solve. The formulation presented by Hallak et al. (2023) is 
herein considered to obtain the equation of motion in a constrained 
scenario. The formulation is based on generalised coordinates, i.e., a set 
of parameters is used to represent the state of the multi-body system, 
whereas in the devised formulation both motion DOFs and constraint 
forces may be taken as variables.

Then, generalised DOFs and forces are taken by considering linear 
combinations G, H, s.t., 

xi =Gi(w1,w2,…,w6N− K)=
∑6N− K

j=1
gijwj, i=1,…,6N, (5) 

and  

where N is the number of floating bodies, K is the number of constraints, 
wj is the j-th generalised coordinate, gij is the coefficient of the linear 
combination Gi representing the influence of generalised coordinate j on 
global motion i, fci is the constraint force on global motion i, yj is the j-th 
generalised force, hi(6N− K+j) is the coefficient of linear combination Hi 

representing the influence of generalised force j on the constraint force i 
and h(k)

ij is the coefficient of the linear combination Hi representing the 
influence of k-th derivative of the generalised motion j on the constraint 
force i.

The substitution of Eqs. (5) and (6) back into Eq. (3) leads to the 6N ×

fci =Hi

(

w1, ẇ1, ẅ1…,w6N− K, ẇ6N− K, ẅ6N− K, y1,…, yK

)

=
∑6N− K

j=1

(

h(0)
ij wj + h(1)

ij ẇj + h(2)
ij ẅj

)

+
∑K

j=1
hi(6N− K+j)yj, i=1,…,6N, (6) 
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6N linear system, 

[A]{ ¨(w, y)}+ [B]{ ˙(w, y)}+ [C]{(w, y)}={fe(ω)}, (7) 

where 

aij ≡ aij(ω)=
∑6N

k=1
(mik +mrad ik(ω))gkj − h(2)

ij , (8) 

bij ≡ bij(ω)=
∑6N

k=1
(badd ik + brad ik(ω))gkj − h(1)

ij , (9) 

cij =
∑6N

k=1
chyds ikgkj − h(0)

ij − hij, (10) 

are the coefficients of matrixes A, B and C.
According to Eqs. (5) and (6), 

gij, h(1)
ij , h(2)

ij =0, ∀ j > 6N − K . (11) 

Thus, the last K columns of matrixes A and B are null, meaning that 
the equation of motion has no term proportional to the derivatives of the 
constraint forces, ẏ and ÿ, whereas in the last K columns of C appear the 
generalised force coefficients hij.

Remarkably, the coefficients in Eqs. (8)–(11) may be derived 
considering different types of mechanical joints at point Q.

2.5. Articulated arm and hydraulic PTO

This sub-section devises formulae for a particular hydraulic system 
that connects different floating bodies with many supporting points for a 
special application in a hybrid FWWP platform. Different evaluations 
will likely be required for other types of mechanical connections.

Fig. 1 depicts the articulated arm and hydraulic PTO systems 
considered about the FOWT and PA-WEC it connects. Though the FOWT 
and WEC are still not defined, all relevant geometric parameters of the 
articulated arm are presented.

In Fig. 1, the local, CoG-based reference frames are shown and are 
represented by CXYZ and CX́’Y’Z’ for the FOWT and WEC, respectively. 
Each floating body’s 6 DOF motion (surge, sway, heave, roll, pitch and 
yaw) is defined around those frames in the conventional manner, where 
the right-hand rule defines rotations. The translated global reference 
frame Ox́’y’z’ is a third kind of reference frame represented in Fig. 1, and 
it is helpful to account for the phase difference of the incoming waves 
encountering different floating bodies. Moreover, WEC’s CoG is repre-
sented at the same height as the waterline (z = 0), thus Ox́’y’z’ coincides 
with CX́’Y’Z’. However, that is not a requirement for using the method.

The PTO is assumed to be aligned with the z-axis. Then, the vertical 
contact force acting on the platform around the PTO is given by the 
reaction of the force acting on the piston, that is, 

fPTOz = μẅPTO + βẇPTO + κwPTO, (12) 

where μ is the inertial parameter of the PTO, also accounting for sup-
plementary mass, β is the PTO damping coefficient, and κ is the PTO 
stiffness coefficient.

In the frequency domain, the power absorbed by the WEC is given by 

P(ω)=1
2

β(ωWPTO)
2
, (13) 

where WPTO ≡ WPTO(ω) is the motion amplitude of the hydraulic piston.

2.6. Low-dimensional multi-body scenario

For verification, further simplification is achieved by neglecting the 
y-dimension, and considering inactive surge modes. Then, the number of 
DOFs is reduced to three, namely, the heaving mode (generalised mode 
wH), the pitching mode (wP), and the relative motion between the 
different floating bodies, which is defined by wPTO, i.e., the displacement 
of the hydraulic piston inside the PTO.

Then, the linearisation of the geometric constraints leads to the 
linear combination G such that, 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = wH

x2 = wP

x3 = wH − DWECwP −
LARM cos θARM

L2 cos θ2
wPTO

x4 = wP +
1

L2 cos θ2
wPTO

, (14) 

where DWEC is the horizontal distance between the vertical line passing 
through the centre of the WEC and the vertical line passing through the 
CoG of the platform.

The contact forces acting on the platform around the hinge point P 
are evaluated based on fPTOz and the remaining constraint force acting 
on the articulated arm, fQz = y.

Thus, the linear combination H in Eq. (6) is written as 

{fc}=

⎧
⎪⎪⎨

⎪⎪⎩

− y
MP + yxP + fPTO(xP − xPTO)

y
0

⎫
⎪⎪⎬

⎪⎪⎭

, (15) 

where MP is the pitching moment acting on the platform due to the re-
action of the binary moment acting on the arm such that the dynamic 
balance of the arm is satisfied.

Different possibilities exist when modelling the moment MP and 

Fig. 1. Schematic drawing of the articulated system. Dimensions are not reproduced in scale.
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depend upon the hinge and arm elements: If it is reasonable to consider 
that the arm rotates freely and frictionless around the hinge and that 
inertial forces are much lower than PTO and contact forces, then MP ≅

0.
Alternatively, an approximation to account for the friction and the 

inertial effects is to linearise MP, as follows, 

MP = δfPTO(xP − xPTO)⇒fc2 = yxP + (1+ δ)fPTO(xP − xPTO), (16) 

where δ is the factor that accounts for the effects of the arm rotating 
moment on the platform. Clearly, the prior condition MP = 0 is satisfied 
if δ = 0.

2.7. Linear system and transfer functions

A solution of the hydrodynamic system represented by Eq. (7) is 
given by 
{
(W,Y)cos ψ
(W,Y)sin ψ

}

=Λ− 1
{

F(ω)cos φ
F(ω)sin φ

}

, (17) 

where 

Λ≡Λ(ω)=

[
C − ω2A(ω) − ωB(ω)

ωB(ω) C − ω2A(ω)

]

, (18) 

given that the determinant of Λ is not zero.
Remarkably, for many DOFs, linear solvers are preferable to the in-

verse matrix calculation expressed in Eq. (17).
The RAOs and RPOs are given, respectively, by 

(
Wj,Yj

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
( (

Wj,Yj
)
cos ψ j

)2
+
( (

Wj,Yj
)
sin ψ j

)2
√

, j=1,…,6N, (19) 

and 

ψ j = atan
((

Wj,Yj
)
sin ψ j

(
Wj,Yj

)
cos ψ j

)

, j=1, 2,…,6N, (20) 

where the inverse tangent function considers the four quadrants of the 
Cartesian plane.

The global motion responses are also obtained as complex RAOs 
simply by combining the complex solutions of Eqs. (19) and (20) ac-
cording to Eq. (14).

It is also noted that WPTO is a direct output of the method, which 
reduces uncertainties on the evaluation of wave power absorption.

2.8. Treating the dynamic matrix

If a row of the linear system can be written as a linear combination of 
other system rows, matrix Λ is singular. However, the symmetric co-
efficients may not be the same due to computation, in that case the 
system may be near-singular. The mathematical model based on 
generalised DOFs and force variables applied to the symmetric FWWP in 
consideration leads, indeed, to a linear system with twelve rows, where 
rows of the system can be written as linear combinations of other system 
rows. In computation, the original system is singular to the working 
precision of the machine.

It proves necessary to treat the dynamic matrix Λ to obtain numerical 
convergence. Arguments of symmetry can be considered to eliminate 
rows of the system, which also depend upon the environmental loads at 
the right-hand side (RHS). It is also possible to eliminate rows and col-
umns by identifying inactive modes, which reduces computational time, 
as known as a-priori from single-body hydrodynamics.

In the low-dimensional scenario that neglects the y-direction and 
considers the surge modes inactive, the DOFs are reduced from 12 (two 
rigid bodies) to only 3. Moreover, the number of rows in the system is 
decreased to 4, since one constraint variable remains. The elimination of 
columns must be performed carefully, for the coefficients of the linear 

system on the left-hand side (LHS) are written in generalised modes, but 
the rows still represent global motions.

First, the elimination of rows is performed by eliminating the eight 
inactive global modes, 

{x1, x2, x3, x4, x5, x6, xWEC1, xWEC2, xWEC3, xWEC4, xWEC5, xWEC6}

→{x3, x5, xWEC3, xWEC5}

Then, the elimination of columns is performed by selecting the eight 
generalised modes that are inactive or may be represented as a linear 
combination, 
{

x1, x2, x3, x4, x5, x6,wPTO, fPTOx, fPTOy, fQx, fQy, fQz

}
→
{

x3, x5,wPTO, fQz

}

The RHS of the equation of motion expresses the environmental 
loads, and it is now written as 

{fe(ω)}=
{
fe3(ω), fe5(ω), fe9(ω), fe11(ω)

}T
. (21) 

Finally, it is important to note that the system has been decomposed 
into real and imaginary parts, e.g., Eqs. (17) and (18). Thus, the elimi-
nation of matrix Λ rows and columns is performed twice per neglected 
variable.

2.9. Time domain simulation

The equation of motion (Eq. (7)) can be simulated in the time domain 
by applying the Cummins formulation (Cummins, 1962), 

[A∞]
{

¨(w(t), y(t))
}
={fe(t)} − [Badd]{

˙(w(t), y(t))}

−

∫∞

0

[k(τ)]{ ˙(w(t − τ), y(t − τ))}dτ

− [C]{(w(t), y(t))},

(22) 

where A∞ = limω→∞A(ω) includes both rigid-body mass and hydrody-
namic added mass, and 

κi,j(τ)=
2
π

∫∞

0

B̃radcos ωτdω, (23) 

where B̃rad is the part of B accounting for Brad.
Remarkably, it is possible to consider fully nonlinear forces in the 

RHS of Eq. (22). Moreover, it is straightforward to add nonlinear drag 
forces into the hydrodynamic model, e.g., using Morison elements 
(Hallak et al., 2022).

Due to Eq. (11), the presence of constraint variables leads to a matrix 
A∞ with at least one column of zeros, meaning that matrix A∞ has no 
inverse. To overcome this issue, an adapted matrix Ã∞ is created by 
adding artificial values in the diagonal of the zero-columns (the last K in 
A∞ previously to the treatment), such that matrix Ã∞ is inversible and 
outputs the same motion responses. On the other hand, the constraint 
forces are evaluated in the second part of the iteration step, where the 
exact equation of motion is considered at the same instant to evaluate 
the force variables. Thus, 

{ ˙(Θ(t),Υ(t))}= [Ã∞]
− 1

⎛

⎝{fe(t)} − [Badd]{
˙(w(t), y(t))}

−

∫T

0

[k(τ)]{ ˙(w(t − τ), y(t − τ))}dτ − [C]{(w(t), y(t))}

⎞

⎠,

(24) 

where 
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{
Θ = ẇ(t)
Υ = ẏ(t) , (25) 

and the convolution integral in Eq. (24) is performed until instant T, 
such that the IRFs converge.

Then, force variables are evaluated in a second part within the same 
iteration step, 

{ ˙Υ(t)}= [A∞]K
− 1

⎛

⎝{fe(t)} − [Badd]K{Θ(t)} −
∫T

0

[k(τ)]K{Θ(t)}dτ

− [C]K{(w(t))}

⎞

⎠,

(26) 

where the index K in [ ]K stands for the block matrix representing the 
coupling between generalised motions and generalised forces.

2.10. Natural frequencies

An advantage of the analytical formulation is the assessment of the 
natural frequencies. Hydrodynamic systems are excited by waves that 
provide oscillatory loads, thus it is important to assess the floating sys-
tems’ resonant modes of motion. It is noted that the evaluation of the 
natural frequencies for a floating multi-body geometry with articulated 
arms still lacks understanding.

Equation (17) shows that if the determinant of the matrix Λ is zero, 
the response will be spurious. Moreover, the response will oscillate with 
arbitrarily large amplitudes for arbitrarily small determinant values. 
Since the determinant of the matrix is a function of the frequency ω, it is 
reasonable to hypothesise that the system’s natural frequencies are the 
values of ω such that  

This definition is similar to the definition usually considered in 
classical mechanics (e.g., Fowles and Cassiday, 1962) – that states that 
ωN is a natural frequency if, and only if, |det Λ(ωN)| = 0. In fact, the 
definition in Eq. (27) is broader, for it includes all "classical" natural 
frequencies, but, in hydrodynamic systems, because the terms of Λ are 
functions of the wave frequency, it is possible to observe local minima 
with near-zero determinants when solving Eq. (27). If the damping 
terms are not neglected in Eq. (27), the local minima are found at the 
damped frequencies of the system.

The hypothesis is easily proven to be true for a 1 DOF system: If the 
equation of motion reads 

mẍ+ bẋ + cx = Fe(t), (28) 

where m is the inertia of the system, b is the damping parameter of the 
system, c is the stiffness parameter of the system, and Fe is the exciting 
force. Then, 

Λ* ≡Λ*(ω)=

[
c − ω2m − ωb

ωb c − ω2m

]

(29) 

⇒det Λ*(ω)=det
[

c − ω2m − ωb
ωb c − ω2m

]

=
(
c − ω2m

)2
+ (ωb)2

. (30) 

Thus, det Λ* assumes only non-negative values.
Then, if b = 0, det Λ*(ω) has a single local minimum at the natural 

frequency ωN, 

b = 0,ω =
̅̅̅̅̅̅̅̅̅
c/m

√
= ωN⇒det Λ*(ωN) = 0 . (31) 

If b ∕= 0, det Λ*(ω) has a single local minimum at the damped fre-
quency ωD, 

b∕=0,ω=
̅̅̅̅̅̅̅̅̅
c/m

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − b2
/
4mc

√

=ωD⇒det Λ*(ωD)=min(det Λ*(ω)),
(32) 

and the amplitude of response |X| achieves its maximum value for a 
given excitation force amplitude |Fe|, 

|X| =
|Fe|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(c − ω2
Dm)

2
+ (ωDb)2

√ =
|Fe|/c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ξ4 + (2ξωD/ωN)
2

√ , (33) 

where 

ξ= b
/ ̅̅̅̅̅̅̅̅̅

4mc
√

, (34) 

is the damping ratio of the system.

2.11. Analytical natural frequencies of a low-dimensional FWWP

For a floating multi-body geometry with many DOFs, the mathe-
matical identity to find the determinant of a block matrix is useful, 

det
[

D E

F G

]

=det D*det
(
G − FD− 1E

)
, (35) 

where D and G are square matrixes, and E and F are matrixes of 
adequate size.

Thus, if the damping terms in Eq. (18) are neglected, 

B(ω)=0 ⇒|det Λ(ω)| =det Λ(ω)=
(
det

(
C − ω2A(ω)

))2
, (36) 

and the minimum of |det Λ(ω)| is found at the same frequency as the 
minimum of 
⃒
⃒det

(
C − ω2A(ω)

)⃒
⃒.

If it is further considered that δ = 0, as well as aij(ω) ≅ aij, then, 

⃒
⃒det

(
C − ω2A(ω)

)⃒
⃒=

⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦

c11 − ω2a11 c12 − ω2a12

c21 − ω2a21 c22 − ω2a22

c13 − ω2a13 − 1

c23 − ω2a23 xP

c31 − ω2a31 c32 − ω2a32

c41 − ω2a41 c42 − ω2a42

c33 − ω2a33 1

c43 − ω2a43 0

⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦

(37) 

⇒
⃒
⃒det

(
C − ω2A(ω)

)⃒
⃒=0 ⇔ P

(
ω2)=0, (38) 

where P is a cubic (third-degree) polynomial.
It is known that a cubic polynomial has three distinct real roots if its 

discriminant Δ3 is positive, 

P
(
ω2)= á

(
ω2)3

+ b́
(
ω2)2

+ ć
(
ω2)+ d́ (39) 

⇒Δ3 =18áb́ćd́ − 4
(
b́3d́+ ć3á

)
+ b́2 ć2 − 27á2d́2, (40) 

Then, if Δ3 > 0, the roots of P are given by 

ω=ωNj ⇔
{

ωNj is the j⎯th local minimum of |det Λ(ω)| neglecting the damping terms
}
. (27) 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2
1 = −

1
3á

(
b́ + E +

Δ0

E

)

ω2
2 = −

1
3á

(

b́ −
1 + i

̅̅̅
3

√

2
E −

2Δ0
(
1 + i

̅̅̅
3

√ )
E

)

ω2
3 = −

1
3á

(

b́ −
1 − i

̅̅̅
3

√

2
E −

2Δ0
(
1 − i

̅̅̅
3

√ )
E

)

, (41) 

where 

E=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δ1 ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δ2
1 − 4Δ3

0

√

2

3

√
√
√
√

, (42) 

Δ0 = b́2 − 3áć, (43) 

Δ1 =2b́3 − 9áb́ć + 27á2d́ . (44) 

The analytical formulae presented above provide the first estimates 
of natural frequencies for a constrained floating multi-body system with 
3 DOFs.

3. Description of the hybrid platform

The multi-body hybrid system under consideration is presented in 
Fig. 2. As pictured, the system is designed initially to couple 3 WECs with 
a FOWT, though the investigation herein conducted considers only the 
WEC at the front, i.e., the one near the viewer in Fig. 2, to derive a low- 
dimensional scenario where verification can indeed be accomplished.

To be more precise, the FWWP design consists of a version of the OC4 
DeepCWind semi-submersible platform (Robertson et al., 2014), 
adapted to host a 10 MW wind turbine and hemispheric WECs. The main 
parameters of the platform and WEC are presented in Tables 1 and 2, 
respectively.

The time domain simulation code is written in Matlab®, whereas the 
multi-body hydrodynamic coefficients are obtained a priori using 
SESAM HydroD® and its diffraction and radiation solver Wadam®. 
Fig. 3 details the mesh used in Wadam® calculations.

An onboard hydraulic PTO is considered, with parameters listed in 
Table 3. The supplementary mass has been updated and amounts to 
around 40% of WEC’s displacement. The PTO connection and relative 
constraints are analogous to Fig. 1. The environmental parameters used 
for the analysis are given in Table 4. Only head waves are considered.

Fig. 2. Perspective view of the hybrid wind-wave platform. (DOI: 10.54499/ 
PTDC/EME-REN/0242/2020).

Table 1 
Adapted OC4 main parameters.

Parameter Unit Value

Outer columns’ total height m 40.5
Central column total height m 40.0
Outer columns distance (center-to-center) m 66.67
Outer upper column diameter m 16.00
Outer lower column diameter m 32.00
Central column diameter m 8.67
Bracings diameter m 2.80
Freeboard m 15.20
Draft m 26.70
Displacement ton 32000
CoG z-position m − 13.46
Radius of gyration RXX m 24.00
Radius of gyration RYY m 24.00
Radius of gyration RZZ m 26.00
Heave damping coefficient – 20%
Pitch damping coefficient – 40%

Table 2 
WEC main parameters.

Parameter Unit Value

Diameter m 8.0
Draft m 4.0
Displacement ton 132
CoG z-position m 0.0
CoG x-position m 39.25
Radius of gyration RXX m 2.0
Radius of gyration RYY m 2.0
Radius of gyration RZZ m 2.0
Heave damping coefficient – 50%
Pitch damping coefficient – 25%

Fig. 3. Underwater mesh of the adapted DeepCWind platform with 
6000+ panels.

Table 3 
PTO and articulated arm main parameters.

Parameter Unit Value

PTO supplementary mass ton 50.0
PTO damping coefficient kNs/m 320.0
PTO stiffness coefficient kN/m 50.0
1st arm’s length m 23.47
1st arm’s angle deg 26.57
2nd arm’s length m 18.27
2nd arm’s angle deg 2.50
Piston z-position m − 24.0
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4. Results and analysis

4.1. Linear combinations G and H

The linear combinations G and H are represented by coefficients gij, 
hij and h(k)

ij . These coefficients must be analytically determined using the 
proposed modelling method. For any particular geometry, it is necessary 
to consider the exact definitions of PTOs, mechanical connections, and 
WEC arrangement to evaluate these coefficients. The values obtained for 
the low-dimensional case study under analysis are presented in Tables 5 
and 6. The coordinates are written about the global, right-handed Oxyz 

reference frame unless specified otherwise.

4.2. Dynamic response

The RAOs and RPOs of the many modes of the system are direct 
outputs of the method. First, Figs. 4 and 5 present the FWWP RAOs and 
RPOs in heave and pitch, respectively.

It is clear from Fig. 4 that the addition of hydrodynamic coupling, 
namely, due to the presence of the WEC in the FOWT surroundings, does 
not significantly affect the FWWP heave RAO, even though heave mo-
tion is damped in the range between 0.40 and 0.60 rad/s. This change is 
raised by the difference in phase between heave motion and incoming 
wave, as clear from the heave RPOs. In the low-frequency range, the 
FWWP rides the wave, and the heave RAO tends to 1.0 m/m, as ex-
pected, which also holds for the fully coupled hybrid system.

It is also important to note that the fully coupled FWWP heaves 
slightly more than the single-body FOWT in the whole frequency range, 
with some amplification around the heave natural frequency 
ω ≈ 0.32 rad/s.

In opposition to the heave effects, Fig. 5 shows that the platform 
pitch motion is amplified in the fully coupled scenario, whereas the 
hydrodynamic coupling accounts for a minor influence on the dynamic 
interaction. The effect is more pronounced around the FOWT pitch 
resonant frequency (ω ≈ 0.25 rad/s). It seems that a new mode appears 
around 0.90–0.95 rad/s, which also appeared in a less pronounced way 
in the heave RAO (Fig. 4). By comparing the pitch RPOs, it is clear that 
the mechanical coupling considerably affects the phase difference be-
tween incoming wave and pitch motion, whereas the single-body FOWT 
and fully coupled FWWP are out-of-phase throughout practically the 
whole frequency range. The difference is even more significant near the 
pitch resonant frequency, an essential factor for pitch amplification 
observed in the hybrid platform.

It is important to note that the single-WEC arrangement considered 
in the fully coupled scenario may negatively affect the pitch responses, 
shown in Fig. 5, due to an asymmetric lever effect.

Fig. 6 presents WEC’s heave RAO, the piston motion response, and 
the main force variables of the system, namely, the generalised force 
(equals the vertical force acting on the WEC) and the piston force. The 
curves are drawn for the fully coupled scenario, i.e., the only scenario 
where the PTO is in operation.

Because the WEC is much smaller than the FOWT, the coupling effect 

Table 4 
Environmental parameters.

Local parameters

Water depth = 140 m Water density = 1000 kg/m3 Gravity = 9.80665 m/s2

Regular waves parameters

Index [-] Wave Period [s] Frequency [rad/s] Index [-] Wave Period [s] Frequency [rad/s] Index [-] Wave Period [s] Frequency [rad/s]

1 33.07 0.19 17 9.38 0.67 33 5.46 1.15
2 28.56 0.22 18 8.98 0.70 34 5.32 1.18
3 25.13 0.25 19 8.61 0.73 35 5.19 1.21
4 22.44 0.28 20 8.27 0.76 36 5.07 1.24
5 20.27 0.31 21 7.95 0.79 37 4.95 1.27
6 18.48 0.34 22 7.66 0.82 38 4.83 1.30
7 16.98 0.37 23 7.39 0.85 39 4.72 1.33
8 15.71 0.40 24 7.14 0.88 40 4.62 1.36
9 14.61 0.43 25 6.90 0.91 41 4.52 1.39
10 13.66 0.46 26 6.68 0.94 42 4.42 1.42
11 12.82 0.49 27 6.48 0.97 43 4.33 1.45
12 12.08 0.52 28 6.28 1.00 44 4.24 1.48
13 11.42 0.55 29 6.10 1.03 45 4.16 1.51
14 10.83 0.58 30 5.93 1.06 46 4.08 1.55
15 10.30 0.61 31 5.76 1.09 47 4.00 1.57
16 9.82 0.64 32 5.61 1.12 48 3.93 1.60

Table 5 
Coefficients of linear combination G (transform between global motions and 
variables).

gij Variable (wj.yj)

1 2 3 4

wH wP wPTO y

Global motion (xi) 1 x1 1 0 0 0
2 x2 0 1 0 0
3 x3 1 -DWEC - LARM cos(θARM)/L2 cos(θ2) 0
4 x4 0 1 1/L2 cos(θ2) 0

Table 6 
Coefficients of linear combination H (constraint forces).

hij
(k) Variable (wj.yj)

3, k = 0 3, k = 1 3, k = 2 4

wPTO w’PTO w’’PTO y

Global motion 
(xi)

1 x1 0 0 0 − 1
2 x2 κ(xP - 

xPTO)
β(xP - 
xPTO)

μ(1 + δ)(xP - 
xPTO)

xP

3 x3 0 0 0 1
4 x4 0 0 0 0
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is stronger at the WEC. That is clear from the amplitude of motion of the 
WEC, as shown in Fig. 6: The model predicts that the WEC heaves up to 
2.6 m amplitude for unit amplitude waves. The high amplitude of mo-
tion is related to the constructive interference between global heave, 
global pitch and piston motions. The motion amplitude within the PTO 
is at a maximum of 1.4 m, which fulfils maximum stroke requirements. 
However, it indicates that attention must be directed to the stroke re-
quirements, especially in harsh sea states.

Fig. 6 also shows that the constraint force transfer function varies 
with the frequency, reaching up to 640 MN per meter of incoming wave. 
The PTO force lies in the same order of magnitude, though it is smaller in 
the low-frequency range and higher in the high-frequency range, 
reaching a maximum of around 300 MN at 1.2 rad/s. This observation is 
consistent with the previous findings of Babarit et al. (2012).

4.3. Wave energy conversion

Fig. 7 presents results regarding wave energy absorption for unit- 
amplitude waves and the WEC’s capture width. The amount of power 
absorbed by the WEC in the hybrid platform is more significant than that 
of state-of-the-art point absorbers, for it generates energy throughout 
the whole frequency range. Indeed, several peaks of wave power are 
found in Fig. 7, whereas the highest peak is seen at 1.2 rad/s (also when 
the PTO force is at maximum), absorbing more than 70 kW for a unit- 
amplitude incoming wave.

From left to right, the first peak corresponds to the FWWP heave 
natural frequency, the second corresponds to the piston natural fre-
quency, and the last corresponds to the WEC’s heave natural frequency. 
A first approximation for the piston’s natural frequency is given by 
ωPTO ≅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
κ/(μ + MWEC)

√
, where MWEC is the inertia of the WEC, 

including its added mass. Thus, ωPTO ≅ 0.52 rad/s.

Fig. 4. Heave motion RAOs (left) and RPOs (right).

Fig. 5. Pitch motion RAOs (left) and RPOs (right).
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Within the frequency range between 0.30 and 0.60 rad/s, i.e., 
equivalent to waves from 10 to 21 period seconds (usual band of sea 
waves), the amount of absorbed wave power is 30 kW for unit-amplitude 
waves, and the capture width is around 1. Capture width increases in the 
high-frequency range, with two peaks of around 3.5.

By comparing Figs. 5 and 7, it is clear that pitch amplification and 
wave power absorption effects are dissociated. The first happens in the 
low-frequency range and the latter in the high-frequency range. An 
FWWP with a symmetric WEC arrangement and optimal PTO system 
should use this observation to restrict pitch motions without losing 
WECs’ efficiency. In addition, the results shown in Fig. 6 also point out 
that stroke requirements shall be fulfilled in this scenario, though the 
PTO forces shall continue to be high overall.

4.4. Natural frequencies

The hypothesis that the minimum of the determinant of matrix Λ is 
related to the natural and damped frequencies of floating constrained 
multi-body systems is investigated in this sub-section. Analytical results 
are drawn by solving Eqs. (38)–(44), whereas numerical results of nat-
ural and damped frequencies are obtained by solving the minimum 
determinant of Λ(ω). The natural and damped frequencies can also be 
compared with the maxima observed in the RAOs (Figs. 4–6).

The single-body FOWT and single-body WEC present natural fre-
quencies that are known apriori, namely, 1.81 rad/s and 0.26 rad/s for 
the WEC’s heave and pitch modes, respectively, and 0.32 rad/s and 0.25 
rad/s for the FOWT’s heave and pitch modes, respectively. Those values 

Fig. 6. WEC and PTO motions for unit-amplitude incoming waves in the fully coupled scenario.

Fig. 7. Performance of the Wave Energy Converter coupled with the adapted DeepCWind platform.
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are matched when applying the minimum determinant method to the 
single-body matrixes.

The minimum determinant method also calculates the damped fre-
quencies for the hydrodynamically coupled system. The damped fre-
quencies are equivalent to the single-body FOWT natural frequencies, 
namely, 0.32 rad/s and 0.25 rad/s, meaning that the FOWT coefficients 
rule over the WEC coefficients. Therefore, it can be concluded that the 
resonant modes of motion of the hydrodynamically coupled system 
approach the FOWT resonant modes of motion. On the other hand, the 
minimum determinant method outputted the fully coupled FWWP 
damped frequencies as 0.49 rad/s and 0.25 rad/s, i.e., the main resonant 
modes may differ after considering the geometric and mechanical con-
straints. The first frequency practically corresponds with the piston’s 
natural frequency; again, ωPTO ≅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
κ/(μ + MWEC)

√
= 0.52 rad/ s.

Because semi-submersible designs effectively reduce wave loads at 
the resonant modes, the abovementioned values do not necessarily 
correspond with the maxima of motion response (Figs. 4–6). The main 
exception is the significant pitch amplification, near the pitch natural 
frequency for the fully-coupled system, which may be related to the 
single-WEC arrangement that negatively affects the pitch response due 
to a strong lever effect.

By applying the analytical formulae for the 3 DOF-constrained sys-
tem, three natural frequencies are found: in ascending order, they 
correspond to 0.18, 0.25 and 0.49 rad/s. The latter frequency appears to 
correspond to the piston’s natural frequency, and the middle one cor-
responds with the pitch’s natural frequency, both matching the values 
found by the minimum determinant method. The lowest natural fre-
quency must be related to some coupled mode of motion, for it differs 
from the other known modes and is located in the low-frequency range. 
It may also be approximated due to the approximation of hydrodynamic 
added mass (Eq. (37)) and zero damping assumption. Whereas the 
minimum determinant method considers damping forces – not accoun-
ted in the analytical formulae –, and given the motion responses pre-
sented in Figs. 4–6, it is suggested that this low-frequency mode is 
mitigated by damping and phase effects.

5. Conclusions

In this paper, the formulation to simulate and analyse floating con-
strained multi-body systems was developed further and now includes 
formulae to obtain the natural and damped frequencies of complex hy-
drodynamic systems. By selecting a hybrid system consisting of a semi- 
submersible FOWT coupled with a point absorber WEC using a PTO 
system and articulated arm, it is proven that the new formulation and 
method can be adopted for the simulation of nonlinear floating multi- 
body systems, which has direct application in the development of new 
hybrid wind-wave technologies.

The results shown in this paper prove that the minimum determinant 
method is a consistent method to devise the natural and damped fre-
quencies of floating constrained multi-body systems, and also that the 
analytical formulation can be used for a 3 DOF multi-body system. While 
the hydrodynamically coupled system’s natural frequencies approach 
the single-body natural frequencies because the FOWT coefficients rule 
over the WEC coefficients, the piston natural frequency is a particular 
frequency of the fully coupled FWWP found by both the analytical 
method and the minimum determinant method. Naturally, it is also 
noted that the piston frequency corresponds to around 12 s of period, 
which is usually within the most energetic bands of ocean waves, also 
corresponding to a peak of wave power absorption.

The results also consist of force and motion responses for FOWT and 
WEC in the hybrid configuration and performance parameters regarding 
wave energy conversion and the PTO response. The results indicate that 
the hybrid platform under consideration moves within a reasonable 

range, the heave motion being hardly modified, whereas the pitch mo-
tion is amplified around the resonance, an observation conditioned by 
the single-WEC arrangement used for verification. The WEC may heave 
considerably within the frequency band 0.2–0.7 rad/s; however, the 
WEC absorbs a significant amount of wave energy throughout almost the 
whole range of wave frequencies, reaching more than 70 kW of absorbed 
power for a unit-amplitude wave and has typically better performance in 
the high-frequency range, reaching a capture width value of 3.5. In the 
fully coupled scenario, the three active DOFs (heave, pitch and piston) 
contribute positively to the large WEC response, which was proven by 
the phase difference of the RPOs. It is important to remark that the ef-
fects of pitch amplification at the resonance and the increase in wave 
power absorption are dissociated.

Though the PTO coefficients lie within rational values (da Silva et al., 
2022), the order of magnitude of the PTO force is high overall (>105 kN) 
and even smaller than the constraint force acting on the WEC-arm 
interface. Nevertheless, the PTO easily fulfils maximum stroke re-
quirements for unit-amplitude waves.

It is important to note that the verification case was selected based on 
the low-dimensional scenario it represents. At the same time, the hybrid 
FWWP would consist of the FOWT plus three symmetric WECs around 
the platform. Due to symmetry, the actual system shall present a better 
pitch response and reduced WEC motion.

Last but not least, the novel formulation for analysing floating con-
strained multi-body systems may be applied in more in-depth studies, 
encompassing concept optimisation or new control strategies. The 
formulation may be also applied to other floating systems, such as the 
constrained WEC arrays and aquaculture systems.
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