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Wave Energy Converters CHARLOTTE
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A 30 MegaWatt "wave farm" of Pelamis Wave Energy Converters (Business Wire)
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LITERATURE REVIEW -

Over the past decade, WEC control strategies have evolved
from single-unit reactive control to centralized and distributed
MPC for multi-device arrays. However, a clear research gap
remains in the communication protocol between them.

Single-Unit Control Multi-WEC Arrays
Individual WEC control Arrays suffer destructive
increases performance interactions (Park effects).
up to 300% (Babarit, 2013; Wang et
(Bacelli et al., 2020) al., 2016)

Centralized Control Distributed/Decentralized Nonlinear
Control Distributed Control
Centralized MPC to Cooperative MPC to Nonlinear distributed
control the full array handle complexity MPC for better
(Forehand et al., 2016) and scalability modularity
(Zhang et al., 2023) (Chen et al., 2025)



Research Problem

Centralized and decentralized WEC control strategies often rely on
unrealistic assumptions about communication. This work addresses
the need for scalable, communication-aware protocols that enable

real-time coordination under bandwidth constraints.
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Mathematical Modelling for Single WEC o
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Optimal Control Problem

Mathematical Modelling for Single WEC
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Mathematical Modelling for Array b
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The communication constrained optimization
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Communication Protocols Comparison

Full-state feedback at every

time step.
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ransmits only when necessary,
optimizing the trade-off between

performance and communication

\ cost. J
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No updates; control is purely

based on internal model

predictions.

/

These scenarios represent the range of bandwidth-accuracy
trade-offs in the control applications.



Case Study

Determine Sparse

Identify Event o
Transmission

Trigger _
gg Times
A specific event
triggers the need for The solution
communication. determines the

optimal times for
communication.

Solve
Optimization
Problem

Transmit Data

Data is transmitted
only at the
determined times.

An optimization problem
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Control quality and
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Results:
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Number of Communication Events

Optimizing Communication for Energy Extraction
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Results:

Noise Covariance
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How to balance communication frequency in event-triggered control?
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Conclusion: G
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Discrete-Time LQR Control

Optimizes control inputs for efficient energy extraction.

Event-Triggered Communication
Reduces communication frequency while maintaining

performance.

Energy Extraction Performance
Maximizes energy capture with minimal

communication cost.

Communication Cost Reduction
Significantly lowers communication expense in WEC array
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