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Abstract— This paper investigates the use of a nonlinear 

autoregression neural network for wave field predictions, 

and its implementation into a power-take off passive 

loading control system which tunes the damping coefficient 

for a wave energy converter. The wave energy converter 

considered in this study is a part of a multi-institutional 

demonstrator project which has seen the deployment of a 

moored multimodal multibody (M4) attenuator wave 

energy converter in King George Sound in Albany, Western 

Australia. The device consists of a 1-2-1 float configuration 

and is approximately 20 meters in length. The developed 

neural network was used to predict wave elevations and 

energy spectrums for 10-second and 20-second ahead of time 

intervals. Findings of this study show that the neural 

network was able to accurately predict up to 10 s intervals 

(where RMSE = 1.32E-02), however the accuracy of 

predictions fell for 20 s predictions (where RMSE = 5.20E-

02). A linear numerical model of the prototype M4 device 

was used to find the optimal PTO damping coefficient for 

the observed wave fields at King George Sound. This 

allowed for optimisation of mean absorbed power for a 

generated 3-hour JONSWAP unidirectional timeseries 

using variable damping coefficients. Here, the power output 

was able to be increased by 106% for a significant wave 

height of 0.63 m and peak period of 3 s and resulted in an 

overall increase in capture width ratio across the 3-hour 

wave dataset. 

Keywords— Wave Energy Converter, neural network, 

wave spectrum, power take-off.  
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I. INTRODUCTION

ONCERNS regarding increasing energy demands

and environmental impact  from carbon dioxide

emissions has seen an interest for the development of 

sustainable energy from renewable sources. With oceans 

covering 71% of the Earth’s surface, there is large potential 

for wave energy to become a viable source of renewable 

energy. Swells on Australia’s South-West coastline is 

predominantly large from uninterrupted weather systems 

migrating from the Southern Indian Ocean [1], resulting in 

significant wave energy potential. Furthermore, the ocean 

represents one of the world’s largest unexplored sources 

of energy, with waves providing energetic features 

throughout the day and night and throughout the seasons. 

It is noted that waves could provide electricity up to 90% 

of the time, but wind and solar power systems may only 

create electricity 20-30% of the time [2]. Here, Wave Energy 

Converters are being researched and developed as a 

potential solution to these recent concerns. However, they 

are yet to become commercialised, and mass produced.  

 According to their working principle, WEC’s can be 

classified into three main categories: (1) oscillating-body 

which utilise a float, buoy or pitching device to extract 

energy from waves, (2) oscillating water column (OWC) 

where wave motion causes air flow within a chamber 

subsequently driving a turbine, and (3) overtopping 

devices in which water overflows the device through 

hydraulic turbines. Various forms of WEC’s have been 

previously explored, including the King Island Project 
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from Wave Swell Energy.  This project saw the 

deployment of the UniWave200 at Grassy, King Island, 

Tasmania which successfully operated for 12 months. The 

device was an oscillating water column type, spanning 

22.1 m in long 13.6 m wide and 14.2 m tall, and had a 

maximum output of 200 kW [3]. Although the project was 

successful, the large size and small power output 

highlights one of the problems which WEC’s face for 

becoming viable for mass production and 

commercialisation. This suggests that further research is 

needed to develop smaller WEC’s units capable of 

harvesting higher levels of electricity from the ocean’s 

waves. For a wave energy converter, typically the major 

costs are associated with foundations and moorings, 

structure, and maintenance and operations. Optimising 

the power capture allows for a lower number of required 

structures to achieve the desired power output and 

therefore reducing costs. 

 This paper sets out to investigate increasing the 

generated power output from a Moored Multimodal 

Multibody (M4) WEC through incorporating predictive 

modelling from a neural network into a PTO passive 

damping control system. Here, a nonlinear autoregressive 

neural network is used to predict oncoming wave 

elevation which produces an optimal rotational damping 

coefficient which correlates to the specific PTO system 

used within the device. The materials of this paper are set 

out as follows: Section II provides insight into the M4 WEC 

and applications of neural networks, Section III describes 

the methodology used within this paper, Section IV 

provides results and discussions. 

II. BACKGROUND INFORMATION  

A. M4 wave energy converter 

The M4 WEC is of the attenuator type which is a part of 

a multi-institutional program funded by Blue Economy 

CRC and the Western Australian Government. The project 

aimed to deploy a demonstrator device in King George 

Sound, Albany, Western Australia. The device is 

approximately 20 m in length and consists of two framed 

rigid bodies, capturing energy through the relative motion 

of multiple floats in a 1-2-1 configuration, shown in Fig. 1. 

A triangular formation of the first three floats makes up 

the forward body where the final float is connected on the 

aft body via a hinge coupled with a PTO system. The floats 

are arranged in increasing diameter from forward to aft 

allowing the device to naturally weathervane from a single 

point mooring, aligning itself parallel to wave propagation 

direction. The WEC couples heave, surge, and pitch 

excitation to enhance energy capture by combining the 

principles of point absorber and hinge-raft converters [4]. 

The M4 design investigated in this study has been formed 

from previous studies which investigated design principle 

[5]. Initially, three rectangular floats were arranged 

longitudinally with equal distance of half a wavelength. 

Optimisation of the M4 device found that reducing the 

drag coefficient of the three floats by introducing a 

rounded base increased the energy capture by up to 60% 

[6]. Furthermore, increasing the bow to mid float spacing 

to be more than the mid to stern float spacing found 

improvements to the energy capture [7]. A study explored 

the influence of increasing the number of floats from 3 to 8 

in various configurations through a linear diffraction time-

domain model which saw significant increase in energy 

capture [8]. However, considering the levelised cost of 

electricity (LCOE), the 6-float 1-3-2 and the 4-float 1-2-1 

configurations were found to be more beneficial. Both of 

these configurations have been previously researched for 

energy yield in several sites. A study conducted by [9] 

compared the mean power output of a 3-float 

configuration in two potential sites: Albany, Western 

Australia and Orkney, United Kingdom. The power 

performance of the two sites were found to be similar, but 

the severity of extreme waves at Albany is considerably 

less and therefore more desirable from a survivability 

perspective.  

Further potential optimisation of the M4 device may 

include optimisation of the PTO system. The PTO for the 

M4 device includes an electrical drive train with a 

permanent magnet (PM) generator which allows for 

variable torque in the form of a damping coefficient in 

relation to wave conditions at site [10]. Wave climate is 

variable in nature, resulting in implications for WEC 

energy capture and the efficiency of the device. Here, it 

may be beneficial to implement a passive loading control 

system which tunes the PTO damping coefficient relative 

to the oncoming wave field, therefore optimising power 

generation for temporal wave fluctuations. For example, 

for rotational motion the passive loading control system 

will provide a given counter torque for a certain angular 

velocity. PTO control systems have been investigated 

previously on a heaving WEC by incorporating varying 

PTO damping through utilising the Sliding Discrete 

Fourier transform technique to estimate local wave 

frequency [11]. Here, the PTO damping was adjusted 

according to the estimated frequency. Results showed 

power capture increased from 1.64% to 10.38%. PTO 

optimisation of the 3-float configuration M4 device was 

 
Fig. 1. 3D-schematic of the 1-2-1 M4 configuration showing 

increasing float diameter, excluding power take-off. 
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explored through incorporating a linear non-casusal 

controller for damping pitch control [12]. The study 

predicted the incoming sea state with a Kalman filter and 

used this information in the non-casusal controller to 

contribute to the controller’s decision making. Numerical 

results showed that the power capture was dramatically 

increased with this technique. Other methods for 

predicting the incoming sea state used for PTO controls 

include neural networks. This was explored for a point 

absorber which used a multi-layer artificial neural 

network to forecast short-term wave forces [13], which saw 

an increased energy absorption of 60-80%.  

B. Neural networks 

Neural networks (NN’s) work on the basis of the human 

brain where, in the simplest form, a series on nodes are 

connected in three layers (see Fig. 2): an input layer 

including initial data for the network, a hidden layer 

where the main computational processing occurs, and an 

output layer which processes results for the given input 

[14]. NNs are used to provide predictions based on the 

input training data sets. Various NNs have been 

developed for applications ranging from classification, 

speech recognition, timeseries prediction and system 

control. Types of NNs include Convolutional Neural 

Networks (CNN), Long Short-Term Memory (LSTM) 

networks, Deep Neural Network (DNN), and Recurrent 

Neural Networks (RNN) [15].  

NNs have previously been used in the engineering 

industry to predict longitudinal-lateral dynamics of an 

autonomous vehicle [16]. Additionally, a developed DNN 

was used for time-varying multibody dynamic response of 

a crank shaft and connecting rod [17]. In WEC 

applications, the accuracy of predicting power generation 

was compared through different types of NNs [18]. The 

accuracy of NNs is partially dependent on network 

architecture hyperparameters such as batch size, epochs, 

and number of hidden layers. In the case of forecasting in 

the time-domain, both computational speed and accuracy 

of predictions play a critical role when forming 

hyperparameters of the NN. A previous study conducted 

a sensitivity analysis on the number of hidden layers with 

a range of neurons in each layer using the heave motion of 

a point absorber [19]. It was found that two hidden layers 

produced more accurate predictions compared to a single 

layer for the specified range of neurons. However, it was 

found that the addition of the second hidden layer and 

neurons increased the computational processing time. 

Therefore, it is critical to find a balance between these 

parameters utilising NN hyperparameters.  

C. Problem statement  

Although sufficient research has been conducted on the 

M4 device and implementing PTO control systems on 

other forms of WECs to optimise power capture by 

forecasting the sea state, minimal research has been 

conducted on combining these by using a neural network 

to optimise the M4 device. Advantages of using a NN over 

other methods such as Kalman filter is that NNs can be 

complex with their number of layers and neurons and their 

parameters are learnt, whereas Kalman filter rely on a 

precise mathematical model of the system [20]. Therefore, 

a NN allows the control system to be flexible and be used 

in different locations on different WEC devices. The main 

scope of this study is to investigate the effects of a PTO 

damping control system on the M4 WEC by utilising a 

nonlinear autoregressive neural network to predict the 

oncoming wave elevation.  

III. METHODOLOGY 

D. Nonlinear Autoregressive Neural Networks (NARX) 

Nonlinear Autoregressive (NAR) neural networks are a 

subclass of RNNs which are one of the well-known 

machine learning methods to model nonlinear dynamic 

systems. NAR is a time delay recurrent neural network 

which learns a series of patterns and nonlinear features 

based on feedback connections through different layers of 

the network [21]. It generally provides good multi-step 

forecasting in the short term. A modification of the NAR 

network is the NARX network which incorporates 

exogenous timeseries into the input training data. This 

exogenous timeseries is based on external data which has 

an impact on what the neural network is predicting. In the 

case of wave forecasting, this external data could be in the 

form of wind speed and directional data, tidal data, 

geographical features and historical wave data. The 

inclusion of the exogenous series is expected to provide 

improvements to the accuracy of predictions as these 

parameters can influence the wave climate. NARX 

networks are capable of making multistep ahead 

predictions in the time-domain, defined by (1) [22]. This is 

used for wave forecasting in this paper.  

 
𝑌(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 −

𝑛𝑑), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), … , 𝑢(1 − 𝑛𝑑))  
(1) 

where, 𝑓 is the activation function, 𝑌(𝑡) is the predicted 

output sequence, 𝑦(𝑡)  is the input sequence, 𝑢(𝑡)  is the 

exogenous sequence and 𝑛𝑑 is the specified time delay. 

A typical NARX network consists of an input layer, one 

or more hidden layers and an output layer. The NARX 

network architecture used in this study included an open 

 
Fig. 2. Simple neural network architecture showing series of 

nodes connecting the input, hidden and output layers. 
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loop used for network training and a closed loop used for 

predictions, as shown in Fig. 3. For the open loop, both the 

input and exogenous timeseries data were used to define 

initial weights and biases (input layer states). Here, no 

feedback connections are used forming an ‘open loop’. The 

initial weights and biases were then used in a closed loop 

along with a predefined prediction timeseries to forecast 

successive timesteps. In the closed loop, feedback 

connections are used for dynamic output predictions 

which are then postprocessed via comparison to expected 

wave elevation values. The model is trained using the 

Levenberg-Marquardt backpropagation training function 

which updates weights and bias according to Levenberg-

Marquardt optimisation as this has previously been 

defined as the fastest backpropagation algorithm [23]. In 

this study, the number of input and feedback time delays, 

wave sampling frequency, prediction time length and 

number of epochs were used as parameters for 

optimisation of the prediction performance.  

E. Neural network performance evaluation 

Three criteria, Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE) and coefficient of determination 

(R2) are employed to evaluate the neural networks 

prediction performance. Values of MSE and RMSE close to 

zero and values of R2 close to one show agreement between 

the true wave elevation and the model’s predictions. These 

criteria are calculated below through  (2), (3) and (4). 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2
𝑛

𝑖=1
 (2) 

 𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 (3) 

 𝑅2 = 1 −
𝑛 × 𝑀𝑆𝐸

∑ (𝑦𝑖 − 𝑦̅𝑖)
𝑛
𝑖=1

 (4) 

where, 𝑛 is the number of observations, 𝑦̂𝑖 is the 

predicted values and 𝑦̅𝑖 is the mean of the true values. 

F. Wave elevation data sets 

Absorbed power of a WEC is related to the wave 

elevation and the PTO system. Therefore, the NN predicts 

wave elevation for a specified time interval from 

timeseries JONSWAP data correlating to what can be seen 

at King George Sound. Fig. 4(a) presents the bivariate 

probability distribution of significant wave height and 

mean period recorded from a Spotter wave buoy at the 

target location from January 2021 to January 2022. From 

this, the most predominant significant wave height of 

0.625 m and mean period of 5.50 s were used to create 

synthetic unidirectional 3-hour JONSWAP timeseries data 

for the NN. As the target location is in shallow waters, the 

peak enhancement factor of the JONSWAP spectrum was 

1.  Fig. 4(b) represents the generated JONSWAP spectrum 

for the created wave timeseries.  

 
Fig. 3. Nonlinear autoregressive neural network architecture used in this study showing the defining parameters 

 

 

 
Fig. 4. (a) bivariate probability distribution of the significant 

wave height and mean period at King George Sound from January 

2021 to January 2022; (b) Generated JONSWAP spectral density 

for a 3-hour irregular wave, gamma = 3. 
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G. Data pre-processing 

Pre-processing the timeseries data is an essential step 

when determining the inputs for the NN. It is essential to 

note that during the pre-processing process, the timeseries 

data is split into an initial 30-minute duration to save 

computational power and training time. This series was 

then further split into wave target and exogenous series, 

prediction series and validation series shown in Fig. 5(a). 

The data is split according to the number of time steps (N) 

required to predict a specified length of time. The target 

series, or training series, includes the portioned 30-minute 

wave elevation data from 𝑡 = 𝑡𝑖𝑚𝑒(1, … 𝑒𝑛𝑑 − 𝑁). The 

exogenous series uses historical wave data. In the case of 

this study, the historical wave data is shifted back N time 

steps. The prediction series uses the last N values from the 

target series and the validation data uses the last N values 

from the 30-minute series. For successive predictions, a 

sliding window approach was implemented. In this case, 

the target series is updated containing the forecasted 

observations and shifted forward N time steps, as shown 

in Window 2 of Fig. 5(b). Then the NARXNET is re-trained 

with the new 30-minute timeseries, forecasting the next 

series of wave elevation. This process is repeated for the 

remaining 3-hour timeseries.  

Fig. 6(a) shows the target series data used for open loop 

training for the created wave. Additionally, it shows the 

prediction series used in closed loop forecasting and the 

validation series. These can be seen in further detail in Fig. 

6(b). 

H. Numerical model  

A numerical model of the M4 device was developed by 

Kurniawan et al. [24] which provides a linear, frequency-

domain model based on the generalised mode approach. 

The model allows for the estimation of power, motions, 

relative freeboard, among other performance parameters 

to be computed. In this study, the linear power transfer 

function (see Fig. 7) was used to calculate the mean 

absorbed power for the wave spectrum. The 190 kNms/rad 

damping coefficient is representative of the full-scale 

model.  

I. Mean absorbed power and capture width ratio of WECs in 

irregular waves 

For irregular waves, the mean absorbed power defined 

by an energy spectrum can be written as  

  

𝑃𝑐
𝐼𝑅𝑅 = ∫ 2𝑆𝜂(𝑓)𝑃𝑐

𝐿𝑇𝐹(𝑓)𝑑𝑓
∞

0
  

 

 

(5) 

 
Fig. 5. (a) Data structure of NARXNET for singular 30-minute timeseries; (b) sliding window approach used for successive predictions 

for full 3-hour timeseries. 

 

 

 
Fig. 6. (a) 30-minute JONSWAP scaled timeseries data used for 

NARXNET forecasting; (b) correlating scaled prediction series 

and validation series. 

 

 

 
Fig. 7. Full-scale prototype M4 linear power transfer function 

with PTO damping coefficient of 190 kNms/rad. 
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where, 𝑃𝑐
𝐿𝑇𝐹 is the linear power transfer function, and 

𝑆𝜂(𝑓) is the energy spectrum of the irregular wave.  

The mean incident wave power per unit width for a 

significant wave height 𝐻𝑠 in irregular waves (assuming 

deep water) is written as  

  

𝑃𝑖
𝐼𝑅𝑅 =

1

16
𝜌𝑔𝐻𝑠

2𝑐𝑔𝑒  

 

 

 (6) 

where 𝑐𝑔𝑒 is the group velocity corresponding to the 

energy period (𝑇𝑒), 𝑐𝑔𝑒 = 𝑔𝑇𝑒/4𝜋 in deep water. As 

described in [5], 𝑇𝑒 = 0.78𝑇𝑝 for 𝛾 = 1.0 and 𝑇𝑒 = 0.84𝑇𝑝 for 

𝛾 = 3.3 with 𝛾 being the peak enhancement factor of the 

JONWAP spectrum.  

 The capture width ratio (CWR) indicates the power 

absorption capability of any WEC and is defined as 

  

𝐶𝑊𝑅 =
𝑃𝑐

𝐼𝑅𝑅

𝑃𝑖
𝐼𝑅𝑅𝑊

   

 

 

 (7) 

where W is the device width perpendicular to wave 

propagation direction.  

IV. RESULTS AND DISCUSSION 

J. Prediction variables study 

Sensitivity analysis is critical for the development of a 

neural network in determining parameters which will 

provide accurate results. This was conducted to evaluate 

the effects of important input variables on the accuracy of 

the network predictions and the required computational 

time. In this case, such parameters included the time delay, 

prediction length, sample frequency, and number of 

epochs. 

1) Effect of time delay and prediction length 

A sensitivity study was conducted on the input and 

feedback time delay to determine the ideal number of time 

steps which are fed into each iteration of training for 

accurate wave field predictions, whilst minimising 

processing computational duration. As a forecasting 

method for PTO damping control, it is critical that the 

computational duration is less than the prediction time 

frame. Optimising the delay requires a good balance 

between computational duration and accuracy while 

avoiding overfitting and underfitting the data. Large 

delays result in overfit data with large computational 

processing. For this sensitivity analysis, two prediction 

time lengths were studied of a 10 s and 20 s duration for a 

significant wave height of 0.625 m and peak period of 5.50 

s.  

Error metrics such as MSE, RMSE and R2 were used to 

test the accuracy for each time delay and prediction length. 

Table I details the sensitivity analysis for a 10 s prediction 

length where the error metrics correspond to the wave 

elevation predictions. It can be noted that increasing the 

delay increases the accuracy of predictions, as increasing 

the delay increases the number of previous time-steps that 

the network considers when making future predictions. A 

delay of the prediction time steps (N) plus 10 provided 

good correlation between predictions and validation data 

whilst computational duration remains less than the 

prediction length. Table II details the sensitivity analysis 

for a duration of 20 s. The N+20 delay depicts good 

accuracy; however, the computational duration is larger 

than the prediction time which introduces accumulating 

lag in long term predictions. Due to this, the NN predicts 

up to 10 s maximum with a delay of N+10. 

2) Effect of sampling frequency  

 A sensitivity analysis was performed on the sampling 

frequency of the wave timeseries data to explore the effects 

on accuracy and computational duration from variability 

in the number of data timesteps (see Table III). The 

quantity of data used in training and predictions can affect 

the accuracy and training time of NNs as large data sets 

require much more processing capabilities. This analysis 

was conducted on the predominant 30-minute wave 

timeseries with sampling frequencies ranging from 3.5 Hz 

to 7.8 Hz. It can be noted that only the smallest sample 

frequency required less processing time than prediction 

length. Additionally, the accuracy of predictions decreases 

with increased sample frequency. However, this further 

increases the processing time. In this case, a sample 

frequency of 3.5 Hz was used throughout the rest of this 

study. 

TABLE III 

NN SAMPLE FREQUENCY SENSITIVITY ANALYSIS WITH HS = 0.625 M AND 

TP = 5.5 S, AND PREDICTION LENGTH OF 10 S. 

Sample 

frequency 

[Hz] 

Computational 

time [s] 

MSE  RMSE R2 [%] 

3.54 7 1.93E-04 1.39E-02 98.65 

4.95 13 3.53E-04 1.88E-02 90.59 

6.36 25 7.11E-03 8.43E-02 54.07 

7.78 49 7.64E-03 9.04E-02 45.99 

 

TABLE I 

 NN DELAY SENSITIVITY ANALYSIS WITH A PREDICTION LENGTH OF 10 S 

(N = 36), HS = 0.625 M AND TP = 5.5 S. 

Delay Computational 

time [s] 

MSE  RMSE R2 

[%] 

10 1 8.87E-03 9.41E-02 37.91 

20 2 3.31E-03 5.74E-02 76.86 

30 4 3.08E-03 5.55E-02 78.46 

40 6 2.20E-03 4.69E-02 84.59 

N+10 7 4.79E-04 2.19E-02 96.65 

TABLE II 

NN DELAY SENSITIVITY ANALYSIS WITH A PREDICTION LENGTH OF 20 S 

(N = 72), HS = 0.625 M AND TP = 5.5 S. 

Delay Computational 

time [s] 

MSE  RMSE R2 [%] 

30 4 1.35E-02 1.16E-01 -29.26 

40 6 8.52E-03 9.23E-02 18.32 

50 7 3.39E-03 5.82E-02 67.51 

60 11 8.66E-03 9.31E-02 16.92 

N+20 22 1.80E-03 4.25E-02 82.71 
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3) Effect of NN parameters  

The effects of training epochs on neural network 

accuracy were also analysed. Epochs is a hyperparameter 

of neural networks which defines the number of times the 

learning algorithm works through the training series. The 

quantity of epochs used affects the accuracy and training 

time, as too large of a number may increase the 

computational duration with little gain in accuracy. The 

epoch sensitivity analysis was conducted for number of 

epochs from 25 to 100 in 25 increments. The number of 

hidden neurons was constant at 5 and the generated wave 

timeseries was used for each run. Table V details the 

resulting error metrics for each run. As the number of 

epochs increases, it can clearly be noted from Table V that 

the accuracy converges at 75 whilst retaining a training 

time less than the prediction length.  

K. Neural network predictions 

A non-linear autoregressive NN was selected for this 

study because of its flexibility and capability of handling 

complex timeseries data. The NARX NN allows for 

quicker processing and training times compared to other 

NNs such as LSTMs. Upon creation and hyperparameter 

fine tuning of the NN, the wave elevation for 10 s and 20 s 

intervals were predicted for the generated JONSWAP 

spectrum. Although correlation of true and predicted 

wave elevation is important for showing the accuracy of 

the NN, the predictions of the corresponding energy 

spectrum is the critical parameter for determining the 

mean absorbed power when following (5). This means that 

the accuracy of the energy spectrum predictions is far 

more important in the application of this study. The error 

metrics for both 10 s and 20 s prediction intervals are 

detailed in Table IV. These were trained with a delay of 

N+10 and epochs of 75 for each interval with training times 

of 5 s and 16 s. When comparing the error metrics for wave 

elevation predictions to energy spectrum predictions, the 

neural network can predict the energy spectrum more 

accurately. Although the 20 s prediction interval was 

deemed unfeasible due to processing times being longer 

than prediction times, the accuracy of the energy spectrum 

for 20 s interval and a delay of N+10 shows promising 

results for the NN being capable of predicting longer time 

frames with further hyperparameter tuning. However, 

careful consideration must go into ensuring the training 

time is less than the prediction time. Fig. 8 analyses the 

wave elevation predictions for the 10 s interval where the 

corresponding energy spectrum predictions are detailed in 

Fig. 9. Additionally, the 20 s wave elevation predictions 

can be found in Fig. 10 with corresponding energy 

spectrums in Fig. 11.  

In addition to the error metrics, the accuracy of the 10 s 

predictions was evaluated through comparing the 

predicted data to the true data in Fig. 8(b) and Fig. 9(b) via 

providing a visual representation where the linear 

regression line indicates a perfect prediction. Taking note 

of Fig. 9(a), an observable deviation in the height of the 

predicted energy spectrum peak shows the NN slightly 

over predicts the energy spectrum. This deviation is the 

resultant of the small inaccuracies between wave 

elevations in Fig. 8(a). Although the error metrics show the 

energy spectrum has more correlation between true and 

predicted values, the small deviation in peak heights can 

result in approximately 30% difference in mean absorbed 

power. Because of this, it is critical to ensure high accuracy 

in energy spectrum predictions.  

TABLE V 

NN EPOCH SENSITIVITY ANALYSIS WITH HS = 0.625 M AND TP = 5.5 S, 

AND PREDICTION LENGTH OF 10 S. 

Epochs Computational 

time [s] 

MSE  RMSE R2 [%] 

25 2 2.67E-03 5.16E-02 76.12 

50 4 1.09E-03 4.36E-02 82.99 

75 5 5.73E-04 2.39E-02 94.88 

100 7 6.66E-04 2.58E-02 94.03 

 

TABLE IV 

ERROR METRICS FOR 10 S AND 20 S PREDICTION LENGTHS FOR THE 

GENERATED WAVE TIMESERIES. 

 Prediction 

length [s] 

MSE RMSE R2 [%] 

Time domain 

analysis 

10 1.75E-04 1.32E-02 98.77 

20 2.71E-03 5.20E-02 74.00 

Spectral domain 

analysis 

10 5.45E-08 2.34E-04 99.22 

20 8.06E-07 8.98E-04 84.95 

 

 
Fig. 8. (a) 10 s wave elevation prediction using the first 30-minute 

data set; (b) the 10 s predicted wave elevation against the true wave 

elevation. 

 

 
Fig. 9. (a) corresponding energy spectrum for validation and 

prediction data for 10 s interval; (b) validation energy spectrum 

against true energy spectrum. 
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Fig. 10 (a) Illustrates the predicted timeseries for 20 s. It 

can be noted that after approximately 10 s, the accuracy of 

wave elevation predictions decreases as shown in Fig. 

10(b). Much like the 10 s prediction, the error metrics for 

the energy spectrum shows more accurate predictions 

compared to wave elevation as per Table IV. However, 

there are big differences between energy spectrum peaks 

in Fig. 11(a), which have an impact on the calculated 

absorbed power. 

L. Optimised PTO damping  

The PTO damping coefficient is significant to the power 

absorption of WECs. The M4’s damping coefficient is 

assumed to be a linear rotational damping type measured 

through the correlation between PTO torque and angular 

velocity. To provide insight into the dependence of 

optimised damping coefficients and the maximum power 

output, a comparison is made on the linear power transfer 

function for three damping coefficients (see Fig. 12). 

Referring to (5), a relationship can be formed between the 

optimal damping coefficient and the peak wave period of 

the energy spectrum. Although increasing the damping 

coefficient reduces the height of the peak frequency, it 

increases the bandwidth of all other peaks. This can be 

ideal for peak wave periods outside of the 3.5 s – 5 s range 

increasing the mean absorbed power. The optimal 

damping coefficient which provides the maximum power 

was calculated for the wave field at King George Sound, as 

seen in Fig. 13. Here, a peak period range between 3.5 s and 

5 s requires the smallest damping coefficient from falling 

within the bandwidth of the maximum peak of the transfer 

function. Anything which lies outside of this range 

gradually increases either side. This optimal damping 

coefficient is calculated solely on the maximum absorbed 

power and does not consider the limitations of real-time 

passive loading control which requires power from the 

device. Upon prediction of the wave elevation through the 

NARXNET, these optimised damping values were used 

along with their corresponding transfer function to 

calculate the mean absorbed power for the prediction time 

length.  

M. Optimised mean absorbed power 

Maximising the mean absorbed power for a WEC is critical to the 

potential commercialisation of these types of devices as it increases 

economic viability from requiring fewer devices to operate, further 

reducing the environmental impact from reduced footprint in the 

ocean. Using the sliding window approach, variable damping 

optimisation and therefore power output was implemented to each 

predicted 10 s interval. This was completed for the entire 3-hour 

generated wave timeseries with significant wave height of 0.625 m 

 
Fig. 10. (a) 20 s wave elevation prediction using the first 30-

minute data set; (b) the 20 s predicted wave elevation against the 

true wave elevation. 

 
Fig. 11. (a) corresponding energy spectrum for 20 s interval; (b) 

validation energy spectrum against true energy spectrum. 

 

 

 
Fig. 12. Full-scale of the prototype M4 linear power transfer 

function showing effects of different PTO damping coefficients. 

 
Fig. 13. Optimised PTO damping coefficient for the entire 

wave field at King George Sound. 
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and peak period of 3 s. 

 

Fig. 14 details 25-minutes of predicted 10 s intervals using 

the NN and the corresponding optimised power output, 

showing a large increase in comparison to a constant 

damping coefficient of 190 kNms/rad. The corresponding 

power output and CWR for the two conditions can be 

found in Table VI. It can be noted the power output 

doubles by introducing a variable damping control 

system. However, this only represents one significant 

wave height and peak period.  

Further analysis was completed on the CWR over a 

longer duration to capture more accurately the change in 

CWR for different wave fields. This included calculating 

the CWR for different 3-hour JONSWAP wave timeseries 

with peak periods from 2.5 s to 6 s and a significant wave 

height of 0.625 m. With variable PTO damping coefficients, 

the expected increase in CWR for the time-domain can be 

seen in Fig. 15.  The M4 prototype WEC has a natural hinge 

rotation frequency of 3.142 seconds which corresponds to 

the maximum CWR of 1.4 for variable damping at a 3 

second peak period. On average, the CWR was able to be 

increased by 147.4%.  

The increase in CWR highlights the advantages of 

implementing a variable PTO damping control system for 

WECs as a higher CWR indicates larger power capture of 

the device. This can be beneficial for WEC co-location with 

offshore developments such as aquaculture. More 

significant WEC power capture decreases the reliance on 

diesel generators. For implications involving powering 

other developments such as onshore housing, greater 

power capture of a single device results in requiring 

smaller scale of structures which decreases 

foundations/moorings and maintenance, therefore 

reducing costs. 

V. LIMITATIONS AND FUTURE WORKS 

Although the constructed neural network architecture 

predicts 10 s wave elevation intervals accurately, these 

short-term predictions may not be ideal from a mechanical 

perspective. Requiring the PTO control system to change 

 

 
Fig. 14. Comparison between mean absorbed power for constant and variable damping coefficients for each 10s predicted intervals from 

three-hour wave input. 

 

 

TABLE VI 

 EFFECTS OF VARIABLE DAMPING COMPARED TO CONSTANT DAMPING 

ON THE MEAN ABSORBED POWER AND CWR FOR THE GENERATED 3-

HOUR WAVE. 

Damping type Mean absorbed power CWR 

Constant damping 2.37 kW 64.8% 

Variable damping  4.68 kW 127.7% 

 

 
Fig. 15. Capture width ratio for constant damping coefficient 

of Bd = 190 kNms/rad and variable damping coefficients. 
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the damping coefficient every 10 seconds puts 

unnecessary strain on the device, possibly resulting in 

further power losses. The integrated PTO system on the 

M4 device is a hydrodynamic-electrical model where the 

reference torque from the generator is fed back through a 

gearbox to the platform. In this case, the linear rotational 

damping coefficient would be varied by introducing a 

counter torque. Although an electrical PTO control system 

works much faster than a hydraulic system, implementing 

this counter torque every 10 seconds may introduce 

additional mechanical strain on the gearbox and require 

additional power. For the PTO control system to be 

mechanically viable, the damping should vary in intervals 

of at least 30 seconds. However, this extended prediction 

length drastically decreases the accuracy of the neural 

network’s predictions. To become mechanically viable and 

predict larger time intervals requires further NN 

hyperparameter fine tuning. Here, the time and feedback 

delay can be increased to help improve the accuracy of 

larger predictions. However, this may result in overfitting 

the data and excessive computational processing 

durations. All processing for this study was completed on 

a laptop with a CORE I7 processor. Upgrades on 

computational power can help mitigate the processing 

times and allow for larger prediction lengths. 

Furthermore, the robustness of the NN model can be 

increased via exploration of the exogenous data sets. In 

this study, wind data relevant to the wave field was not 

available. The inclusion of this in the exogenous data set 

may increase the accuracy of predictions and allow for 

longer prediction periods. Additionally, the model should 

be compared to other forms of neural networks such as a 

LSTM. This network is a type of recurrent NN designed to 

handle sequences of data. They are effective for timeseries 

forecasting and can capture long-term dependencies in the 

data, therefore may provide accurate predictions for wave 

elevation. 

The generated wave time series included a 

unidirectional JONSWAP wave. However, this cannot 

accurately represent real-life ocean waves as directional 

spreading is generally prominent. Future work from this 

study should include analysing the accuracy of the NN for 

directional spreading in the wave field.  

VI. CONCLUSIONS 

This paper presents the investigation of utilising a 

neural network to predict oncoming wave elevation of 

unidirectional JONSWAP irregular waves. The predicted 

wave elevation and spectrum were implemented into a 

variable PTO damping system to increase the mean 

absorbed power of the M4 WEC prototype device which 

will be deployed in King George Sound in Albany, 

Western Australia. This study used a nonlinear 

autoregressive neural network with exogenous inputs to 

predict the wave elevation for 10 s and 20 s intervals. A 

sensitivity analysis was conducted on network 

hyperparameters such as number of input and feedback 

delay, prediction length, wave sampling frequency and 

number of epochs. It was found that the optimal prediction 

length for the architecture was no greater than 10 seconds 

with a delay of N+10, sampling frequency of 3.5 Hz and 75 

training epochs. For prediction lengths greater than 10 

seconds, it was found that the processing time surpassed 

the prediction length, therefore cannot be used in real-life 

applications.  

Using the predetermined network hyperparameters 

from the sensitivity analysis, the energy spectrums were 

deemed more accurate compared to the predicted wave 

elevations with R2 values of 99.22% and 98.77% 

respectively for the 10 s interval. However, the small 

variability in true and predicted energy spectrum peaks 

proved to have large implications on the absorbed power. 

Due to this, it was deemed critical to ensure that the 

accuracy of predictions for wave spectrums was to an 

excellent standard. A sliding window approach was used 

to predict the incoming wave elevation for the generated 

3-hour timeseries in 10 s intervals. Here, variable damping 

coefficients were used to increase the absorbed power and 

CWR by an average of 147.4%. This is beneficial for WEC 

co-locations with offshore developments and when 

powering housing as the increased power capture allows 

for reduced reliance on diesel generators and less marine 

footprint therefore reducing costs.  
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